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ABSTRACT

The aim of this paper is twofold: contributing to the non-wellfounded
and circular proof-theory of the modal mu-calculus and to that of
extensions of linear logic with fixed points. Contrarily to Girard’s
linear logic which is equipped with a rich proof theory, Kozen’s
modal mu-calculus has an underdeveloped one: for instance the
modal mu-calculus is lacking a proper syntactic cut-elimination
theorem.

A strategy to prove the cut-elimination theorem for the modal
mu-calculus is to prove cut-elimination for a "linear translation" of
the modal mu-calculus (that is define a translation of the statements
and proofs of the modal mu-calculus into a linear sequent calculus)
and to deduce the desired cut-elimination results as corollaries.
While designing this linear translation, we come up with a sequent
calculus exhibiting several modalities (or exponentials). It happens
that the literature of linear logic offers tools to manage such calculi,
for instance subexponentials by Nigam and Miller and super
exponentials by the first author and Laurent.

We actually extend super exponentials with fixed-points and
non-wellfounded proofs (of which the linear decomposition of
the modal mu-calculus is an instance) and prove a syntactic cut-
elimination theorem for these sequent calculi in the framework
of non-wellfounded proof theory. Back to the classical modal mu-
calculus, we deduce its cut-elimination theorem from the above
results, investigating both non-wellfounded and regular proofs.

KEYWORDS

circular and non-wellfounded proofs, cut elimination, exponential
modalities, fixed-points, linear logic, modal p-calculus, proof theory

1 INTRODUCTION

On unity and diversity in logic. It is striking how logic can show
at the same time deep unity and diversity, maybe even more when
considering computer science logic. On the one hand, this unity is
embodied by the fundamental objects and questions of logic which
could be broadly summarised as (i) how to design and use logical
languages and logical consequences, from a model-theoretic or a proof-
theoretic perspective, (ii) how to understand the logical invariants
emerging from models or proofs and — in the CS-oriented part of
logic — (iii) how to provide algorithms and softwares to mechanize
these models and proofs with a specific focus on (iv) how intrinsically
expressive and complex are those formalisms and problems? On the
other hand, the vast diversity of logical languages and the broad
nature of reasoning — and sometimes even the linguistic aspects
of logical design — that one tries to capture logically is a source of
multiplicity of formalisms which, sometimes, turn out to become
incompatible: the ultimate aim of logic to universality can soon be
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lost in the technicalities required to achieve the precise and efficient
modelling of a specific phenomenon.

This diversity is of course source of very rich theories and allows
us to regularly revisit the fundamental concepts themselves, which
is highly valuable. For instance, depending on the adopted point of
view (be it classical, intuitionistic or linear), one will be driven to
various perspectives on what a model should be, from models of
truth and provability (expressing invariants on logical statements)
to models of proofs (expressing invariants on reasonings... and
computation). Indeed, as soon as one is adopting the Curry-Howard
perspective — viewing formulas as data types, proofs as programs
and proof simplification as evaluation - it becomes natural to
wonder not only when two formulas are equivalent and could be
interchanged, but also when two proofs are equivalent and when
one can be used to optimize another one.

This choice of point of view will also lead to various structures
for mathematically representing proofs, whether one is primarily
interested in what can be deduced (in which case one often chooses
some optimal representation for deductions minimizing the size of
proofs or the non-determinism in proof objects), or whether one
is primarily interested in how logical statements can be deduced
(in which case one often chooses more structured representations,
allowing for non-trivial proof invariants and proof-equivalences).
Both approaches induce fundamentally different choices in the
structure of the representation of logical judgments themselves (by
nature hypothetical): the various flavours of sequents found in the
literature (as sets, multisets or lists as well as labelled or nested
sequents, etc.) illustrate this variety.

When turning to the structure of proofs, one can approach
proof-invariants either with semantical methods (from denotational
semantics) or with syntactical methods (inference permutations,
canonical representations of proofs, cut-elimination) but in both
cases a fine-grained analysis of the process and requirements of
cut-elimination is crucial.

When coming back to the expressiveness of the logical language
under study (be it propositional, predicative of higher-order, whether
it allows to model time or other modal aspects or whether it expresses
(co)inductive statements), this choice has of course a direct and
essential impact on the structure of models and proofs. For instance,
when manipulating a logical language encompassing some form of
inductive statements, one shall have some sort of inductive form
of reasoning at hand, be it in the form of an induction axiom, in
the form of Parks’s inference rules, which reflect Knaster-Tarski’s
theorem, in the form of an infinitely branching w-rule, or in the
form of non-wellfounded proofs, which correspond to a form of
infinite descent reasoning. On view of the applications of induction



and coinduction in CS, it is natural to investigate the relationships
between such representations of (co)inductive reasoning.

Indeed, studies on the modal pi-calculus have been extremely

fruitful since Kozen’s seminal paper [Koz83], investigating its properties

by employing a number of approaches (model-theoretic, proof-
theoretic, automata-theoretic, complexity-theoretic, etc). Still, cut-

elimination, despite being a crucial property from a proof-theoretic

perspective, only received partial solutions, either in the form of

statements of cut-admissibility (usually deduced from a completeness
theorem and therefore non effective) or syntactic cut-elimination

results capturing only a fragment of the calculus [NW96, BS12,

Min12, MS12, AL17]. The present work aims at contributing to

syntactic cut-elimination theorems for the modal p-calculus.

Cut-admissibility vs cut-elimination. The treatment of the cut-
inference in sequent-based proof-systems follows two main traditions:
(i) one can consider cut-free proofs as the primitive proof-objects,
establishing that the cut-inference is admissible (according to that
tradition, the cut-inference essentially lives at the meta level) or
alternatively, (ii) one can consider that the cut inference lives at
the object-level and is a fundamental piece of proofs, establishing
that it is eliminable thus ensuring the sub-formula property (and
its numerous important consequences, ranging from consistency
to interpolation properties). This second tradition often comes
with the investigation of a syntactic, or effective, approach to cut-
elimination, consisting in a cut-reduction relation on proofs, shown
to be (at least) weakly normalizing, the normal forms being cut-free
proofs. In several settings (most notably LJ and LL [Gir87]), such
cut-reductions may have a computational interpretation which was
the starting point of Curry-Howard correspondence built upon
sequent-calculus [CHO00].

When considering cuts in the modal p-calculus, one finds a lot of
works which tried to address cut-elimination in some form. Some
of them are admissibility results [NW96, AL17], possibly using non-
wellfounded or circular systems. Systems with w-rule also enjoy
cut-admissibility (see [JKS08] for instance), however a problem that
arises when trying to describe a syntactic cut-elimination is the
fact that a choice on the number of time a p-rule must be made
sometimes before knowing how many times it should be to fit each
hypotheses of a v-rule. In [BS12], the authors discuss a specific
example where syntactic cut-elimination fails. Syntactic results of
cut-elimination can still be found in w-rule systems [MS12, BS12,
Min12], however these systems are strict fragments of the modal
pi-calculus. In fact, there is no syntactic cut-elimination theorem
for the modal p-calculus.

Linear logic is often described as a resource-sensitive logic but it
is probably more correct to describe linear logic as a logic designed
for analyzing cut-elimination itself. Indeed, linear logic comes from
an analysis of structural rules, not to weaken them but to control
them and offer a more constructive management of contraction and
weakening, notably by offering means to cancel some fundamental
drawbacks of classical proofs. For instance, linear logic allowed for
decomposing, thanks to the controlled treatment of the structural
rules of weakening and contraction by the exponential modalities,
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both intuitionistic and classical logic, in a structured and fine-
grained enough way so that it was possible to refine both the cut-
elimination of those logics as well as their notion of model (allowing
to build a non-trivial denotational model of proofs for classical
logic) [Gir87,DJS97]. Further analyses on these exponential modalities
led to find alternative presentations offering the possibility to tame
their complexity in quite a flexible way, introducing light logics.

Those results were extended to logics with fixed-points in the
finitary and non-wellfounded setting [Doul7, Sau23] and pLL*
allowed for the same kind of linear decomposition for (the non-
wellfounded version of) uLJ and pLK. A natural question is therefore
whether linear logic and its extensions with fixed-points can help
us in achieving syntactic cut-elimination for the modal mu-calculus.
This suggests a first question: what would be a linear decomposition
of the modal y-calculus? Let us forget for a moment about the fixed-
point connective since to motivate the system pLLZ, we need to
understand what problem will be encountered by the translation
of pLKZ in it. Let us consider an example:

CAB +'OA®, 0B® ”
s T oi— e ~ge -d
—— 0 210A° 0B®
" DA’ oB p v + ?10A ,QB ?d, 'p
+ ?210A°, ?10B®

In this example, it would be convenient to have contexts prefixed
with ¢, as applying the rules in this order would leave us with an
unprovable sequent. From cut-elimination steps of exponentials, we
have that adding ¢-formulas in the context of a promotion imposes
to propagate all the structural rules of ? to ¢. This results in a system
that extends pLL* with structural rules on ¢ (¢ and ¢y), as well
as the usual modal rule from modal p-calculus (Op) and a relaxed
constraint on the context of the promotion rule (!g):

FAT FOA 0A T T FAM0A
FOAOT P T FOAT T FOAT U TIALOA P
Do we break anything by doing so? In fact no, because we
can rely on a theory for treating altogether various exponential
modalities, known as subexponentials [NM09] or super exponentials
[BL21]. It happens that the latter framework contains as an instance
the sequent calculus LLg that we just outlined.

Contributions. This therefore suggests the following roadmap
that we adopt in this paper: in Section 2, we recall the necessary
technical background about uLL*, superLL, and introduce psuperLL™
and pLKZ (with list and sequence-based sequents). In Section 3,
prove the cut-elimination for pysuperLL® so that, in Section 4, we
deduce various results on the cut-elimination of the modal mu-
calculus in the circular and non-wellfounded setting.

More precisely, we first prove the infinitary weak normalization
of a cut-elimination procedure for the non-wellfounded system
pLKZ Then, while the normalization process is infinitary, adapting
our uLKZ proofs to a system where sequents are sets of formulas,
we can simultaneously use a regularisation procedure on them to
get a circular and finitary weak-normalization reduction.

2 BACKGROUND
2.1 Formulas

Throughout this paper, we will work with various logics and will
therefore consider different sets of formulas and sequent calculi
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(namely LK, LKg, MALL, LL, superLL, uLK*, uLKZ’, uLL*, uMALL,
psuperLL™). We therefore give an uniform way of defining the
formulas of such logics, to make the presentation generic, precise
and concise, taking inspiration from [Sau23]:

DEFINITION 1 (y-SIGNATURE). A p-signature is a set of pairs (¢, p)
of a connective symbol ¢ and a p € {—,+}" with an n arity n € N.

EXAMPLE 1 (y-SIGNATURE ASSOCIATED TO OUR SYSTEMS). Here

we define some p-signature for our systems:
o UMALL®:CmaLL = {®, B, & &} x {(++)}U{L, L, T,0} x

{0}
one-sided pLL™: Cr, = CmaLL U {1, ?} X {(+)}.
two-sided pLL>: Cr, = Cri, Y {(—o, (= +)), () (=)}
one-sided LK™ : Cri, == {A, V} x {(+ )} U{T, F} x {(}.
two-sided pLK™: Cik, = Cik, U {(=, (= +)), ()1 (=)}
one-sided pLKZ': Cik,, = Cik, U {0, 0} X {(+)}.
two-sided pLKZ : CLk,, = ClLicy, U{(—, (=), () (-)}-

Note that the definition of the y-signature for superLL-systems
is postponed to the next section as it requires some preliminary
definitions.

DEFINITION 2 (PRE-FORMULAS). Let S be a triplet (C,V, A), with
C a p-signature, V a set of variables and A a set of atomic formulas,
we define the set of pre-formulas Fg over S to be the set defined by
induction ((¢,p) € C,.X € V,a € A):

Fsu=X|alc(Fs,....Fs) | uX.Fs | vX.Fs

DEFINITION 3 (POSITIVE AND NEGATIVE OCCURRENCE OF A FIXED-POINT

VARIABLE). Let C be a yi-signature and a fixed-point variable X € V,
one defines the fact, for X, to occur positively (resp. negatively) in a
pre-formula by induction on the structure of pre-formulas:

o The variable X occurs positively in X.

o X occurs positively (resp. negatively) in c¢(Fy, ..., Fp), for
(¢,p) € C, if there is some 1 < i < n such that X occurs
positively (resp. negatively) in F; and p; = + or there is some
1 < i < n such that X occurs negatively (resp. positively) in
F; and p; = —.

e X occurs positively (resp. negatively) in X.G if it occurs
positively (resp. negatively) in G (for § € {p, v}).

DEFINITION 4 (FORMULAS). Let S be a triplet (C,V, A), withC
a p-signature, V a set of variables and A a set of atomic formulas, a
formula F over S is a closed pre-formula such that for any sub-pre-
formula of F of the form §X.G (with § € {y,v}), X does not occur
negatively in G.

From this definition and definition 1 we get different sets of
formulas, namely one-sided and two-sided versions of yMALL™,
pLL®, uLK™ and pLKZ. By considering the p, v, X-free formulas
of the these systems we get the fixed-point free versions of these
systems: MALL, LL, LK, LKg.

DEFINITION 5 (NEGATION). Given a p-signature C containing
only connectives with positive polarity. Let 1 be an involution on C
such that if i(c,p) = (¢/,p") then p = p’. Let A be a set of atoms
with another involution k on it and let V be a set of variables. We

Details in define (—)J'("") to be the involution on formulas satisfying:

App. A.1.1.

xLr) _ x

at () = k(a)

e(Fr, o E) ) = (o) (), Fr )
(uX.F)*t (%) = yx pL5)

We then define an involution on the union of all positives connectives

of example 1:

EXAMPLE 2 (DUAL CONNECTIVES ASSOCIATED TO OUR SYSTEMS).
We define the involution 1, on positive connectives of example 1
to be the only involution satisfying:

Luseful(®: (+,4)) = (T, (+,+))
tuseful(1, () = (L, ()
tuseful (A (£,4)) = (V, (++))
tuseful(L +) = (2, 4)

Luseful(&, (+,4)) = (&, (+,+))
tuseful(T5 ()) = (0, ()
tuseful(T, ) = (F, ()
Luseful(D, +) = (0,+)

NoTATION 1. For the rest of the article, and for all our systems, we
fix a set of countable variables V; a set A .= A’ W {at | a € A},
with an involution k on it such that x(a) = a*. For each particular
systems containing only connectives with positive polarities, we take
1 to be the restriction of Lysef) on its p-signature and use the notation

At forAL(K").

2.2 Sequent calculi

In this section, we define rules and proofs for both infinitary and
finitary systems considered in example 1. Before defining inference
rules, we need the definition of a sequent:

DEFINITION 6 (SEQUENT). A sequent is a pair of two lists of
formulas T, A, that we usually writeT + A. We call T the antecedent
of the sequent and A the succedent of it. We also refer to the formulas
of T (resp. A) as the hypotheses (resp. conclusions) of the sequent.

In one-sided systems we still use this definition, however the set
of rules will only allow us to derive sequents with empty antecedent.

REMARK 1 (DERIVATION RULES & ANCESTOR RELATION). Usually,
in the litterature, derivation rules are defined as a scheme of one
conclusion sequent and a list of hypotheses sequents. In our system,
the derivation rules come with an ancestor relation linking one
formula of the conclusion to zero, one or several formulas of the
hypotheses. As we are working with sequent as lists, we define an
ancestor relation, to be a relation from the positions of the formula in
the conclusion, to a couple (i, j) with i the position of the hypothesis
and j the position of the formula in the given hypothesis. For two-
sided sequent, we would begin at 1 for the left-most formula of the
antecedent.

When defining our rules, we draw the ancestor relation. For instance
in the following example:

+ F, Ay G, A
FFRG A, Ay ’

the first formula of the conclusion (F1 ® F;) is related to the first
one of the first hypothesis (F1) and also to the first one of the second
hypothesis (F2). Then for a formula in position i € [2,#(A1) + 1] will
be related to the formula in position i of the first hypothesis. Whereas
a formula in position i € [#(A1) +2, #(A1) +#(A2) +1] will be related
to the formula in position i — #(A1) of the second hypothesis. The red
line keeping the order of formulas in a context.




——ax F FLT F F,A . +FT
HEF P T, A i F OF, 0T
+ Fi, I F Fo, T F F, F F Fo, I
vl v2
FFiV F, T FFoV Fo, T F F1 A Fo,F
T FE FFEFT +T,G,F,A
FTT FFT FET FI,F,G,A
Figure 1: one-sided LKp rules
——ax + F, T FFLA +T,G,F,A ex
FEF FLA b T RGA
+F,GT x + F, Ay =G, Ay
FF®GT FFQGA, A
+ Fi, T 1 + Fp, T 2 + Fp, T + Fo I
53} &
+ F1 @ F,,T + F1 @ F,,T + F1 & Fol0
T
F1 1 FLT L +T,T T
Figure 2: one sided MALL rules
FR F?F,?F, T 5 FEL FET
W ‘c d ‘P
+?F,T F2FT F?F, T FIE T

Figure 3: one sided exponential fragment of LL

b F[X := pX.F], I
F uX.F, T

F F[X := vX.F],T
F vX.F,F

Figure 4: Rules for the fixed-point fragment

We then consider several sets of rules on the set of formulas
over signatures defined in 1. We define rules for one-sided LK in
figure 1. Rules for LK will be the O, ¢-free rules of LKg. Rules for
MALL are defined in figure 2. We add rules of figure 3 to those
of MALL to get the rules of LL. We add rules of figure 4 to LK,
LKg, MALL and LL to get the fixed-point versions of these systems:
pLK®, pLKE, pMALL®and pLL*™. The exchange rule (ex) from

Fo(l
figures 1 and 2 allows one to derive the rule &

ex(o) for
any permutation o of [1, #(T')], where o(T') designate the action of
o on the list T'. In the rest of the article, we will intentionally forget
to write the exchange rule explicitely, the reader can consider that
each of our rules are preceded and followed by a finite number of
rule (ex).

The two-sided versions of LK, MALL and LL are defined as
usual and not recalled here, however we define two-sided rules
for modality in appendix A.2. Proofs of non fixed-point systems,
LK, LKg, MALL, LL, are the trees inductively generated by the
corresponding set of rules of each of these systems. To define non-
wellfounded proofs for fixed-point logics, we first need a definition:

DEFINITION 7 (PRE-PROOFS). Given a set of derivation rules, we
define pre-proofs to be the trees co-inductively generated by rules of
each of these systems.

ExaMPLE 3 (CIRCULAR PROOF). Circular pre-proofs are those pre-
proofs having a finite number of sub-proofs. We represent them with
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back-edges. Taking F := vX.0X, we give an example of circular proof:

FF,Ft- - rFFLF O
F OF,OF* F OFL, OF v
n I H
+F, F v F-,F
FFLF o

We consider definitions from Fischer-Ladner sub-formula set
FL(F) of a formula F in appendix A.1.2. We don’t give the proof of
the following property here, but it can be found in [Dou17]:

PrROPOSITION 1 (FISCHER-LADNER SET FINITENESS). Let F be a
fischer-Ladner sub-formula, then FL(F) is a finite set.

REMARK 2. Notice that rules create only Fischer-Ladner sub-formulas
from the conclusion sequent to the hypotheses. Therefore by property 1
one can only derive a finite number of formulas from a finite number
of formulas. Meaning that if we represent sequents as sets, starting
with one initial sequent one could derive only a finite number of new
sequents from it.

DEFINITION 8 (ACTIVE & PRINCIPAL OCCURRENCE OF A RULE).
We define active occurrences (resp. principal formula) of the rules of
figures 1, 2, 3 and 4 to be the first occurrence (resp. formula) of each
conclusion sequent of that rule except for:

o the rule (ex) which does not contain any active occurrences
nor principal rules;

o the rule (cut) which does not contain any active occurrences
but has F as principal formula;

e the modal rule (O) where all the occurrences are active and
where OF is the principal formula.

From that, we define the proofs as a subset of the pre-proofs:

DEFINITION 9 (VALIDITY AND PROOFS). Let b = (sj)ice be a
sequence of sequents defining an infinite branch in a pre-proof r.
A thread of b is a sequence (F; € s;)i>n of occurrences such that
foreach j, Fj and Fj+1 are satisfying the ancestor relation. We say
that a thread of b is valid if the minimal recurring formula of this
sequence, for sub-formula ordering, exists and is a v-formula and that
the formulas of this threads are infinitely often active. A branch b is
valid if there is a valid thread of b. A pre-proof is valid and is a proof
if each of its infinite branches is valid.

2.3 Super exponential systems

In this section, we define a family of parameterized logical systems,
following the methodology of [BL21] and using the formalism from
the previous section. The rules of Bauer and Laurent’s system [BL21]
only include functorial promotion and one needs to use the digging
rule to get the usual Girard’s promotion rule. As we do not cover
the digging rule in our system, we use an alternative superLL
formalization. We give the necessary adaptation of the proofs
of [BL21] in A.3.5.

The first parameters of these systems will allow us to define
formulas:

DEFINITION 10 (EXPONENTIAL SIGNATURE). Anexponential signature
o, is a Boolean function on the set of rule names: {?,, | i € N}U{?, |
i> 2}
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We consider sets of exponential names &, which is an arbitrary
set Ename endowed with a function fg_ _ in a set of exponential
signatures. Each exponentials will be signed by an element of & that
will determine which rules with names from {?y,; | i € N} U {?, |
i > 2} can be applied on it. For the sake of clarity, we will write o
instead of fg (o), omitting fg  throughout the remainder of
the paper.

From a signature &, we can define two new sets of formulas:

name

DEFINITION 11 (-SIGNATURE SPECIFIC TO superLL sYSTEMS).
Signature for one-sided psuperLL™: CsyperLL(8), = CMALLY{(?5,1) |
c€&EYU{(lg,+) | 0 € E} for & a set of exponential signatures.
Signature for two-sided pisuperLL™: CsyperLL (&), = CsuperLL(&), Y
{(=, (= +)), ((=)*, =)} for & a set of exponential signatures.

NOTATION 2 (LIST OF EXPONENTIAL SIGNATURES). LetA = Ay,...,Ap

be a list of n formulas, and let 6 = o1, . . ., o, be a list of n exponential
signatures. We write 7z for the list of formulas ?, A1, ..., %5, An.
Moreover, given a relation R on exponential signatures, and given two
lists of exponential signatures & = o1, ...,0m and ¢’ = o’,...,ch,
we write 5Ra”’ for )\ (rl-Rcr}.

1<i<m
1<j<n

For one set of signatures &, we define many systems, parametrized
by three relations on &: <g <f and <. First we define the formulas
of superLL(&) to be the y, v, X-free formulas of ysuperLL*™(E).
Formulas for one-sided superLL(E, <g <f, <u) are the formulas
generated from the p-signature CyyperLL(&),- Rules for this system
are the rules of MALL from Figure 2 in combination with rules
of Figure 5. Note that the multiplexing rule, ?,, is (?w) fori =0
and (?q) for i = 1. Proofs from superLL(E, <g, <, <) are those
trees inductively generated by the rules of this system. For its fixed-
point version, usuperLL™ (&, <g, <f, <y), we add the fixed-point
rules of Figure 4. Rules for the two-sided versions of superLL(E, <g
» < <u) (resp. psuperLL™ (&, <g, <f, <u)) will be rules of the two-
sided versions of MALL (resp. pMALL®) as well as rule defined
in Appendix A.3.1. We get psuperLL™ (&, <g, <, <u) pre-proofs,
proofs, validity, as in the previous section. For the one-sided version,
we extend tygef,] of Example 2 with every ?, and !5 where o is
an exponential signature, iygefy being an involution satisfying
Iuseful (?o) = !o. One can then define the negation from Definition 5
for one-sided psuperLL* (&) keeping the same set of variables,
atoms and involution x than in Notation 1 and taking : to be the
restriction of 1ysefy) to the p-signature CyyperLL(g)- We also use the
notation A+ for AL(:<)

In the remaining of this section, we will focus on fragment
without fixed-points of super exponentials: superLL.

Not all instances of superLL eliminate cuts: one needs to impose
conditions on them, so that cut can indeed be eliminated. The
two following definitions aim at formulating these conditions in a
suitable way.

DEFINITION 12 (DERIVABILITY CLOSURE). Given a signature o,
we define the derivability closure & to be the signature inductively

defined by:
o(r) = a(r)
(%) = (%) = (%, )
0(?¢) = 6(?m;) = 5(?m;) = 5(Pmy,;) i,j#0
0(?my) = (%) = 6(%m;)

Derivability closure comes with the property that for each rule
(r) such that 6(r) is true, the rule (r) is derivable for ?. In that
flavour, we define sets of all possible derivations, which will be
used to define the cut-elimination procedure. We define a notion of | gee
coherent sets of derivations which are sets of derivation having the
same conclusion and open hypotheses. In combination with that,
we use derivability closure to define coherent sets of derivations 7g

details  in

App. A.3.2

(resp. ?fni), for i € N, that have the same conclusion and hypothesis
than ?¢; (resp. ?m;). G

To help us define a cut-elimination rewriting system, we consider | getails in
cut-elimination axioms defined in Table 1. In superLL-systems each
axiom corresponds to one step of cut-elimination. However, as our
reduction systems is based on the (mcut)-rule, which corresponds
to the concatenation of many cuts, some axioms will be used in
more than one case of reduction.

In the original system [BL21], axiom expansion and cut-elimination
property hold. We state here cut-elimination and postpone the
axiom expansion property to Appendix A.3.4.

App. A.3.3

See details
THEOREM 1 (CUT ELIMINATION). As soon as the 8 cut-elimination

axioms of Table 1 are satisfied, cut elimination holds for
superLL(&, <g, < <u).

App. A3.5

Many existing linear logic systems are instances of superLL.
Here we give the example of Elementary Linear Logic.

Elementary Linear Logic. Elementary Linear Logic (ELL) [Gir98,
DJ03] is a variant of LL where we remove (?4) and (!g) and add the
functorial promotion:

AT
FIA T
This system is captured as the instance of superLL(&, <g, <f, <y)
system with & = {e}, defined by e(?,) = ®(?y,) = true (and
(®)(r) = false otherwise), <g = <y = O and @ <¢ . ThissuperLL(E,, <g, <f, <u)
instance is ELL and satisfies the cut-elimination axioms and the
expansion axiom defined in A.3.4. See details

As argumented in [BL21], The superLL-systems subsume many i  app.
more existing linear logic systems such as SLL [Laf04], LLL [Gir98], | as6
seLL [NMO09]. The last two are particularly interesting as they
require more than one exponential signature to be formalized. We
do not discuss them here however, since we will have such an
example with the linear version of the modal y-calculus in Section 4.

Bauer and Laurent’s aim [BL21] was primarily to formally prove
many cut-elimination theorems in a uniform way. However the
conditions for the cut-elimination to work can be used independently
and that is what we aim to do for the modal p-calculus.

'

2.4 Cut-elimination for fixed-point logics

To prove cut-elimination theorems in fixed-point logics, we use an
intermediary rule called the multicut. The multicut is extensively
defined in [Sau23].
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Figure 5: Exponential fragment of pysuperLL™
%0 = Cm) = ) >0 (axgmpn)
c<s0 = o(’m;) = ' (%my) i>0ands#g (axfumpx)
050 = a(?;) = 0 (2;) i>2 (axcontr)
0<s0 = <507 = o<’ (axTrans)
/ ’ s 17
0Zgo’ = <507 > o0 (axleqgs)
c<fo’ = o <o = o<po”’ (axleqfu)
/ ’ s 17 117 77 7
0p0’ = 0 <g0" = (0550"'NMogp0" = (050" AN (Pmy))) (axleqfg)
c<uod = o <507 > o507 (axlequs)

with s € {g, f,u}, all the axioms are universally quantified.
For convenience, we will use the notation ?¢, := 71y, and set 5(?¢,) = true for all 0.

Table 1: Cut-elimination axioms

DEFINITION 13 (MULTICUT RULE). The multicut rule is a rule with
an arbitrary number of hypotheses:

F I FI,
T

See The ancestor relation 1 sends one formula of the conclusion to exactly
App.A41 one formula of the hypotheses; whereas the 1L -relation links cut-
formulas together.

mcut(s, 1)

REMARK 3. The idea of the multicut is to abstract a finite tree of
binary cuts quotiented by cut-commutation rule. We give an example
of a multicut rule and represent graphically 1 in red and 1L in blue.

A B Bt C
A D

+CL,D

mcut(s, L)

We can understand the multicut rule as a tree of binary cuts through
the (cut/mcut)-principal case:

v FE T’ FFLEA
cut
¢ A mcut (s, 1)
T ’
C FFT’ FFLA ,
~w T mcut(/, 1)

Here, 1 sends on C formulas that were sent on C by 1, either it uses the
ancestor relation of the cut-rule that has been merged. The relation
1’ is obtained from 1L by adding F 1.’ F*.

To make the multicut reduction rules more readable, we use the
Seedetailin following definition:

App. A4.2.
DEFINITION 14 (RESTRICTION OF A MULTICUT CONTEXT). Let

% mcut(y, 1L) be a multicut-occurrence such thatC =s; ... sp
and let sj .=+ Fy,..., Fki: we define CFj to be the sequents linked to
the formula Fj with the 1L -relation.

We extend this definition to contexts of formulas.

Multicut reduction rules for yMALL®™ are given in Appendix A.4.3.
Reduction rules for exponential rules of zLL*™ can be found in [Sau23]
as well as more details on yMALL™ reduction rules.

The systems pMALL®, uLL® and puLK®™ enjoy cut-elimination
theorems, proofs can be found in [Sau23]. They are almost strong
normalisation theorems, however because of the infinite nature of
proofs, strong-normalisation cannot readily be true. This is why a
smaller class of reduction sequence is considered: fair reductions.

DEFINITION 15 (FAIR REDUCTION SEQUENCES). A reduction sequence
(7i)ieqw is fair, if for each m; such that there is a reduction R to a
proof ', there exist a j > i such that 7j does not contain any residual

of R.
From [BDKS22] and [Sau23] we obtain the following results:

THEOREM 2 (UMALL®CuT-ELIMINATION [BDKS22]). Any fair
reduction sequence of uMALL™ proofs converges to a cut-free uMALL™ -

proof.

Note that a result about (ax)-free version of pMALL*was proved
in [BDS16].

THEOREM 3 (uLL*° CUT-ELIMINATION [SAU23]). Any fair reduction
sequence of uLL™ proofs converges to a cut-free proof of pLL*™.

THEOREM 4 (uLK®™ WEAK-NORMALIZATION [Sau23]). For any
proof r of uLK®™, there exists a reduction sequence (7;)je141 (A € @)
such that o = m, which converges to a cut-free proof of uLK*.

3 CUT-ELIMINATION FOR psuperLL®

We now are interested about proving cut-elimination theorems for
usuperLL™ instances that satisfy axioms of Table 1. We start by
defining all the (mcut) reduction rules of the exponential fragment
of psuperLL®™, the (mcut) reduction rules for the non-exponential
fragment are those of uMALL®™.

In this section, we fix a set of signatures & and three relations
<g <f and <, such that each o € & satisfies the axioms of Table 1.
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Cut-elimination for the circular modal mu-calculus:
linear logic and super exponentials to the rescue

3.1 (mcut)-elimination steps

In this section, we define the subset of (mcut)-elimination steps of
psuperLL™ that will be necessary for the linear version of modal
p-calculus, the remaining rules can be found in the long version of
the paper.

REMARK 4. To define (mcut)-elimination steps we will need to use
the derivability closure of the signatures, we will also use the definition
of?‘fni and ?‘Z, (defined in Definition 25 as well as coherent sets of
derivations). The rewriting relation ~ will be described as & ~» I’,
where Il is a set of derivations. For that purpose, we will say that a
set of derivations is valid if and only if it is non-empty.

To define (mcut)-elimination steps, it is suitable to have a specific
notation for the contexts containing only proofs concluded by a
promotion. We use notations similar to the notations used in gLL*
cut-elimination proof [Sau23]:

NotaTIoN 3 ((!)-CONTEXTS). C' denotes a list of usuperLL™ (&, <g
. < <u)-proofs which are all concluded by some promotion rule (g, !¢
or'y).

Givens € {g, f,u},C's denotes a list of psuperLL® (&, <g <p<u)-
proofs which are all concluded by an an (!5)-rule.

In both cases, C denotes the list of psuperLL (&, <g, < <u)-
proofs formed by gathering the immediate subproofs of the last promotion
(being either C',orCh).

We now give a series of lemmas that will be used to justify the
(mcut)-reduction steps to be defined in the end of the section.

LEMMA 1 (JUSTIFICATION FOR STEP (comMmy,)). If

7
FAZA <7
F oA 220 * ’
t(s, AL
F 1A, 25T meut(s, IL)
is a psuperLL™ (&, <g, < <y)-proof then
T
FA?zA : (1)
———— mcut(, 1L N
FA 0<gp \
F1gA, 75T &

is also a psuperLL™ (&, <q, <p <y)-proof.

PROOF SKETCH. We run through the C' context and use axioms
(axTrans) and (axleqgs) to get that o < 7’ for each signatures 7’

appearing in C'.
As signatures of j are all appearing in C', we get that & 7. O

LEMMA 2 (JUSTIFICATION FOR STEP (comm! )). If
e

T
FAA \
FIA A )
F1oA 75T

O'Sf?

mcut(s, L)

is a psuperLL™ (&, <q, < <y)-proof with C' such that all sequents
which are concluded with an (!g) have an empty context (ie. no ?-
formula), then

FAA

mcut (s, 1) R
+AT g sfp

'y

FlGA, ?};1"

is a psuperLL™ (&, <g, <p <y)-proof.

PRrROOF SKETCH. As for Lemma 1, we run through the C ! context
and use axiom (axTrans) and (axleqfu) to get that o <¢ 7’ for each
signatures 7’ appearing in C L

As signatures of § are all appearing in C', we get that o < §.

For Lemma 2, the emptyness constraint on the !4 rules ensures
that the resulting proof is indeed a psuperLL*-proof. O

The commutative steps of (?n; ) and (?¢;) are very straightforward,

we do not provide any lemma of justification for steps (comm>_ )
and (comms_).

LEMMA 3 (JUSTIFICATION FOR STEP (PRINCIPAL?,)). If

——
F26A, ..., 26A A a(?¢;)
%
Ch F?26A, A ' C’.;aA
" L mcut (s, 1)
is a psuperLL™ (&, <g, < <y)-proof, then
T
i i
——— —_—
| !
Ca F26A, .., 2 AN Cioa Cioa o
A ” mcut(/, L") -
P25, ... 258 (?¢;)
’
FL,250

is also a psuperLL™ (&, <, < <y)-proof.

Now, we shall state the lemma for the correctness of the principal
reduction for multiplexing, but we need a definition first:

DEFINITION 16. Let S' be a sequent of a isuperLL® (&, <g<p=u
)-context C!, such that C' is a tree with respect to a cut-relation 1L.. We
define a psuperLL™ (&, <g, <p <y)-context Ompxg (C") by induction
on this relation taking S' as the root.

We take advantage of this inductive definition to define two sets of

2
é‘, g Let Cl!, .. C,'l be the sons ofS!, such that

c'= (s, (Cll, e C,!l)), we have two cases:
. 557: S's, then? we define OmpxS(C!) = (S, (C,...
Sg?sz =0 ;Sécz g = ch;
o S'=5%ous' = S'u, then let the root ofCl.! be S;'., we define

%
Ompxs(c!) = (S> OmpxSI1 (Cl!)’ cees Ompxsln (Crll)) ’.SC!,S! =
? 2

! oo gl
{S}UUSCI!,S;’S '_Uscg,si.'

?m
sequentSC,’S, and S

.C)

c.s

Y¢;

See details

in App. B.1

See proof in

App. B.1



LEMMA 4 (JUSTIFICATION FOR STEP (COMM>_)). Let

i

—_———
FA..LAA o(?m;)
?mi !
Ca F25A A C, 4

P2y 2T meut(s )
be a psuperLL™ (&, <g, <7 <y)-proof with T' being sent on Cp by

?m

t; ?yT” being sent on sequents of S

chst’
2.
on Sg, 5 where S' (= 1GAL, ?;,A,) is the sequent cut-connected to

254, Aon the formula ?A. We have that

i

and ?,#T" being sent

1 1
Ca AL AN Ompxg (G a) Ompxs (Cs . a)
- meut(¢/, 1L")
1 1
—_—— .
FLLT, .., r’,?p7,r” ..... 25 r’ PCmy)
g
2P
i Tmi
e e -
FT2 -T2 5 T2 5 T 7' (2¢;
P4 P P P’ ( L,) 5
2P
FT, 7{;, r',?/;,,r” i

is also a psuperLL™ (&, <q, <p <y)-proof.
See proof in
App. B.1 REMARK 5. The previous lemma deserves some comments and
explanations. Notably, the lemma capture the cases of usual dereliction

and weakening. Taking the following example with dereliction instead

of P,
FAA FALBC + BY,?D,?E FDYF
F2AA ¢ TrIAL?B2C F1BL,?D,?E ° F DL oF
F 2C, 7E, 7F, A
FAA FDYLF
YW F AL B,C v B*,?D,?E F DL oF
> mcut (s, L)
r C,?E, 7F, A
F?C,?E,7F,A ¢

Note that ?., is the empty derivation. We can understand here the

% P
definitions of OmpxS;(C!), SC!,S’ and SC’,S!' All the (1p) or (u)
preceding an (!g) are removed during the cut-elimination step, but
promotions that comes after and (!g) still have to be applied as the
!-connective is still there.

Occurrences that are in the context of an (!y) or an (1) coming

before an (!g) are derilicted and thus in S?CT,S!'
this type of promotions removes the exponential connective from the
context.

Occurrences that are in the context of an (!g) are not derilicted as
their exponential connectives is not removed through an (1) promotion.
Neither are occurrences of an (!5) or (!y) that follows an (!g) as their

promotions are still to be applied. These occurrences are therefore all

2,
inSé o

They need to be as

The following lemma is stated only for the case of steps defined
in figure 6 and 7. See App.B.1 for more details.

LEMMA 5 (CORRECTNESS OF THE (MCUT)-REDUCTION SYSTEM).
The left proofs and right set of proofs (we identify single proof derivation
to the singleton containing it) of the rules of figures 6 and 7 are valid.

mcut (e, 1)

Bauer & Saurin

ProoF. We use lemmas 1, 2, 4, 3, commutative steps for contraction
and multiplexing are obvious. O

3.2 Translating psuperLL™into pLL™

We now give a translation of psuperLL™ (&, <g, <f, <y) into pLL™
using directly the results of [Sau23] to deduce psuperLL™ (&, <
, <f, <u) cut-elimination in a more modular way. We define formula
translation:

DEFINITION 17 (TRANSLATION OF FORMULAS). The translation
(-)° is defined by induction on formula by:
c(F,....Fn)® =c(F},....Fy) X% =X
Vo, (?5A)° = ?A° a’:=a
(16A)° :=1A°.

for ¢ any non-exponential connectives.
We then define proof translations:

DEFINITION 18 (PROOF TRANSLATIONS). We define the translations
for exponential rules of usuperLL™ (&, <g, <7 <y) into uLL as sets
of derivations. The set of the translations of another rule (r) is just
the singleton {(r)}.

The set of translations of each rules will be given by all the derivations
obtained from Figure 8 by commuting the (? ;) and (?) rules.

Proof translations ° of v is the set of proofs coinductively defined
on 1 from rule translations.

The following lemma is immediate and comes from the fact that
fixed-points are not affected by the translation:

LEMMA 6 (ROBUSTNESS OF THE (—)° TRANSLATION TO VALIDITY).
Valid pre-proofs i translates to valid pre-proofs z°. Conversely, if n°
is a valid pre-proof, then 7 is also a valid pre-proof.

As one-step mcut-reductions of ysuperLL* (&, <g <p <y) are
defined from proofs to set of proofs, we define a sequence of mcut-
reduction (7;);c141 (A € w) to be a sequence of proofs such that for
each i € 1+ A, there is a IT;;1 such that 7; ~» I1;41 and 7341 € ITj41.
The goal of this section is to prove that each such fair reductions
sequences converges to a cut-free proof. We have to make sure
(mcut)-reduction sequences are robust under this translation. In
our proof of the final theorem, we also need one-step reduction-
rules to be simulated by a finite number of reduction steps in the
translation.

LEmMA 7. Let o be a psuperLL™ (&, <q, <f <y) proof and let
mo ~ I be a psuperLL™ (&, <g, < <y) step of reduction. For each
71 € Iy and for each wj € ny, there exist a finite number of pLL>
proofs Og, . .., 0y such that 6y — ... — Oy, 7 =0 and by, € 77
up to a finite number of rule permutations, done only on rules that
Jjust permuted down the (mcut).

To prove this lemma, we need the following one. This lemma
prove that when starting from the translation of a proof containing
derelictions promotions and functorial promotions, there exist an
order of execution of cut-elimination step that will make them
disappear or commute under the cut. This order depends on how

See detail in

App.B.1
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mcut (s, AL) lg
FloA, 25T FloA, 25T
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! mcut (e, o
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—— ——
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F2.A A i C F26A, ... 2cAT a(?;)
mcut (1, 1L) ?
F?26AT

‘ej

F20AT

Figure 6: Commutative cut-elimination steps of the exponential fragment of psuperLL™ (cases specific to yLL7)
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—_— —— e ——
1 !
F26A, .., 260A A a(?e;) s Ca F26A, ..., 7 AdA Copa Copa
‘e 1 7 n meut(¢/, 1L") 5
Ca F 20 AN : I 25T, .. 75T () .
I mcut (1, 1) — ?é,i
st p + T, .5F
i
—
FA..LAA o)
Ca F2A A i c
mcut (e, 1L
Fr,?prrl,?pur” ( )
i 1
——
1 1
Ca FA ..., AN ompxs(c?'JA) ompxs(c?-JA)
- mcut (1, 1)
12 12
e e e e o
/ ’ 1’ 1’
> FF,F,...,Tﬂp—,,F ’~~~’?p7/r " (?m;) N (principal?m)
2P
i mi
e e _
L2 502 5 T P
2P

T, ?/;, T/, ?,;,, T

with S being the sequent cut-connected to ?5A, A on the formula ?5A.

Figure 7: Principal cut-elimination steps of the exponential fragment of psuperLL*™ (cases specific to pLL7)

the proof is translated, for instance the following (opened) proof:

+ABC | L CL ,
F 1A, 7B, 2C rc f
T1A 7B mcut(s, L)

has two translations:

+A,B,C +AB,C 5

r A,B,?C ',j: r A, ?B,C '?dd
FA?B,2C | FCt FA?BC | F ot
F1A4,?B,2C * rc P F1A,?B,2C °

mcut(t, 1)
F1A,?B F1A,?B

To eliminate cuts, we apply in both the same cut-elimination steps
but in a different order. We apply in both an (!p) commutative step,
then apply in the first one a dereliction commutative step and a
('p)/(?q) principal case; whereas in the second one we first apply
the (!p)/(?q) principal case then the dereliction commutative step.

LEMMA 8. Letn € N, letdy,...,d, € Nandletpy,...,py € {0,1}.
Let 7 be a pLL™ -proof concluded by an (mcut)-rule, on top of which
there is a list of n proofs m1, . .., my. We ask for each m; to be of one of
the following forms depending on p;:

'

o Ifp; =1, thed; + 1 last rules of n; are d; derelictions and
mcut(z, L)

then a promotion rule. We ask for the principal formula of

( principaly_ )
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Figure 8: Exponential rule translations from psuperLL™ (&, <g, <, <u) into pLL*

this promotion to be either a formula of the conclusion, or to
be cut with a formula being principal in a proof rj on one of
the lastd;j + p; rules.

o Ifp; =0, thed; last rules of mr; are d; derelictions.

In each of these two cases, we ask for m; that each principal formulas
of the d; derelictions to be either a formula of the conclusion of the
multicut, either a cut-formula being cut with a formula appearing in
7j such thatpj = 1.

7 reduces through a finite number of mcut-reductions to a proof
where each of the last d;+p; rules either were eliminated by a (!p/?4)-
principal case, or were commuted below the cut.

PRrROOF OF LEMMA 7. Reductions from the non-exponential part
of psuperLL® (&, <g < <u) translate easily to one step of reduction
in pLL®. To prove the result on exponential part, we will describe
each translation of the reductions of Figures 6 and 7 and make sure
that they are finite. The other cases, as well as more details on this
proof are given in Appendix B.2.3. Note that for the commutative
steps no commutation of rules is necessary.

o Step (commgg). This step translates to the commutation of
one (!)-rule in uLL*, which is a one-step reduction.

e Step (comm! ). We use lemma 8, which applies to our step
by first taking all p; = 1 and d; to be the number of formulas
in the context of each promotion.

e Step (commy_ ). We must distinguish the cases based on i:

— i = 0. This step translates to one (?y)-commutative
step.

— i = 1. This step translates to one (?4)-commutative
step.

— i > 1. This step translates to i — 1 commutations of
(?¢) and i commutations of (?4).

e Step (commy, ). This step translates to i — 1 commutations
of (2¢).

e Step (principal, ). This step translates to i — 1 contraction
principal cases, creating i — 1 contractions on each formula
of the context that can be permuted together to get the

translation of any of the derivations of ?fi. Note that for
i = 2 no rule permutation are needed. (That is the case of
the usual binary contraction.)

e Step (principal, ). This step translates in two phases:
(1) First i — 1 contraction principal cases;

2

(2) followed by #s*(S'C“!1 o
dereliction commutative cases.

To prove the second phase we re-use lemma 8 as for steps

(comm? ) and (comm,ll_). We obtain a proof containing

) (?4/")-principal cases, and #(T"")

contractions and derelictions on formulas of the conclusions
that can be permuted to obtain the desired property. Note
that if i = 0, no rule permutations are needed. (That is the
case of usual weakening.)

O

Now that we know that a step of (mcut)-reduction in psuperLL™
translates to some steps of (mcut)-reduction uLL*, we have to
control the fairness, which is the purpose of the following lemma:

LEMMA 9 (COMPLETENESS OF THE (MCUT)-REDUCTION SYSTEM).
If there is a uLL®-redex R sending n° to n’° then there is also a
psuperLL® (&, <q, < <y)-redex R’ sending 7 to a proof n’’, such
that in the translation of R’, R is reduced.

Proor. The proof of this lemma is made in appendix B.2.4 as
we need the full cut-steps of psuperLL™ to show that they are
complete. O

COROLLARY 1. For every fair usuperLL™ (&, <q, < <y) reduction
sequences (7T;)ieq, there exists:

o a fair pLL®™ reduction sequence (0;)icew;

o a sequence of strictly increasing (¢(i))ice natural numbers;

e foreachi, an integerk; and a finite sequence of rule permutations
(Pf)ke[[o,ki—l]] starting from a proof n] € 7 that ends on
O (i)- For convenience in the proof, let’s denote by (ﬂ'lk)ke [0k
be the sequence of proofs associated to the permutation;

e foreachi’ > i and foreachk € [0,k; — lﬂ,pf, = pf

Proor. We construct the sequence by induction on the steps of
reductions of (77;)iec.

e For i = 0: we take any 6y (= 7;) in 75, ¢(0) = 0 and ko = 0:

e For i + 1, suppose we constructed everything up to rank

i. We use lemma 7 on the step 7; — 41 with 7[{ as

the starting proof from 77 and get a finite sequence of
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reduction 6] — --- — 65, such that there is a permutation
of rules (p1,...,pm) (m € N) starting on a proof 7,
of 77, and ending on 6}, such that py,..., pm are at the
depths of rules that commuted down the multicut during the

sequence 0] — -+ — 0. We have that 6 = 7/, therefore

(p?, e ,pf.c"_l) is a sequence of reduction starting from

0 and ending on 0,,(;). As 6’ and 9} are equal under the

multicut rules of § (for each j € [0, n]) and that rules on top

of these multicuts have empty traces under the permutation
ki—1 ki—1y .

of rules (p?, P ), we have that (p?, coLptT ) isa

sequence of rule permutation starting on proof 9}. Let’s

denote by 9’?-, . .,0'?" the sequence of proof associated to

it. We have that for the same reason, ¢’ is equal to ¢’ f"
on top of the depths of multicuts of 9}’.. We therefore have

that 9’151', e 9’],? is an (mcut) reduction sequence of uLL*
starting from 0,,(;). As the two sequences of reductions
p1,...,pmand p?, .. ,pfi_l have disjoint sets of rules with
non-empty traces, we have that p?, . .,pfiil,pl, ceesPm
is a sequence of rule permutation starting from 7/, and

ending on the same proof than the proof ending the sequence
P1s-- .,pm,p?, .. .,pfi_l, namely G’ﬁi. By setting ¢ (i+1) :=
. ks . j i
() +n, Opiyej = 9’}. (for j € [0, n]), p{H = p{ for
ki—1
i+1

j<ki-1 and »p + = pj for j € [1, m], we have our

property.
Here is a summary of the objects used in the inductive step:

TTj > T+l

’ o

Tiv1 € Tin

Pise-Pm
LA AATA > >0 > > On
"] l l
’1 ’1 71
o'} 0 o'}

:
I

9’§i :e(p(i) > ... S 9

<_

]

7o > 94)(i+1)

~.

We get fairness of (6;);ie. from lemma 9 and from the fact that
after the translation of an (mcut)-step, 7° ~» 7/, each residual of
aredex R of 7°, is contained in the translations of residuals of the
associated redex R’ of lemma 9. O

Finally, we have:

THEOREM 5. Every fair (mcut)-reduction sequence of
psuperLL™ (&, <q, <1 <y) converges to a psuperLL™ (&, <q, <f <y)
cut-free proof.

Proor. Consider a psuperLL® (&, <g <p <y) fair reduction sequence
(7i)ie141 (A € 0 + 1). If the sequence is finite, we use lemma 7 and
we are done. If the sequence is infinite, using corollary 1 we get
a fair infinite yLL® reduction sequence (6;)ic.,, and a sequence
(¢(i))iew of natural numbers. By theorem 3, we know that (0;);c.
converges to a cut-free proof 6 of pLL®.

We now prove that the sequence (mj)ie,y converges to a
psuperLL® (8, <g, <, <y) pre-proof 7 such that 7° = 6 up to a
permutation of rules (the permutations of one particular rule being
finite).

First, we prove that for each depth d, there is an i such that there
are no (mcut)-rules under depth d in 7;. Suppose for the sake of
contradiction that there exist a depth d such that there always exist
a (mcut) at depth d. There is a rank i’ and an (mcut) rule in
such that for each i > i’, ; will always contain this (mcut) and
the branch b to it never changes. The translations 7;, contains the
translation of the branch b which also ends with an mcut. Since
75 is equal to 0, () up to the permutations of rules under the
multicut and that these permutations do not change the depths of
the (mcut) rules, we have that the 0,,(;) all contains a (mcut) at a
depth equal to the depth of the translation of b. This contradicts
the productivity of this sequence of reduction, we therefore have
that (7;) converges to a pre-proof x.

Second, we prove that 7° is equal to 6 up to a permutation of
rules (the permutations of one particular rule being finite). The
condition on the sequence given by corollary 1 defines a sequence
of rule permutation starting from 7°:

0 ko—1 Kk k kn— kn—1
Do sPyt PPy PR e s
moreover we have that this is a permutation of rules with finite
permutation, therefore this sequence of rule permutation converges
to a uLL® pre-proof 7’. We have for each i, that the end of the
sequence of rule permutation

-1

ko—1

0 1
Pos - P

k() ky— —1
,pl,...,pl1 i

ki- k
By R
starting from 7° is equal to rrlk" under the multicuts (as n? is equal
to 7° under the multicuts). Therefore we have that the sequence
(ﬂf")iGw = (0p(i))icw converges to 7" and therefore that 7" = .
As rule permutation with finite permutation and (—)° translation
are robust to validity (both ways), we have that 7 is valid. O

We obtain another proof of the result of [BL21]:

CoRrOLLARY 2 (CuT ELIMINATION FOR superLL). Cut elimination
holds for superLL(E, <g, <p <y) as soon as the 8 cut-elimination
axioms of definition 1 are satisfied.

ProoF. Any superLL(E, <g, <, <y)-proofisalso usuperLL™ (&, <g
, <, <u)-proof therefore any sequence of (mcut)-reductions converges
to a cut-free proof. A cut-free proof of sequents containing only
superLL(&, <g, <p, <y)-formulas and valid rules from
psuperLL® (8, <g, <, <u) is necessarily a superLL(&, <g, <g, <u)
(cut-free) proof. O

This result not only gives another way of proving cut-elimination
for superLL-systems but the sequences of reduction we build in it
are generally different from the one that are built in [BL21]. Indeed,
we are eliminating cuts from the bottom of the proof using the



See detail in

app. C.1.2

multicut rule whereas in [BL21] the deepest cuts in the proof are
eliminated first.

4 ON THE CUT-ELIMINATION OF THE MODAL
4-CALCULUS

As discussed in the introduction, to prove the cut-elimination of
pLKZ, our approach will consist in encoding pLKZ' into a new,
more structured system: yLL7T. The system pyLLZ is an instance of
usuperLL™, therefore we get cut-elimination directly as a corollary
of Theorem 5. However, by looking in the details of the proof, we
can state some results in a slightly more general way.

4.1 A linear-logical modal p-calculus

We start by giving a formal definition of the linear-logical modal
p-calculus: pLLZ. The term logical makes emphasis on the fact that
the logic is linear in the use of resources, not in the structures of
its models as in LTL or linear-time p-calculus [Sti92].

DEFINITION 19 (-SIGNATURE FOR piLLY). We define two pi-signatures

for our systems:

o one-sided uLLT: Ci,, = CLL, V{(O,+), (0, H)};
o two-sided uLLT: Cr,, = CLL, U {(T,+), (0, +)}.

From this p-signature and definition 4, we get the formulas of
pLLY. Rules for our system will be rules of pLL* together with:
FAT FOA, OAT T F AT, 0A 0
F DA, OT FOAT  °  FOAT "™ TLIAM0A P
From these rules, we define the sequents, pre-proofs and proofs
in the same way as for systems of Section 2.1. Negation is already
defined for a larger set of formulas.

P,

PROPOSITION 2. The system uLLY is the system psuperLL™ (&, <
. <p <yu) such that:

o The set of signatures contains two elements & = {®, x}.

o 2c,(0) = 2, (%) = true ?m, (o) = true, 2, (@) = 2y (¥) =
true, and all the other elements have value false for both
signatures.

o o<y e 0 <pk Kk <pk, and all couples for the three relations
<g <fand <y being false.

This system is uyLLY when taking:

%0:=? lei=l im0

e :=7 le:=! and !y :=0.

Moreover, the system satisfy cut-elimination axioms of figure 1.

4.2 Cut-elimination for yLLY

To prove cut-elimination for pLLY, we will translate formulas
and proofs and (mcut)-steps of pLLY into yLL*™ and use the cut-

elimination results from [Sau23] (as we did for usuperLL*).In [Sau23],

exponential formulas, proofs and cut-steps are encoded into yMALL®,
following

(?24)° = XA (Lo (XTX))) (1A)° = vX.(A*&(1&(X®X)))

Contrary to psuperLL® which deals with many exponentials, yLL7T
only has two. Therefore we could have made the choice to encode
the modalities of pLLZ directly into yMALL®, replaying the proof
of [Sau23] to get cut-elimination. However using the yLL™ cut-
elimination theorem as such, makes our approach more modular
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and more easy to adapt to future extensions of pLL® validity
condition or variants of its cut-elimination proof.

The translation of yLLZ into puLL* is done using the translation
from psuperLL™ into pLL®™ in section 3.2. We recall the translations
of ¢, O0-formulas: (0A)° :=?A° and (OA)° :=!A°.

Translation of structural rules for ¢, (¢¢) and (¢vw), are the
contraction and the weakening of ?. Translations of the modal
rule are given by (where the derelictions can permute with each
other):

FA°T®
FAT —— ()
F OA, oF AT
F1A°, 2T°

From lemma 6, this translation preserves validity both ways. Finally
we have to make sure (mcut)-reduction sequences are robust under
this translation. In our proof of the final theorem, we also need one-
step reduction-rules to be simulated by a finite number of reduction
steps in the translation:

LEMMA 10. Consider a uLLY reduction step my ~» Il1y. For each
71 € Ty and each 1 € ny, there exist a finite number of pLL*™
proofs 6y, . .., Oy such that:

g 3my, =00, Opemn], and 6y — ... Oy

Proor. To prove this lemma, we replay the proof of lemma 8.

Noticing that the two cases where we need to perform rule permutation

are the principal cases of the multiplexing and of the contraction.
However we do not need to do rule permutation for the (?,)
principal case for i = 2. Neither, do we for (?y,). For (?y,) things
are bit more tricky, we notice that in this particular instance of
psuperLL™ (&, <g, <f, <u) (taking notations from proposition 2, we
only perform ?p, on ?,-formulas. Moreover, we never have o <¢ o
for any o € {e, x}, therefore in the left proof of the ?1,, principal
case, OmeS(C;GA) = C,;GA and I'”’ is empty. We therefore have

only ?¢ -rules that appears under the cut, which is the derivation
%,

containing 0 rules. O

We use the previous lemma, as well as Lemma 9 to prove the
following:

COROLLARY 3. For every fair pLLY reduction sequence (7;);en,
we have:
e a fair uLL*™ reduction sequence (0;)icew;
o a sequence of strictly increasing (¢(i))ice natural numbers;
o foreachi, 0, € ;.

Proor. The proof is done the same way than Corollary 1 but
using Lemma 10 to avoid weakening the statement by authorizing
permutation hypothesis. O

Finally, we have:

THEOREM 6. Every fair reduction sequence of pLL converges to
a pLLY proof.

Proor. To prove it, we can replay the proof from Theorem 5,
using the, specific to yLLZ, Corollary 3, but we do not need to. We
apply Theorem 5 for the instance of usuperLL® of Proposition 2.

m]
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Cut-elimination for the circular modal mu-calculus:
linear logic and super exponentials to the rescue

4.3 Cut-elimination of pLKY

We extend the translation from [Sau23] of LK™ to uLKZ to obtain
a translation into yLL. We define out translation for the two-sided
version of both systems:

DEFINITION 20 (LINEAR TRANSLATION OF uLKZ). We define the
translation (—)* from formulas of pLKZ to formulas of uLLY by
induction on these formulas in the following way:

(A] = Ag)® = 1(241° — 24,°) X®:=1X (pX.A)® = uX.2A®
(A} AA2)® = 1(2A1° &24,°)  T*:=1T  (VX.A)® = lWX.2A®
(A1 VA =1A1°" ®24,°) F* =10 (0A)® :=107A°

(AH* =1(24%)* a® :=la (QA)® := 1OrA°

We also have a translation for sequents: (T A)® :=T°  ?A°.

We give the translations of modal rules in Figure 9. . We then
define translations of proofs coinductively on the proofs using the
translation of each rules. As the smallest formula (for inclusion
ordering) of a totally ordered set of translations is the translation
of the smallest formula, and that a branch of 7° contains all the
translations of threads from 7 and vice-versa, we have the following:

LeEmMMA 11 (ROBUSTNESS OF (—)® To VALIDITY). If 7 is a valid
pre-proof; then ©* also and vice versa.

We define a translation SK(-) going from yLLZ formulas and
pre-proofs to uLKZ formulas and pre-proofs, by forgetting linear
information from formulas and pre-proofs (ie erasing exponential
modalities, as well as dereliction and promotion, and projecting

other connectives or inferences to the corresponding yLKZ connectives

and inferences). This straightforwardly extends the uLK® case [Sau23]
with the modal cases. SK(—) preserves validity and it is compatible
with (—)*: for each proof 7 of uLK®, we have that SK(x®) = 7.

DEFINITION 21 ((MCUT)-REWRITING SYSTEM OF uLKT). We define
(mcut)-rewriting system of uLKZ to be the (mcut)-system obtained
from pLLY (mcut)-system by forgetting the linear information of
proofs of this system.

Finally, we have the following theorem:

THEOREM 7. The (mcut)-reduction system of LK is an infinitary
weak-normalizing reduction relation.

Proor. Consider a uLKZ proof 7 and a fair reduction sequence
o from °. By theorem 6, o converges to a cut-free yLLZ proof.

By applying SK(-) to each proof in the sequence, we obtain
a sequence of pyLKZ valid proofs which are all valid and such
that either SK(7;) = SK(mj4+1) or SK(;) reduces to SK(7j+1) with
one step of pLKZ mcut-reduction. By dropping the equality cases,
we obtain a yLKZ cut-reduction sequence oy that is infinite and
converges to a valid, cut-free uLKZ’ proof. O

4.4 Finitary circular cut-elimination for LK

The infinitary cut-elimination theorem for non-wellfounded pLKZ
proofs, established in the previous section, can be extended to
circular uLKZ proofs, achieving a true weak-normalization (that
is, finitary) result by allowing both cut-reduction and back-edge
introduction rules. Let us explain how we proceed.

First let us notice that, while we established in the previous
sections the cut-elimination for the non-wellfounded p-calculus
(in the form of an infinitary weak-normalization result) in proof
systems where sequents are (possibly pairs of) lists of formulas,
it is straightforward to derive from this a similar infinitary weak-
normalization result for yLKZ presented with sequents as sets of
formulas. For this, one can simply project the cut-reduction relation
for sequents-as-lists to a relation between yLKZ non-wellfounded
proofs for sequents-as-sets by using the forgetful map from lists to
sets and notice that any valid proof in set-based yLKZ is the erasure
of a valid proof in list-based pLKZ from which the infinitary weak
normalization results follows.

Second, let us just recall that it is well-known that non-wellfounded
cut-free proofs for yLKZ with sequents-as-sets can be regularized,
by using an operation that discards a (potentially infinite) sub-
tree and replaces it with a back-edge to a lower sequent, while
preserving validity. This is due to the fact that only finitely many
distinct sequents can occur in such a cut-free set-based derivation.

From the above two points one can obviously regularize the
(non-wellfounded) cut-free proof obtained thanks to the infinitary
weak-normalization mentioned above. In fact, one can do better and
obtain a purely finitary cut-elimination for the circular modal-mu-
calculus. Indeed, while the regularization process sketched above
assumes proofs to be cut-free, it is possible to inline it in the cut-
reduction process and apply it eagerly. We outline this now.

Let us consider finite representations of circular proofs (ie finite
trees with back-edges) endowed with the following reduction —
rule which is structured in three types of rules:

cut-reduction steps the usual cut-elimination reduction for LK’
set-based proofs;

back-edge unfolding a rule that unfolds a finite representation
when the premise of a cut is the target of a back-edge;

back-edge creation aback-edge creation rule that replaces a bottom-
most cut with a back-edge to a lower sequent as soon as
it can be done according to the regularization process for
cut-free non-wellfounded proofs described above.

Finally, we have the following, purely finitary weak-normalization
theorem:

THEOREM 4.1. + is a weakly normalizing reduction relation on
circular uLKZ derivations the normal form of which are cut-free
circular proofs.

5 CONCLUSION

We have introduced a family of logical systems, psuperLL™, and
proved a syntactic cut-elimination theorem for them. Considering
ULLY, one instance of psuperLL™, and a linear translation of pLKZ
in this calculus, we established a cut-elimination theorem the non-
wellfounded sequent calculus for the modal p-calculus, yLKZ . From
this result, a finitary weak normalization theorem for the circular
fragment of pLKg is finally provided.

From the linear logic-theoretic point of view, our system psuperLL™
subsumes various fixed-point versions of existing linear logic systems
(extended most known light logics with least and greatest fixed-
points and a non-wellfounded proof system) and we have a relatively
simple and uniform proof of cut-elimination for each of them.
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Figure 9: Translation of the modal rule into yLL7

From the modal p-calculus-theoretic point of view, this is the
first result of a full syntactic cut-elimination for a proof system
for the whole modal p-calculus. We provide this result in the non-
wellfounded system with sequents as lists of formulas as well as in
the circular fragment, where sequents are sets of formulas. As Linear
Logic has a particularly fine-grained proof theory, we conjecture
that one can construct a non-trivial denotational semantics for the
proofs of pLKZ from the linear translation. However, one cannot
hope the same for the circular version as, for instance, sequents are
translated into sets of formulas.

In our opinion, this work presents a new and non-trivial application
of linear logic to modal p-calculus, developing proof theories in
both domains and highlighting the potential for cross-fertilization
for the two communities.

The psuperLL™ system as defined in this paper does not cover
the digging rule as is done in [BL21]. Asking for the digging rule
on modal formulas is equivalent to axiom 4 of modal logic. Other
axioms of modal logic could be seen as rules from Linear Logic, such
as axiom T in modal logic, and co-dereliction rules from Differential
Linear Logic.

Another natural future work will be to fully cover super exponentials

from [BL21], and even bigger systems, capturing more rules from
Linear Logic and transferring its proof-theoretic properties to other
logical systems.
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Cut-elimination for the circular modal mu-calculus:
linear logic and super exponentials to the rescue

A APPENDIX ON THE BACKGROUND
SECTION

A.1 Details on the section 2.1

A.1.1 Involutivity of the negation, definition 5. We recall the definition

of the involutive negation:

DEFINITION 22 (NEGATION). Given a p-signature C containing
only connectives with positive polarity. Let 1 be an involution on C
such that if i(c,p) = (¢/,p") then p = p’. Let A be a set of atoms
with another involution k on it and let V be a set of variables. We
define (=)+%) to be the involution on formulas satisfying:

¢(Fro.... F) 208 = u(0) (B Er )
(IJX.F)J_(l,K) — VX.FJ‘("K)

Xl(l,K) =X

at (%) = k(a)

INVOLUTIVITY OF THE NEGATION. We prove that this involution
exists, we define it by induction on formulas. All cases are given by
the definition above, except for vX.F which will be:

(vX.F)LR) = x pe)

We prove by induction on formulas that it is indeed an involution:

o (X € V). If our formula is a variable X, then X1(+%) = x
and so (X+(:6))L(LK) = x|

e (a € A). If our formula is an atom, we use involutivity of k.

e (c(Fy,...,Fy)). For the connective case, involutivity of ¢
give us 1(1(c)) = c and induction hypothesis on Fy, ..., F,
to get:

(e(Fy. . Fy) 0 L)
—(u(e) (FF), L 10y L)
=) (F09) | 00 )) L)
:[(l(c))((Fll(l,K))J_(l,K)’ L (FrJl_(l,K))J_(l’K))
=c(F1, ..., Fp).
o (5X.F) (5 € {pv}). We set 1(u) = v and 1(v) = p and we
have:
((8X.F)L () y)L 1K)y
=(1(8)X FH(ex)y LK)y
=1(1(8))X.(FH)*
=6X.F.

A.1.2  Fischer-Ladner sub-formula definition.

DEFINITION 23 (FISCHER-LADNER SUB-FORMULA). Let F be a formula
on a signature C, the set of Fischer-Ladner sub-occurrences of F is
the smallest set FL(F) containing F itself and such that:

(i) Ifc(F1,...,Fn) € FL(F) then Fy,...F, € FL(F) with (¢,p) € C.
(ii) If 5X.G € FL(F) then G[X := 6X.G] € FL(F) with § € {y, v}.

A.2 Details on the sequent calculi section 2.2

A.2.1  Two-sided modality rules. Rules of two-sided yLK3 are the
rules of puLK* together with rules of figure 10.

A.3 Details on super exponential systems

A.3.1 Two-sided Exponential rules for superLL. Exponential rules
of two-sided superLL(&, <g, <f, <y) and psuperLL™ (&, <g, <f, <y)
are the same and are defined in figure 11.

A.3.2  Details on the notion of coherent set of derivations.

DEFINITION 24 (COHERENT SET OF DERIVATIONS). A coherent set
of derivations S is a set of finite (possibly open) derivations, such that
all the derivations have the same root sequents and the same list of
open sequents. If D1, ..., Dy (resp. D1, ..., Dp, ... ) are n coherent
sets (resp. an w-sequence of sets) of derivations such that each elements
of D; has one open sequent equal to O; and a root equal to R;, and
such that for each i € [1,n — 1] (resp. each i > 1), Oj = Rj41, then
we denote by:

On :
— D
Op-1 " On D,
n-1
resp.
0, :
Dy
R1 Ol
R D1
the (coherent) set of derivations containing each
On :
d
Op-1 " On dy
n-1
: resp.
o} :
R1 dl Ol d
Ry !

withd; € D;j.
We identify the singleton {d;} with the derivation d;.

A.3.3  Details on the derivability closure.

DEFINITION 25. Let o be a signature. For each i € N, we define
two sets of derivations ?¢, and 7, by induction on i. We define ?¢; as
the smallest (coherent) set of derivations containing:

o ifa(?,), the derivation ?¢; (it is a one-rule derivation).
e Foreach j,j’ such that 5(?;) and 5(?c,) and j +j 1=,
the derivations of (?c;, ,_,) from figure 12.
We then define ?‘;’ni by induction on i as the smallest set containing:
o Ifo(?m;), the derivation ?y,, (it’s a derivation formed of one
rule).
e Ifa(?,), For each j, j* such that 5(?;) and 6(?Cj,), such
that j + j’ = i, the derivations of (?c, = ?m,, ) of figure 12.
o If5(?m,) and 5(?¢,), the derivations of (?¢; = ?pm;) of
figure 12.
Finally we set ?‘ZO = ?‘fno and ?g being the singleton containing the
0-rule derivation.

ProrosITION 3. Taking the convention G(?¢,) = 6(?m,) and

G(?¢,) = true, we have that r° is non-empty if and only ifé(r) = true.

Proor. For =-direction, we do an induction on the derivability
closure of ¢. For «-direction, taking ?¢  and ?§,, we do an induction
on i using the inductive definition of the derivability closure. O
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Figure 10: Two-sided modality rules
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Figure 11: Two-sided exponential rules for superLL(&, <g, <¢, <y) and psuperLL™ (&, <g, <, <y)
A.3.4  Proof of Axiom Expansion property . "
P N . ; ;
LEMMA 12 (Ax10M EXPANSION). One-step axiom expansion holds we have that for alIT, l,{'_ Por A, 2oy A T s provable without using
for formulas 2 A and !5A in superLL(E, <g, <7 <y) if o satisfies the ——
following expansion axiom: any cut thent+ ?5 A, ..., 7z AT.
c<yo V 0=5f0 vV (0Z50N0(7m)).
i i i <p<p<y)i ]
The axiom P ansion holds insuperLL(&, <g, <p <u) if all o satisfy Proor. First we can notice that for any I' the following rule:
the expansion axiom.

ProoF. We start by proving the first part of the theorem. We LA
distinguish three cases depending on which branch of the disjunction T2-A . 2-AT Sq
holds for o: ” ”
o If 0 <y o is true, then we have: . . ) . .
is admissible in the system without cuts (by an easy induction on

FALA o<ud the number of A).
FlgAL 2.A " Now we show the lemma by induction on the proof of
e If o <f o is true, it is similar to the previous case: F?0A ..., %6, A T. We distinguish cases according to the last rule:
= oc<fo e Ifitis arule on a formula of I' which is not a promotion:
AL A £0 If 1 fi la of T which tap t
-f
FloAL 26A
e Andif o < 0 and (0)(?m,): 7 IH ()
2% A, .. 20 AT ). oA
Flo A fo A,y , pves I—.GZA,...,.GZA,F
— r
FALA L (@Cm) — F20A . 70 AT F 25 A 75,0
F AL 25A M o<g0
‘8
FlgAL 26A e Ifitisa Girard’s style promotion, thanks to the axiom (axTrans),
The second part of the theorem is proved by induction on the size we have:
of the formula, using the first part of the theorem. O
T
A.3.5 Proof of cut-elimination of .sup'erLL (Theorem 1). We first FB 25T 2 A, 2 A 00 <g G 00 <g 01 -
need three lemmas called the substitution lemmas: 3 lg
FloB. 26,1 2y Ao 2y A
LEMMA 13 (GIRARD SUBSTITUTION LEMMA). Let o be a signature

and 63 a list of signatures such that o1 <g 6. Let A be a formula, ,IH(H) i 0o <g 01 f’l Sg 02 (axTrans)
and let A be a context, such that for allT, if + A, T is provable without FB.?251".%,A,....75,A 0o <g 03 0y <g 02

!
using any cut then+ ?z A, T is provable without using any cut. Then FlogB 25,17, 25, ¢
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i

i —_——
—_—— —_———
FA...,AT 5
F2A...,2AT 5 — 7, FA...,AT
esd > celd 20 j m; 2 X i
— ¢y - m,
(Pcjupry) J ’ (?c; = ?my, ;) —_— (?c; = m;) i
—— —_——
FA .. A2%AT .
F2A .. 2AT s — =T F26A, ..., 2%6AT
— T % F26A2%GAT Y — I 6(%,)
"-e > W'Cz I—.aA,F
Figure 12: Derivability of ?fi and ?g,i
e Ifitis a unary promotion, we use axiom (axlequs): e Ifitis an (ax) rule on ?5, A. Then T = !5, At and we have:
ﬂ Al &
B, A 0y <u 01 | FAA
A T g
FlooB, 26, A " FAL 25,0 o1 Sger
‘g
1
e _ Flo AT 25 A
FBA o9 <u 01 o1 Sg 02
77777 g — (axlequs) o
"B’?EZA 0o <g 02
FloyB. 75, A &
LEMMA 14 (FUNCTORIAL SUBSTITUTION LEMMA). Let o1 be a
e Ifitis a functorial promotion: signature and &, a list of signatures such that o <foy. LetAbea
T formula, and let A be a context, such that for allT, if+ A, T is provable
n without using any cut then + A, T is provable without using any cut.
FBIA...,A oo <f o 09 <f 0 P N
; 0 =f 91 0 =f 93 Then we have that for allT, if+ ?5, A, ..., ?5, A, T is provable without
FloyB, 25,17, %6, A, ..., 26, A n
IH(m) —_——
" using any cut then + ?52 AV ?52 AT as well.
BT A A a0 <f o1 015G e
I N e " (axleqfg) _ . _
- A () Py o E U: jg U.j S0 (axleqfg) 7 = Jlu =z ;‘ <% (axleqfg)
. 0 % @ " <5 % . . . )
R Y g Proor. First we can notice that for any T the following rule:
e Ifitis acontraction (?,) on a ?5, A, we use axiom (axcontr): FA . LAT
FAL..,AT
/s
i+n-1 is admissible in the system without cuts (by an easy induction on
———— PYSY . .
the number of A). Now we show the lemma by induction on the
oA AT (o)) ) the lemma by Inductic
2c; proof of 25 A, ..., 7?5, A, T. We distinguish cases according to the
F?0A .. 75 AT .
last applied rule :
IH () o Ifitisarule on a formula of I which is not a promotion:
n—1+i (0'1)(?01') o1 Sg 072
00 (axcontr) T IH(7)
F?25A0,...,75 AT 52) (2, ’
::02::::02::::::::::21:?—Ci f‘?o'lA,...,?o'lA,r . N I-?OTZA,...,?G*ZA,F, -
2. 2.
F250,...,25AT F?0A .. 20 AT F25A . 25 AT

Ifiti ltiplexing (?m; 20, A, i :
o Ifitisamultiplexing (?m,) ona?o, 4, we use axiom (axgmpx) e Ifitisa Girard’s style promotion. Thanks to the axiom (axleqgs),

T we have:
i
e N AN , 4 5
F20 A 26 A A . A%6A,. .. 26 AT () Cm,) FB26 " 20 A 2 A 0y <g 53 g <gor | ~
‘m; !
F oA 7 AT FlooB. 26T 2 A 7o A £
IH ()
i
—_——— 2 - —
F20,0 . 26,0 A LA, 25 AT (01) (?m;) 01 Zg & (axgenp) H(m) o0 <g o1 - <
****** T T AT~~~ 5 = (o © - - (axleqgs)
j;&zfs;~:~52§{ 777777777777 (‘772)7('51')7 _ F B 25T, 25,4, ..., 25,7 0o <g 03 o0 Sg o
,,,,,,,,,,,,,,,,,,,,,,,, %, e
F25,A ... 7,AT i FlogB. 26, 25, A, ... 25, A



e Ifitis a unary promotion, we use axiom (axlequs):

T
F B>A (o)) Su o1 ' ANy
FloyB, 26, A "
T

B A 00 <y 01 01 <f 02

- 2= Sp — (axlequs)

FBA 00 <f 02
-f

F 0B, 25,

o Ifitisafunctorial promotion, thanks to the axiom (axTrans)

we have:
V4
BT A... A o0 <r €3 o) Spo1 ~
FlooB 2a T 2 A 2oy A .
IH ()
FBI,A...,A 0y <t 01 o1 <f Gy
FBI25A .., 0 00 <f € 0 <G
FlooB 25T 25 A, 76 A !

o Ifitisa contraction (?;) on ?4, A, we use axiom (axfumpx):

T
n+i—1
—
b 20 A .. 20 AT (1))

F20A ..., 20, AT o
IH(r)
n+i-1 (01)(%¢;)

(62)(%;)

o1 <r €

(axfumpx)

o Ifitis amultiplexing (?m;) on ?4, A, we use axiom (axfumpx):

T
i
—_——
F20,A 20 AA A% A, 20 AT (01)(my)
F2o A, 20, AT S
IH ()
i
— - _ -
Flah B A L LA A 2 AT (01) (?m; ) o <p 02
T A AL AL A L AT (32) (?m;)

ax
FALA
FAL A o1 <r e
1L
Flo A ,?52A

]

LEMMA 15 (UNARY FUNCTORIAL SUBSTITUTION LEMMA). Let oy
and oy be two exponential signatures such that o1 <, o9. Let A and
B be formulas, such that for allT, if + A, T is provable without using
any cut then + B, T is provable without using any cut. Then we have

(axTrans)

(axfumpx)

Bauer & Saurin

n
——
that for allT, if v ?5,A, ..., %6, A, T is provable without using any cut
n

—T—
thent ?4,B,...,%5,B,T as well, with k; positive integers.

Proor. This lemma is proven the same way as Lemma 14. O
Finally we prove cut-elimination theorem 1:

THEOREM 8 (CuT ELIMINATION). Cut elimination holds for
superLL(&, <g<f <u) as soon as the 8 cut-elimination axioms of
Table 1 are satisfied.

Proor. We prove the result by induction on the couple (t,s)
with lexicographic order, where t is the size of the cut formula and
s is the sum of the sizes of the premises of the cut. We distinguish
cases depending on the last rules of the premises of the cut:

o If one of the premises does not end with a rule acting on
the cut formula, we apply the induction hypothesis with
the premise(s) of this rule.

If both last rules act on the cut formula which does not
start with an exponential connective, we apply the standard
reduction steps for non-exponential cuts leading to cuts
involving strictly smaller cut formulas. We conclude by
applying the induction hypothesis.

o If we have an exponential cut for which the cut formula
!5, A is not the conclusion of a promotion rule introducing
's,» the rule above !5, A cannot be a promotion rule and
we apply the induction hypothesis to its premise(s).

If we have an exponential cut for which the cut formula
l; AT is the conclusion of an (!g)-rule. We can apply:

F AJ‘,?C;ZA o1 <g o9
Flo AL, 25 A & L ,AT
cut
F ?(;ZA,F
F2 AT oy <g G

We have that A and A are such that for every I such that
+ A, T is provable without cuts, + ? & A, T too. Indeed, A and
A are such that - A*,?5 A is provable without cuts and
we can apply the induction hypothesis (#(A4) < #(?5,4)).
Therefore we can apply Lemma 13 on + ?5, A, T' and obtain
that + 2z A, T is provable without cut.

o If we have an exponential cut for which the cut formula
!5, A is the conclusion of an (!f)-rule. We can apply:

FAL A o1 <f 02 \
n !
Flo A ,?Ova F?5, AT .
cu
F ?O-JZA,F
F?5AT 01 <f 02 L u
*********** em.
F ?(;ZA,I‘

We have that A and A are such that for every I such that
+ A, T is provable without cuts, - A, T too. Indeed, A and A
are such that - AL, A is provable without cuts and we can
apply the induction hypothesis. Therefore we can apply



Cut-elimination for the circular modal mu-calculus:
linear logic and super exponentials to the rescue

Lemma 14 on + ?5, A, T and obtain that +- ? 5 A,T is provable
without cut.

e If we have an exponential cut for which the cut formula
!5, AL is the conclusion of an (!y)-rule, this case is treated
in the exact same way as (!f), using Lemma 15.

O

A.3.6 Details on ELL as instance of superLL.

Elementary Linear Logic. Elementary Linear Logic (ELL) [Gir98,
DJ03] is a variant of LL where we remove (?¢) and (!g) and add the
functorial promotion:

FAT

FI1A T
It is the superLL(&, <g, <, <y) system with & = {e}, defined by
o(?c,) = ®(?m,) = true (and () (r) = false otherwise), <g = <y =
0 and e <¢ e. This superLL(&,, <g, <, <y) instance is ELL and
satisfies the cut-elimination axioms and the expansion axiom:

'

e The rule (?1y,) is the weakening rule (?), (?¢,) is the contraction

rule (?¢), and we can always apply promotion () as <f is
the plain relation on &:

FAT e <re FAT
¢ i Tiaa [t
FloA, 2T F1A,7A

We have that (!g) is a restriction of (!f) in ELL and (!y) is
non-existent.
Moreover the cut-elimination axioms are satisfied. As & isa

singleton, axioms (axgmpx), (axfumpx), (axcontr), (axTrans),

(axleqgs), (axleqfu), (axlequs) hold. Axiom (axleqfg) is
vacuously satisfied.
o The expansion axiom is satisfied since <f is reflexive.

A.4 Details on the background on
cut-elimination for fixed-point logics of
section 2.4

A.4.1 Details on the multicut rule 13. The multi-cut rule is a rule

with an arbitrary number of hypotheses:

F Iy . Iy
r

The ancestor relation ¢ sends one formula of the conclusion to

exactly one formula of the hypotheses. Let C := {(i,j) | i €

[1,n],j € [1,#I;]}, ¢ is a map from [[1,#I] to C and L is a relation

on couple C:

mcut(s, 1)

The map ! is injective;

The relation L is defined for C \ 1, and is total for this set;
The relation L is symmetric;

Each index can be related at most once to another one;

If (i, j) AL (i, '), then the T; [j] = (Ty [j'])*;

The projection of 1L on the first element is acyclic and
connected.

A.4.2  Details on the restriction of a multicut context (Definition 14).

DEFINITION 26 (RESTRICTION OF A MULTICUT CONTEXT). Let

% mcut (s, 1) be a multicut-occurrence such thatC =s; ... sp

and lets; ==+ Fq,..., Fy,, we define CFJ. with F; € s; to be the least
sub-context of C such that:

o The sequent s; is in ij;

o Ifthere exists | such that (i, j) 1L (k,1) then sy € CF;;

e Foranyk # i, if there exists | such that (k,1) 1L (k’,l") and
that s € Cr, thensg € Cp;.

We then extend the notation to contexts, setting Cp := 0 and Crr :=
CrUCr.

A.4.3  One-step multicut elimination for yMALL®. Commutative
one-step reductions for yMALL® are given in Figure 13 whereas
principal reductions in Figure 14.

B APPENDIX ON THE CUT-ELIMINATION
FOR psuperLL” SECTION

B.1 Details on the section 3.1

In this section, we define and give a detailed justification of all
the case of cut-elimination for psuperLL™. The rules are given in
figure 15. As in section B.1, we write some conditions on the proofs
of this figure in the corresponding lemma.

We start by the commutation cases of the different promotions.
Commutation cases for the multiplexing and the contraction rules
were give in section 3.1.

The case (commgg) covers all the case where (!g) commute under
the cut:

LEMMA 16 (JUSTIFICATION FOR STEP (comMmy)). If

T
FAZA o<, T
FloA 221 g !
t(e, 1L
b 1A 25T meut(s, IL)
is a psuperLL™ (&, <g, < <y)-proof then
T
FA?:A : 1)
— X  mcut(y 1L N
A, ?,31" 0Zgp \
F1gA, 75T &

is also a psuperLL™ (&, <g, < <y)-proof.

Proor. We prove that for each sequent + !+A’,?5 A" of C” :=
c'u {r15A, ?zA}, we have that o <g .

The L -relation extended to sequent defines a tree on C’. Taking
F !6A, ?zA as the root, the ancestor relation of this tree is a well-
founded relation. We can therefore do an induction proof:

o The base case is given by the condition of application of
(!g) in the proof.

o For heredity, we have that there isa sequent - 157 A”,? 5, A", 25 A’
T

of C’, connected on !+ (A’)* to our sequent. By induction
hypothesis, we have that ¢ <z o’. The rule on top of
koA’ ?~ A is a promotion. We have three cases:
- Ifit’s a (!g)-promotion, we can use axiom (axTrans)
with the application condition of the promotion, to get
0 <g .
- Ifit’s an (!f)-promotion or an (!,)-promotion, we can
use axiom (axleqgs) with the application condition of
the promotion, to get o <g .
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— aX
+ F,Ft —— ax
——— mcut(y, L) "™ + F,Ft
+ F,F*
+F T/ FG,AN Cr L F T/ Cp FG. A
® > ’ ’ > 124 144
Cr Cn FFRG.I.N ) w T FET mcut (¢, 1L") — fGaA mecut (s, L")
FTLA meutts FF®G.T,A
FF,G,T’ C +F,GT’ ;o
c TEacr o)™ _FEGT meut(v', 1L')
m _FeL
FERGT cutts FFRG,T
FF, T’ ) FF, T’
L L C rRI )
C FF1 & F,T t(o 1) + F;, T ;
mcut( — ==
FFL @ FyT ’ FR @Rl O
+F T/ G T’ C - F T’/ t L) C G, T/ to 1)
— = mcut(y, — = mcut(|,
C FF&G,T’ t( l)w +FFT +G,T &
FF&G,T Meutts FF&G,T
v F[SX.F/X],T’ C v F[SX.F/X],T’
—_— S mcut(s, L) )
C FSX.F, T’ o F F[6X.F/X],T with § € {u, v}
mcut(y, L) _
FOX.F,T F 6X.F,T
C FTLIY —_—T F1 —1 7 meut (¢, L")
——— meut(, L) ™ +T,T —— mcut(s, L) ™ 1 C FLT ~ kL
FT,T 1 P LT mcut(t, 1L) TLT L

Figure 13: Commutative one-step reduction rules for yMALL*

C FF ¢
'_
- , meut(s, 1) " T mcut (¢, 1L)
FFEI’ FFLA
; cut C FET FELA ,
C FT/,A ~ mcut (s, L")
mcut(s, L) FT
FD
FFL T FGH T
_rLGA < 2 C  +EGA FFLT,  rGLT o
C FFR®G,A FF-Q G-I, ~ mcut(//, L)
mcut (s, 1L) FT
T
) FFLTY FFLTY
LS T NS ! 2 g C  FEA FEAT
c FFL®FyA FFy & FETY > mcut(/, 1L’)
mcut(z, 1) kT
FT
I ,
C F1 ! (S ~> S mcut(/, 1)
mcut (s, 1) FT
FT
Figure 14: Principal one-step reduction rules for yMALL™
We conclude by induction and use the inequalities to prove that LEMMA 17 (JUSTIFICATION FOR STEP (COMM!1 ). If
0 <g p. ]
g

The case (Comm,lf) covers the case of commutation of an (!f)-

promotion but where only (!g)-rules with empty contexts appears
in the hypotheses of the multi-cut. Note that an (!g) occurrence
with empty context could be seen as an (!f) occurrence (with empty !
1A ?=-A f !
context). Flod iz C
FlgA? ﬁl“

T
FAA O'Sf‘?

mcut (s, 1)
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is a psuperLL™ (&, <g, <f <y)-proof with C' such that each sequents
concluded by an (!g) have an empty context, then

T
FAA

mcut (e, 1L
FAT L)

JA
)
o

FlgA, ?ﬁI‘

is a psuperLL™ (&, <g, < <y)-proof.

Proor. We prove that for each sequent + 1574, 75 A" of C’ =
ClrU{F 1A, 2:A}, 0 <¢ 7.

The 1L -relation extended to sequent defines a tree on C’. Taking
F !5A, ?zA as the root, the ancestor relation of this tree is a well-
founded relation. We can therefore do an induction proof:

e The base case is given by the condition of application of
() in the proof.

e For heredity, we have that there is a sequent + ;7 A", 75 N, 250 A
of C’, connected on !/ (A’) to our sequent. By induction
hypothesis, we have that o < o¢’. The rule on top of
Flor A, ?;, A’ is a promotion. We have three cases:

Ifit’s an (!g)-promotion, then the context is empty and

the proof is easily satisfied.

If it’s an (!f)-promotion, we can use axiom (axTrans)

with the application condition of the promotion to get

o<gt.
If it’s an (!y)-promotion, we can use axiom (axleqfu)
with the application condition of the promotion to get
o <f .
We conclude by induction and use the inequalities to prove that
o <f p. O

We then have the following case where we commute an (!¢)-rule,
but where there is one (at least) (!g)-promotion with a non-empty
context in the premisses of the multicut rule:

LEMMA 18 (JUSTIFICATION FOR STEP (COMM!ZF)). If

T
<.z
FAA 0 <fT !f
F oA, 227
vy ?ﬁr mcut(s, L)

is a psuperLL™ (&, <q, <7 <y)-proof with C'¢ containing a sequent
conclusion of an (!g)-rule with at least one formula in the context,
then
/s
FAA 7(?m,)

A, ?;A

fmy !

!
i’y
FlgA 25T

is also a psuperLL™ (&, <q, < <y)-proof.

Proor. We prove that for each sequent - 154", ? ;A" of C :=

! IR N
Cfucfu C’;“ U{r !5A, ?zA}, we have that o <g /. Moreover, we
prove that 7(?m, ). We prove that in two steps:

(1) There is a sequent - !57A’, ? 5, A’, with A” being non-empty,
which is conclusion of an (!g)-rule. Let’s suppose without
loss of generality, that this sequent is the closest such
sequent to S :=+ !5A,?2A. The Il -relation extended to
sequents defines a tree with the hypotheses of the multi-
cut rule, therefore there is a path from the sequent S to the
sequent S’ =¢ !/ A’, ?;,A’, of sequents + !5/ A", ?;,,A”.
We prove by induction on this path, starting from S and
stopping one sequent before S’ that ¢ <¢ 7't

o The initialisation comes from the condition of application
of lfon S.

e For the heredity, we have that the sequent + !5 A", = A’
is cut-connected to a + !a(a)A(3), ?TFS) A®) on 1A,
therefore o <f ¢’’. We have two cases: either this
sequent is the conclusion of an (!)-rule and we apply
axiom (axleqfu), either of an (!f)-rule and we apply
axiom (axTrans). In each case, we have that o <¢ 'z

We conclude by induction and get a sequent §” =+ !5+ A", ? 5, A"

cut-connected to S’ on the formula !,»A” with ¢ <¢ 'z
From that we get that o <¢ ¢’. Moreover, we have that
o’ <g /. As A’ is non-empty, there is a signature p’ € 7/
such that 6’ <g p’. We can therefore apply axiom (axleqfg).
We get that for each signatures o) such that o <¢ 03,
then o <g¢ o and 0(3)(?m1)» which we can apply to o
and 7 to get that o <g 7 and 7(?m, ).
Then, we prove by induction on the tree defined with
the lL-relation and rooted by S that for each sequents
gAY, 25N 0 <g T
o The initialisation is done with the first step.
e For heredity, we have that there is a sequent
F !U(s)A(3), ?T&) A®) cut-connected tor 1, A”, ?;,,A"
on !;#A”, meaning that ¢ < ¢/, as the sequent is
the conclusion of a promotion, we have that ¢”’ < 7/
for as € {g, f,u}, we conclude using axiom (axleqgs).

We conclude by induction and we use the inequalities from it to
prove that o < p.

O

We then cover the cases where we commute an (!,,)-rule with the

multi-cut. The first case is where there are only a list of (!y)-rules
in the hypotheses of the multi-cut:

LEMMA 19 (JUSTIFICATION FOR STEP (comMm; )). If
U
T
FAC o<yt
F oA 2.C N u
mcut(z, 1)
F oA ?,B

is a psuperLL™ (&, <g, <p <y)-proof, then
s
FAC
FAB

¢ mcut (s, 1)
o Su P

F1GA, ?pB

is a psuperLL™ (&, <g, < <y)-proof.



Proor. We prove that for each sequent + !+ A’,?7B’ of C’ :=
Clu {r !5A, 2B}, we have that o <, 7’.

The 1L -relation extended to sequent defines a tree on C’. Taking
+ 1A, ?.B as the root, the ancestor relation of this tree is a well-
founded relation. We can therefore do an induction proof:

o The base case is given by the condition of application of
('y) in the proof.

e For heredity, we have that there is a sequent
Flgn A, 2,.:#B" 25 A’ of C’, connected on !5/ (A’)* to our
sequent. By induction hypothesis, we have that ¢ <, o’.
The rule on top of + !|vA’, 2B’ is an (!y)-promotion, we
can use axiom (axTrans) and with the application condition
of the promotion, we get that o <y f”.

We conclude by induction and get that o <y p. O

The second case of (!y)-commutation is where we have an (!f)-
rule and where the hypotheses concluded by an (!g)-rule have
empty contexts.

LEMMA 20 (JUSTIFICATION FOR STEP (COMM,2 )). Let
‘U

T
+A,B oc<yT |
N u :
mcut(s, L)
FlGA, ?51“

be a psuperLL™ (&, <q, <p <y)-proof with C containing at least one

proof concluded by an (!y)-promotion ; and such that for each sequent
conclusion of an (!g)-promotion has empty context. We have that
/4

+A,B

C
W mcut(l, J.L)

1 Sfﬁ
F oA 75T f

is also a psuperLL™ (&, <4, < <y)-proof.

Proor. We do our proof in two steps:

(1) Asalways, we notice that the 1L -relation extended to sequent
defines a tree on C’, meaning that there is a path in this tree,
from S :=+ ;A ?,B to a sequent §" =+ !/ A’, ?- A being
the conclusion of an !¢-rule and with A being non-empty.
Without loss of generality, we ask for §” to be the closest
such sequent (with respect to the L -relation). We prove by
induction on this path, starting from S and stopping one
sequent before §’, that for each sequent + !5+ A”,?,# B,
that o <y 7'7:

e The initialization comes from the condition of application
of (!y) on S.
o The heredity comes from the condition of application

of !y onthe sequent+ !5 A”, ?,»B”” and from lemma (axTrans).

Finally, as S’ is linked by the cut-formula !, A’ to one of
these sequents, we get that o <, ¢’. By the condition of
application of (If) on §’, we get that o’ <¢ 7/, and from
lemma (axlequs), we have that o <¢ .

(2) We prove, for the remaining tree (which is rooted in §’),
that for each sequents r |57 A”, ?;,,A”, that o <¢ 7. We
prove it by induction.

o Initialization was done at last point.
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e For heredity, if the sequent + !57A”, ?;,,A’ " is the
conclusion of an (!,)-rule, by induction hypothesis, we
get that o <¢ ¢”/, and by (!y) application condition we
getthat o”’ <, 7/, we get o <¢ T/ with axiom (axleqfu).

e For heredity, if the sequent + !, A", = A’ is the
conclusion of an (!)-rule, by induction hypothesis, we
get that o <¢ ¢’’, and by (!f) application condition we
getthato”’ <¢ T, we geto < ' with axiom (axTrans).

We conclude by induction and we use the inequalities from it to
prove that o <¢ p. a

The following lemma deals with the case where there are sequents
concluded by an (!g)-rule with non-empty context and where the
first rule encountered is an !¢-rule.

LEMMA 21 (JUSTIFICATION FOR STEP (coMM. )). Let
U

I T2
FAB o <ut FCA o <7
_ ! _!
FloA, 2B ! c FlgrC25A ! c,
AT mcut (s, 1)
oA,

be a psuperLL™ (&, <q, <p <y)-proof, such thatCz! contains a sequent
conclusion of an (!g) rule with non-empty context;C := {+ !5A, ?;B}U
Ci" U {r !&C, ?;, A} are a cut-connected subset of sequents ; and
C’={r!sC, !;,A} U Cz! another one. We have that

2
”1 FCA 7 (?my) .
—_— = 'm
FAB C FC, 25 A c!
> a mcut (s, 1)
»—A,.ﬁl" o <gp
+ !GA,?ﬁl“

is also a psuperLL™ (&, <g, < <y)-proof.

Proor. We do our proof in three steps:

(1) ThereisasequentS” = !5 A”, ?5 A, with A’ being non-
empty, which is conclusion of an (!g)-rule. Let’s suppose
without loss of generality, that this sequent is the closest
such sequent to §’ :=+ !5C,? = A. The UL -relation extended
to sequents defines a tree on C’, therefore there is a path

from the sequent S’ to the sequent S”’, of sequents - !0(3>A<3), ?T(~3) AG).

We prove by induction on this path, starting from S and
stopping one sequent before S” that o’ <¢ 7(3):
o The initialisation comes from the condition of application

oflron §'.
e For the heredity, we have that the sequent
- 1 A7 - A®)  is  cut-connected to
o )

F !5(4>A(4), ?T&)A(‘*) on !0(3>A<3),therefore o <pa®.
We have two cases: either this sequent is the conclusion
of an (!y)-rule and we apply axiom (axleqfu), either
of an (!f)-rule and we apply axiom (axTrans). In each
case, we have that o/ < 7(3).
We conclude by induction and get a sequent
SG) = !J(a)A(Z’), ?1(3) A®) cut-connected to S” on the

formula !5+ A” with ¢’ < 7(3). From that we get that
o’ <f ¢’’. Moreover, we have that ¢’’ < /. As A” is non-

77 7"
Sg p .

empty, there is a signature p’’ € 7 such that o
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We can therefore apply axiom (axleqfg). We get that for
each signatures o® such that o’ <t o, o <g o®) and
@ (?m,), which we can apply to ¢’ and o to get that
o < 7 and 7 (?m,)-

(2) Again, we notice that the 1L-relation extended to sequent
defines a tree on C, meaning that there is a path in this tree,
from S :=+ !5A,?;:B to S’. We prove by induction on this
path, starting from S and stopping one sequent before S,
that for each sequent !0.(3)A(3), ?T(g)B(S), that o <, 7(3):

e The initialization comes from the condition of application
of (!y) on S.

o The heredity comes from the condition of application
of !, on the sequent + !G<3)A(3),?T(3>B(3) and from
lemma (axTrans).

Finally, as S’ is linked by the cut-formula !, A’ to one of
these sequents, we get that o <y o”.

(3) Finally, we prove that for each sequents - !

=

0(3)A(3), 2. A
of C’, 0 <¢ ). We prove it by induction as C’ is a tree
with the 1L -relation.
e Initialization comes from the face that o <, ¢/, ¢’ <g
7 and axiom (axlequs).
e For heredity, we have that there is a sequent
F !0'(4)A(4)’?T(_21)A(4)’?0'(3)A(3) of C’, connected on

(e (A®))L to our sequent. By induction hypothesis,

we have that o <, o) Therule on top of !0(3)A(3), ?r@ AB)

is a promotion. We have three cases:

- Ifit’sa (!g)-promotion, we can use axiom (axTrans)and

with the application condition of the promotion,
we get that o <z 7(3).
- If it’s an (!f)-promotion or an (!y)-promotion,

we can use axiom (axleqgs)and with the application

condition of the promotion, we get that ¢ <
(3,
We conclude by induction.
We got two important properties:
(1) For each sequent !0(3)A(3), ?TFS) A"’ of the hypotheses, we
have that o <g Té).
(2) We have 7/(?m,).

We conclude using inequalities of the first property to find that
0 <g p. And we use the second property for the (?,)-rule. O

The last lemma of promotion commutation is about the case
where we commute an (!,;)-promotion but when first meeting an
(!g)-promotion.

LEMMA 22 (JUSTIFICATION FOR STEP (comM, )). Let
‘U

2
o<yt FC25A o <g7
- 1
Ty A . n u ! ‘g ]
FloA 7B c FlgrC2 50 c
AT mcut(, 1)
oA 25

be a psuperLL™ (&, <q, <p <y)-proof such that C := {+ !cA, ?:B} U

!
C" UA{r 1C,?~ A} are a cut-connected subset of sequents ; and

C ={r!sC, 5A}U Cz! another one. Then,

st T2
FAB G G250 C)
u mcut(z, 1) R
FAD 0<gp \
1A 25T §

is also a psuperLL™ (&, <g, < <y)-proof.

Proor. We do our proof in two steps:

(1) First, we prove that for each sequents + !57A, 7,7 B of C\ {F
15:C, ?;,A} that o <, 7”/. We prove it by induction on this
list starting with the sequent S :=+ !;A, ?2B (it is a list with
the 1L -relation):

o Initialization comes from the condition of application
of (!y) on S.

e Heredity comes from the condition of application of
(') on the concerned sequent, from induction hypothesis
and from axiom (axTrans).

We conclude by induction and deduce from the obtained
property that o < ¢’.

(2) We then prove that for each sequents + !5 A, 2,7 A of C’,
0 <g 7. We prove it by induction on C’ as the 1L-relation
defines a tree on it, for which we take S’ := !,C, ?;,A as
the root.

e The initialization comes from ¢ < ¢’ that we showed
for first step, from ¢’ <z 7’ which is the condition of
application of (!g) on S’ and from axiom (axlequs).

e For heredity, we have that there is a sequent
F !6<3)A(3),?T&)A(3),?0(3)A(3) of C’, connected on
157 (A”) to our sequent. By induction hypothesis, we
have that ¢ <g ¢”’. The rule on top of + !5 A", ?;,,A”
is a promotion. We have three cases:

- Ifit’sa (!g)-promotion, we can use axiom (axTrans)and

with the application condition of the promotion,
we get that o < "z
— Ifit’s an (!f)-promotion or an (!,)-promotion,
we can use axiom (axleqgs)and with the application
condition of the promotion, we get that o <g .
We conclude by induction

From the inequalities that we get from induction, we can easily
prove that o <g p. O

Now, we have the lemma for the principal reduction of the
multiplexing: But we need a definition first:

DEFINITION 27. Let S' be a sequent of a psuperLL™ (&, <g <f
, <y)-context C!, such that C' is a tree with respect to a cut-relation
AL. We define a psuperLL™ (&, <g, <f <u)-context Ompxg h by

induction on this relation taking S' as the root. We take advantage of
2

C!’S!‘
LetCl!, e, C,!l be the sons ofS!, such that C' = (S!, (Ci, .. C,'l)) we

have two cases:

o
this induction definition to define two sets ofsequentS'C’T g andS

o S' = S'%, then we define OmpxS(C!) = (S, (C{C,'l)) ;
?m — . ?c — !
SC!,S‘ = Q’SC’,S! =C.



o S'=5S¥ous' = S'u then let the root ofCi! be S; we define
?
Ompxg(C') = (S, ompxs. ... ompxs,"(c;l)) Saig =
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the formula ?;A. We have that

i

—_——
{s"yu US m o C 5= US Te Ca FA .. AN Ompxs (G 4) Ompxs(C3 4)
S, - mcut(//, L")
1 12
Then we have the principal cases, starting with the contraction: T s
T, r/,?p- ..., ? 5,1 P Cm)
)
LEMMA 23 (JUSTIFICATION FOR STEP (PRINCIPAL?_)). If ; "
— e
T , i
i FT, ?};,r',?p-//r”,sss,?p«,/r’ P’ () B
”
—_— L2 5T 5, T i
F %A, . 26 A A (%)
Ci Foo AN [ ?v B is also a psuperLL™ (&, <g, < <u)-proof.
5 < mcut(s, 1)
R, 750 Proor. We prove that for each sequents + !57A”, ?;,,A” of
? -
is a psuperLL™ (&, <g, <p <y)-proof, then Scf! g» 0 Sg 7'’ and that for each sequents - lorA”,? 5, A" of
2 > -
b ) SCTS” o <¢ 1 or o <y t’’. We have two cases:
i 1 5!
—— - — e Either S is the conclusion of an ! or !;-promotion. In this
26A, ... 2 A : _ . . . . . .\
e Ui . Cron Cron meut (1, 117) case, we prove by induction following the inductive definition
’ ’ ’ > .
&5 p() 3 of Ompx g/ (C?!JA) supposing that for S’ :=+ 5/ A”, ?;,/A",
FT,25T7 “ 0 <pc” or o <y ¢’’. Which is true for $’ = S:

is also a psuperLL™ (&, <q, < <y)-proof.

Proor. We prove for each sequent + 17 A", ? 5, A" € Cr, W

have that o < 7/ (for one s € {g, f,u}. As the relation 1L defines
atreeon C’ : C?! a (rooted on the sequent S :=+ !5A, 7, A’ which
is the sequent connected to ?6A, A on ?5A), we do a proof by
induction on this tree:

e Initialization comes from the application condition of the
promotion.
o For heredity, we get from induction hypothesis that o <
" for a s € {g, f,u}, from the condition of application of
the promotion, we get that ¢’ <y 7 (again for a s’ €
{9, f,u}), depending on the cases, from axioms (axTrans),
(axleqgs), (axleqfu), (axleqfg), (axlequs), we get that o <¢
" foras” € {9, f, u}.

We conclude by induction, we get using the obtained property, the
fact that o(? ;) and from axiom (axcontr), that for each sequent

Flon A, 25,0 € C? e "(?Ci). We use that and property 3 to get
that p(?ci) is not empty, making the derivation valid in the proof
of the statement. ]

Finally, we have the multiplexing principal case:

LEMMA 24 (JUSTIFICATION FOR STEP (COMM?, )). Let

i

—_——
FA . LA o(?m;)
- ?m !
Ca F?26A A ' ;

?6A

mcut(e, 1L
FT, ?p/l"’, ?pnl“” ( )

be a psuperLL™ (&, <g, <p <y) proofwith I' being sent on Cp by 1

?A’ being sent on sequents ofS and ?,T" being sent on

SV )
N is the sequent cut-connected to ?5A, A on

C!,s,,whereS =15A, ?;,

- S =5 = 1o A, ?;,,A”, by hypothesis we have
that o <s ¢’ for s € {f,u}. We prove by induction
on C' that each sequents + !0.(3)A(3),? & A®) of it are

T

such that o <g .

« For initialization, as ¢ <s ¢’/, we have by the
condition of application of (!g) that ¢” < o
therefore by axiom (axleqfg)and (axlequs), that
0 <g o

* For heredlty, we get for induction hypothesis
that o <g o), from application condition of
the promotion of the sequent in question, we

get () < B fors € {g. f, u}, using axioms
(axleqgs) we get o <g 703).
We conclude by induction and get the desired property.

(As S™ s empty, sequents from it also satisfies the

C S/V
property.)
-8t =5"ous"t =M Let+ 1gnA”,25,A" be this

sequent, then by hypothesis we have that o <s a”’
for s € {f,u}. From condition of application of the
promotion, we get that 6/ <y 7/ (s € {f, u}), therefore
by lemma (axleqfu), and (axlequs), we get that o <¢~
7 for s” € {f,u}, we can therefore apply induction
hypothesis i times on each Ompx s! (C;) The inequality

o< T gets us also that the sequent s satisﬁes the

desired property and we can conclude for both S
and S’ C, Rz
e Either Sis the conclusion of an !g-promotion. In that case,

2. AN
P
are such that o <z 7’/. We prove it by induction on the the
tree defined by the L -relation:

— The initialization comes from the condition of application
of (!g) on S.

chs"

we prove by induction 07 4 thatfor each sequents - !5 A"
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- For heredity, we get that o’’ <; 7 fors € {g, f>u},
o <g ¢’ from induction hypothesis and we conclude
using axiom (axleqgs).

Finally we get that for all sequents F !5~ A, ?;,,A of S?CT,S"’ o (?m;)

are true, as 0 <; o, ?m; (0) (s € {f, u}) and by lemma (fixfumpx).

?e 3
We also get that for all sequents + !5 A4, ? 5, A OfSC!,S”’ 7’ (?,) are

true as o <g ™, ?¢;(0) and by lemma (axgmpx).

From the condition on the proof of the statement and from
property 3, we get that 5’ (?m;) and g7' (?¢;) are non-empty and
so that the right proof is correct. O

B.2 Details on the section 3.2

B.2.1 Rule permutations.

DEFINITION 28 (PERMUTATION OF RULES). We define one-step
rule permutation on (pre-)proofs of puLL* with rules of figure 17.

Given a uLL*™ (pre-)proof = and p € {l,r,i}* a path in the proof,
we define perm(r, p) by induction on p:

o the proof perm(r, €) is the proof obtained by applying the
one-step rule permutation at the root of & if it is possible,
either it is not defined;

o wedefine perm(q(n’),i-p’) == r(perm(x’,q")) if perm(n’, q’)
is defined, otherwise it is not defined;

We say that a rule (r) in & is finitely permuted if its sequence
of residuals is ultimately constant. We say that (p;);c, is a rule
permutation sequence with finite permutation of rules if each rule
of m is finitely permuted.

PROPOSITION 4 (CONVERGENCE OF PERMUTATION WITH FINITE
PERMUTATION OF RULES). Let 7t be a uLL™ pre-proof and let (p;)icew
be a permutation sequence with finite permutation of rules starting
from 7, then the sequence is converging.

ProOF. Let (7;)ien be the sequence of proofs associated to
the sequence. Let’s suppose for the sake of contradiction that the
sequence is not converging. It implies, using lemma 25, that there
is an infinite sequence of strictly increasing indexes ¢ (i) such that
the (r,(;)) are all at the same position. This implies by finiteness
of permutation of one rules, than there are an infinite number of
rules of 7y which have (r(;)) in their residuals, implying that one
of the rules below the position of (r,(;)) in o has infinitely many
residuals being equal to (r;) or below (r;) contradicting the finitess
of permutation of one rule hypothesis. O

PROPOSITION 5 (PRESERVATION OF VALIDITY FOR PERMUTATIONS
WITH FINITE PERMUTATION OF RULES). Let 7w be a uLL™ pre-proof
and let (p;)icw be a permutation sequence with finite permutation of
rules starting from &t and converging (thanks to lemma 4 to a pre-proof
7’. Then r is valid if and only if ' is.

Proor. From lemma 25, we have that the structure of the trees

o wedefineperm(q(n, mr).1-q") = q(perm(m;.q'), nr) if perm(my. q')of the sequence stays the same, therefore the structure of = is the

is defined, otherwise it is not defined;

same than the structure of 7/, moreover the threads of 7 and =’

o wedefineperm(q(rm;, 7r),r-q") := q(perm(m;, q'), 7r) if perm(71.4" ) re the same if we remove indexes where the thread is not active.

is defined, otherwise it is not defined;
o for each other cases, perm(rm, p) is not defined.

A sequence of rule permutation starting from a uLL™ pre-proof
7T is a (possibly empty) sequence (p;)ie) (A € w), where p; € {l,r,i}
such that if we set my = m, then the sequence (7;);c14) defined
by induction by miy1 = perm(m;, p;) are all defined. We say that
the sequence (7;);e14) is the sequence of proofs associated to the
sequence of rule permutation. We say that the sequence ends on ),
if A is finite, we also write it perm(r, (pi)ic))-

LEMMA 25 (ROBUSTNESS OF THE PROOF STRUCTURE TO RULE
PERMUTATION). One-step rule permutation does not modify the structure

of the proof.

Proor. This lemma is immediate as the substitutions are defined
between unary rule. O

DEFINITION 29 (FINITENESS OF PERMUTATION OF RULES). Let 7w be
a pLL®™ (pre-)proof, and let (p;i);c ) be a sequence of rule permutation
starting from m and let (;);c 14 be the sequence of proofs associated
to it, let q € {L,r,i}* be a path to the conclusion sequent of a rule (r)
of , we define the sequence of residuals (q;);e14) of () in m; to be
a sequence of path defined by induction on i:

ifi=0,q0=¢q;
if pi = qi, then qiy1 == q; - i.
if qi = pi - i then qiy1 := p;.
else gi+1 = q;.

Therefore validity is easily preserved both ways. O

B.2.2  Proof of lemma 8.

LEMMA 26. Letn € N, letdy,...,d, € N and let p1,...,pn €
{0,1}. Let r be a uLL*> -proof concluded by an (mcut)-rule, on top of
which there is a list of n proofs 1, . .., m,. We ask for each m; to be of
one of the following forms depending on p;:

o Ifp; =1, thed; + 1 last rules of n; are d; derelictions and
then a promotion rule. We ask for the principal formula of
this promotion to be either a formula of the conclusion, either
to be cut with a formula being principal in a proof mj on one
of the lastd; + pj rules.

o Ifp; =0, thed; last rules of m; are d; derelictions.

In each of these two cases, we ask for m; that each principal formulas
of the d; derelictions to be either a formula of the conclusion of the
multicut, either a cut-formula being cut with a formula appearing in
mj such that pj = 1. We prove that & reduces through a finite number
of mcut-reductions to a proof where each last d; + p; rules either were
eliminated by a (!p/? g)-principal case, either were commuted under
the cut.

ProoOF. We prove the property by induction on the sum of all
the d; and of all the p;:

o (Initialization). As the sum of the d; and p; is 0, all d; and
pi are equal to 0, meaning that our statement is vacuously
true.

o (Heredity). We have several cases:
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Figure 15: Commutative cut-elimination steps of the exponential fragment of psuperLL™(remaining cases)

— Ifthelast rule of a proof 7; is a promotion or a dereliction

for which the principal formula is in the conclusion
of the (mcut), we do a commutation step on this rule
obtaining 7’. We apply our induction hypothesis on
the proof ending with the (mcut); and with parameters
d{, ....d}, as well as J ., Py, and proofs n{, R
To describe these parameters we have two cases:

* If the rule is a promotion. We take for each j €
[[l,n]],d} = dj;p} =pjifj+i,p,=0; n} =7j
if j #i.
= If the rule is a dereliction. We take for each j €
[[l,n}],d;. Zdjifjii,d; =di—l;p;. =pj.
The 7'[]’. will be the hypotheses of the (mcut) of 7”.
Note that Zd}+2p} =Y dj + Y pj — 1 meaning that
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with S being the sequent cut-connected to ?5A, A on the formula ?5A.

Figure 16: Principal cut-elimination steps of the exponential fragme

nt of psuperLL™ (cases specific to yLLT)
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Figure 17: One-step rule permutation

we can apply our induction hypothesis. Combining
our reduction step with the reduction steps of the
induction hypothesis, we obtain the desired result.

If there are no rules from the conclusion but that one
7; ends with d; > 0 and p; = 0, meaning that the proof
ends by a dereliction on a formula ?F. This means

that there is proof 7; such that p; = 1 and such that
?F is cut with one of the formula of 7;, namely \FL,
As there are only one !-formula, and as p; = 1, IF*
is the principal rule of the last rule applied on 7;.
We therefore can perform an (!p/?4) principal case
on the last rules from 7; and r;, leaving us with a



proof n’ with an (mcut) as conclusion. We apply the
induction hypothesis on this proof with parameters
di=dy,...d] =d; - 1...,d;, =dp, p] :pl,...,p} =
—1,...,p, = pn and with the proofs being the

o
hgipotheses of the multicut. Combining our steps with
the steps from the induction hypotheses, we obtain
the desired result.

- We will show that the case where there are no rules
from the conclusion and that no 7; are such thatd; > 0
and p; = 0, is impossible. Supposing, for the sake
of contradiction, that this case is possible. We will
construct an infinite sequence of proofs (6;);en all
different and all being hypotheses of the multi-cut,
which is impossible. We know that there exist a proof
0o = mj ending with a promotion on a formula !A and
that this formula is not a formula from the conclusion.
This proof is in relation by the 1L-relation to another
proof 01 := mj. We know that this proof cannot be 7;
because the L -relation extended to sequents is acyclic.
This proof also ends with a promotion on a principal
formula which is not from the conclusion. By repeating
this process, we obtain the desired sequence (6;);en,
giving us a contradiction.

The statement is therefore true by induction O

B.2.3  Details on proof of lemma 7.

Lemma 27. Consider a psuperLL™ (&, <q, <5 <y)-reduction step
7y — 71. There exist a finite number of puLL™ proofs 6y, ..., O, such
thatty — ... — O, mg = 6o and Oy is equal to ] up to a finite
number of rule permutations, done only on rules that just permuted
down the (mcut).

Proor. Here we give some details on the proof of lemma 7 as
well as cases that were not covered it. Reductions from the non-
exponential part of psuperLL™ (&, <g, <f, <y) translates easily to
one step of reduction in pLL™. To prove the result on exponential
part, we will describe each translation of the reductions of figure
6, 7,15 and ??. For the commutative steps no commutation of rules
are necessary.

e Step (commy, ). This step translates to the commutation of
one (!)-rule in uLL*, which is one step of reduction.

o Step (cornm!1 ). We prove that lemma 8 applies to step (commllf).

.
Taking the left proof from step (comrnllf) and translating it
in pLL®, we obtain a proof:

o

& p o
kAL AT ) FADLAS )
FALPAT FARA,
F1ag, 28 P F1AG, 205 T
e e mcut(s, 1)

with one of the 1(1) = (i, 1) for some i and n = 1+ #(C). We
apply our result on this proof with all the p; being equal
to 1 and with d; = #(A;). Moreover, we notice that there
will be only one promotion rule commuting under the cut
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and that it commutes before any dereliction, giving us one
translation of the functorial promotion.

e Step (commi). As for (comm;g), this step only translates
to the commutation of one (!)-rule in yLL*, which is one
step of reduction.

e Step (commllu). This step translates to the commutation of
one (!)-rule, followed by #(C™) (1/?9) principal steps and
finally one (?3) commutation.

e Step (commi). We prove this step using lemma 26 as for

step (comm,lf .

e Step (comm?u) and (commﬁ‘), Both of these steps translate

to the commutation of one (!), followed by #(Cl!“) +1(1/?9)
principal steps.
e Step (comms> ). We must distinguish three cases based on
i
— i = 0. This step translate to one (?y)-commutative
step.
— i = 1. This step translate to one (?4)-commutative
step.
— i > 1. This step translates to i — 1 commutation of (?)
and i commutation of (?y).
e Step (comms_). This step translates to i — 1 commutation
of (2¢).
e Step (principal, ). This step translates to i — 1 contraction
principal cases. At the end we obtain the following derivation
under the multi-cut:

i
—_——
F IO or’°,. .., T°
i—-1
—_———
FI°,?17°, ..., M’°

%

R T°,2T7°,?2T7°
_— 9

R T°,207°

which we can re-arrange to get the translation of any of the

derivations of ?fi. Note that for i = 2 no rule permutation
are needed.

e Step (principal, ). This step translates in two phases:
(1) First i — 1 contraction principal cases;

(2) followed by #(82"!1 g ) (?4/!)-principal cases,and #(I'"”)
dereliction commutative cases.
To prove the second phase we re-use lemma 26 as for steps

(comm? ) and (Commllf).

!
‘u
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Finally, the obtained proof under the multi-cut look like

this:
i i
(S 1S RATUNES RS RAATUUENE Nihs
?d
i i—1
[ 03 RATURNJ R RAATUNINE MR Wit
i i—-1
(5 Sd RATUJ NATS RLANY) RAATUNIINS it
24
i i
L 1—~o ?FIO ?rlo ?r/IO ?r//o
C
i-1 i-1
(S 1S RTINS A NAATINS e

= 1"0 ?rlo ?1—\1.0 QFIIO ?FNO
'_ 1"0 f)rlo ?1"//0
which we can re-arrange these rules to get the translation of any

-C

of the derivations of ?ﬁu, followed by any of the derivations of ?51’ .
Note that if i = 0, no re-arrangement is needed. O

B.2.4  Proof of lemma 9.

LEMMA 28 (COMPLETENESS OF THE (MCUT)-REDUCTION SYSTEM).
If there is a uLL® -redex R sending n° to n’° then there is also a
psuperLL® (&, <q, < <y)-redex R sending r to a proof n”’, such
that in the translation of R’, R is applied.

Proor. We only prove the exponential cases, the non-exponential
cases being immediate. We have several cases:

o If the case is the commutative step of a contraction or a
dereliction or weakening (r), as it is on top of a (mcut), it
necessarily means that (r) comes from the translation of a
multiplexing or a contraction rule (r”) which is also on top
of an (mcut) in 7, we can take R’ as the step commutating
(") under the cut.

o Ifitisaprincipal case again, we have that there is a contraction
or a dereliction or weakening rule (r) on top of a (mcut) on
a formula ?A. It also means that each proofs cut-connected
to ?A ends with a promotion. As 7° is the translation
of a psuperLL™ (&, <g, <f, <y)-proof, it means that (r) is
contained in the translation of a multiplexing or contraction
rule (r’) on a formula ?;A on top of a (mcut). It also means
that all the proofs cut-connected for this (mcut) to ?;A are
translations of promotions (no other rules than a promotion
in psuperLL™ (&, <g <t <u) translates to a derivation ending
with a promotion). Therefore the principal case on (1) is
possible, we can take R’ as it.

e Ifit is the commutative step of a promotion (r), it means
that all the proofs of the contexts of the (mcut) are promotions.
Meaning that (r) is contained in the translation of a promotion
(r") on top of (mcut). We also have that the context of this

(mcut) are only proof ending with a promotion for the same
reasons that last point. We therefore need to make sure that
each (mcut) with a context full of promotions are covered
by the ~s>-relation. Looking back at figure 15 together with
conditions given by each corresponding lemmas, we have
that:

- Each (!g)-commutation is covered by the first case.

- Each (!f)-commutation is covered by the two cases
that follows. The second of the two covers the case
where there is an (!g)-promotion in hypotheses of
the multicut with non-empty context, whereas the
first one covers the case where there are no such (!g)-
promotions in the hypotheses.

— The (!y)-commutation is covered by all the remaining
cases:

% The first one covers (!, )-commutation when the
hypotheses are all concluded by an (!y)-rule.

* The second one covers the case where there are
one proof ending with an (!f)-rule and where all
the proof ended by an (!g)-promotions have a
conclusion with empty context.

% The two last ones cover the cases where there
is a proof ending by an (!g)-promotion having
conclusion with non-empty context.

[m]

C APPENDIX ON THE CUT-ELIMINATION OF
MODAL p-CALCULUS SECTION

C.1 Details on the linear-logical modal
p-calculus of section 4.1

C.1.1  Details on linear translation of pLKZ.

DEFINITION 30 (LINEAR TRANSLATION OF puLKZ). We consider
the translation of the rules in figure 18 which complete the rules of
figure 9.

We define translations of proofs coinductively on the proofs using
the translation of each rules.

C.1.2  Proofs that uLLY -instance of superLL satisfy the cut-elimination
axioms (property 2).

PRrOOF. o Hypotheses of axiom (axcontr) are ony true for
i = 2 in two cases: for o = ¢’ = e, in that case G(?c, is true
because o(?c,) is; or for o = ® and ¢’ = %, in that case the
axiom is satisfied as o’ (?¢,) is true.

e Hypotheses of axiom (axgmpx) are true for i = 0 when
o =0¢" =e,orfor 0 = e and ¢’ = *, in both cases we have
that o7 (?,) is true because ¢’ (?m,) is true.

e Axiom (axgmpx) is always true for i = 1

e Hypotheses of axiom (axgmpx) are not satisfied for i > 1.

e Hypotheses of axiom (axfumpx) are satisfied only for o =
o’ = % and so easily satisfied.

o Axiom (axTrans) is satisfied as <g and <r are transitive.

e Hypotheses of axiom (axleqgs)are only satisfied for o = e
and ¢’ = ¢’ = %, and in this case the conclusion is one of
the hypothesis.
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Figure 18: Full translation of rules of yLKZ into pLLZ
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e Hypotheses of the other axioms are never fully satisfied.
i

C.2 Details on cut-elimination for yLKZ of
section 4.3
C.2.1 Definition of skeleton.

DEFINITION 31 (LK -SKELETON). The uLK®* -skeleton of a uLL* formula
is defined inductively as follows (6 € {p, v}):

SK(F®G) = SK(F)ASK(G) SK(FRG) = SK(F)V SK(G)
SK('F) = SK(F) SK(F&G) = SK(F) A SK(G)
SK(F®G) = SK(F)V SK(G) SK(?F) = SK(F)
SK(1) = T SK(L) = F
SK(a) = a SK(T) = T
SK(0) = F SK(at) = -a
SK(F - G) = SK(F) — SK(G) SK(8X.F) = &X.SK(F)
SK(X) = X SK(OF) = OSK(F)
SK(0F) = OSK(F)

Sequents of formulas of uLLY are translated to sequent of skeletons
of these formulas. Translations of pre-proofs are obtained co-inductively
by translating the rules of each connectives independantly. Exponential
rules are replaced by the derivation with no rules.

LEMMA 29 (ROBUSTNESS OF THE SKELETON TO VALIDITY). If &
is a pLLY valid pre-proof, SK(n) is a uLKZ valid pre-proof, and
vice-versa.

Proor. This comes from the fact that (i) minimal formula of a
set of translated formulas is the translation of the minimal formula
of the set of initial formulas; (ii) translations of branches contains all
the translations of formulas of the initial branch and vice-versa. O

LemMA 30 (ComposITION OF SK() AND OF (—)*). Let 7 bea LK
pre-proof. We have that SK(r*®) is equal to 7.

PRrOOF. This comes from the fact that (—)°-translation translates
each rules (r) of yLKZ to a derivation containing the pre-image
of (r) by the translation SK(), adding only exponential rules. As
exponential rules disappears from the proof by SK(), we get that
SK(r*®) is equal to (r). We coinductively apply this result on pre-
proofs o
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