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Abstract

The objective of this study is to develop a three-dimensional numerical model for a
floating point absorber wave energy converter in the presence of sea waves, considering its
interaction with a bi-fluid flow (comprising air and water). The primary aim is to create an
efficient computational tool that achieves two key objectives: firstly, reducing the compu-
tational time typically associated with high-fidelity Computational Fluid Dynamics (CFD)
models, and secondly, curing the lack of accuracy of low-fidelity asymptotic or projection-
based reduced-order models in regions subjected to viscous and highly nonlinear effects. To
address these objectives, we propose a multi-fidelity model based on domain decomposition.
This approach combines a high-fidelity CFD solver, which accurately captures the behavior
in viscous and nonlinear regions, with a Reduced Order Model (ROM) based on Proper
Orthogonal Decomposition (POD), tailored for weakly nonlinear regions. By integrating
these components spatially, we simulate the dynamics of the floating body within a unified
framework. This methodology ensures precise predictions of the body’s motion for both
in-sample (reproduction) and out-of-sample (prediction) configurations.

Keywords: Multi-fidelity model, Proper Orthogonal Decomposition, Reduced Order
Model, Coupling methodology, Wave energy.
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1 Introduction
Numerical simulations are ubiquitous in industrial sectors such as energy, where technolo-
gies undergo a virtual cycle of concept, design, and testing before physical manufacturing.
For instance, although wave energy remains an emerging sector compared to established
renewable sources, it heavily relies on tractable numerical models for conception and opti-
mization, necessitating a delicate balance between accuracy and computational costs. Wave
energy converters, particularly those in the wave-activated body class, require large motion
amplitudes for optimal efficiency.

Traditional sea-keeping numerical tools, often based on linear potential theory and com-
monly used in offshore structure design, are widely utilized in the initial stages of wave
energy converter development, providing quick estimates of system parameters [1]. How-
ever, discrepancies persist between numerical predictions and wave tank experiments [2].
Introducing some nonlinearities to weakly or fully nonlinear potential flow models partially
addresses this issue [3, 4, 5], while maintaining fundamental assumptions such as inviscid
flow.

The utilization of high-fidelity solvers such as Computational Fluid Dynamics (CFD)
or Smoothed-Particle Hydrodynamics (SPH) allows accurate simulation of all nonlineari-
ties, but remains challenging for wave energy applications due to significant computational
time requirements. Indeed, as the number of devices increases, computational costs be-
come prohibitive, particularly in optimization analyses considering large parameter spaces
and multiple queries [6, 7]. This complexity necessitates the development of accurate yet
computationally efficient models.

To address this need, data-driven model reduction emerges as a strategy to extract
essential features and reduce computational complexity. Reduced-Order Models (ROMs)
have diverse applications spanning various fields, including thermo-acoustic problems [8],
image processing [9], graphics applications [10, 11], and fluid flows [12, 13]. In the context of
fluid dynamics, numerous ROMs have been developed for fluid control [14, 15], interaction of
flows with varying body shapes [16, 17, 18], and turbulence description [19, 20, 21]. These
models find applications in various domains, ranging from fluid-structure interaction in
cardiovascular problems [22] to the numerical simulation of the wake behind a wind turbine
[23], and the depiction of the dynamics of multi-phase flows [24], as in the case of this study.
However, the application of ROMs to highly nonlinear problems like wave energy converters
necessitates careful consideration.

Among the model reduction techniques, the Proper Orthogonal Decomposition (POD)
method emerges as an effective means for deriving a reduced basis in high-dimensional flow
systems. Intrusive ROMs, typically derived through POD and Galerkin projection methods
or (least square) Petrov-Galerkin approaches [25, 26], are attractive for linear and weakly
nonlinear model reductions and find success in various research domains. However, Galerkin
ROMs might encounter challenges related to instability, and the use of the linear affine POD
representation can limit efficiency for highly nonlinear problems, even for Petrov-Galerkin
projections. Quadratic POD approximations [27] and fully nonlinear approximations [28]
have been recently introduced to mitigate the Kolmogorov barrier in nonlinear projection
ROMs. However, their intrusive nature often necessitates complex coding modifications
[29]. The complexity of intrusive projection-based ROMs is particularly evident when the
computational source code is unavailable, as is often the case with some commercial soft-
ware. To overcome this limitation, we propose a non-intrusive ROM approach where POD
ROM is obtained in a Galerkin-free way, coupled with a high-fidelity solver implemented in
commercial code.

Similar to other coupling methodologies [30, 31], this approach relies on domain decom-
position. In this study, the computational domain is decomposed into low-fidelity (POD)
and high-fidelity (Navier-Stokes solver) subdomains. The temporal coefficients of the POD
expansion are obtained through a minimization problem defined on both an overlapping
domain between the two subdomains and on a domain (discrete points defining sensors)
where incoming flow is actually imposed. The high-fidelity domain is usually chosen to be a
small surrounding of the floating body (the wave energy converter) where highly nonlinear
phenomena usually occur, and the other POD domain is used to both give boundary con-
ditions to the high-fidelity solver and to propagate the information elsewhere using global

2



POD modes. This multi-fidelity numerical model is used to predict the temporal evolu-
tions of velocity field, the water surface, and the body dynamics in wave energy converter
simulations.

The paper is organized as follows. The multi-fidelity model, which couples the high-
fidelity Navier-Stokes model and the low-fidelity POD model, is presented in Section 2. A
in-depth sensitivity analysis of several parameters involved in the multi-fidelity model, such
as the number of POD modes or the size of the different subdomains, is described for a
simple flow configuration in Section 3. A floating point absorber wave energy converter is
then studied in Section 4. Finally, some conclusions are drawn in Section 5.

2 Numerical multi-fidelity model
2.1 Flow configuration
The objective is to characterize the performance of a wave energy harvesting device under
the influence of sea waves. A three-dimensional domain is considered, and a two-dimensional
vertical section is schematically represented in Figure 1. We consider a point absorber-type
structure, wherein the sole degree of freedom is the vertical motion. The densities and
viscosities are represented by ρ and µ, with subscripts a and w indicating air and water,
respectively. The floater, characterized by a density ρs, occupies domain Ωs, while the fluid
(comprising air and water) is flowing within domain Ωf . The fluid domain Ωf is further
partitioned into two distinct regions, Ωa for air and Ωw for water, with an interface denoted
by Γf .

Given the nature of a floating structure, we have ρa < ρs < ρw.

Ω f

Ωa

Ωw

Ωs

ρa

ρw

µa

µw

Γs Γ f

Γe

x
y

Figure 1: Sketch of the flow configuration.

Before introducing the multi-fidelity model (Sec. 2.4), we give a description of the two
models involved in the coupling procedure, the high-fidelity model (Sec. 2.2) and the low-
fidelity POD approximation (Sec. 2.3).

2.2 High-fidelity numerical model
The flow described in the previous section is modelled by the two-phase Navier-Stokes equa-
tions. Let α represent the local fraction of water, referred to as the Volume Of Fluid (VOF),
where 0 ≤ α ≤ 1 [32]. The fluid density and dynamic viscosity can be expressed as follows:

ρ(x, t) = ρa + (ρw − ρa)α(x, t), (1)
µ(x, t) = µa + (µw − µa)α(x, t), (2)

where α = 0 and α = 1 denote air and water, respectively. The bi-fluid interface is approx-
imated by α = 0.5.
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Let D(u) = ∇u+(∇u)T

2 denote the viscous part of the stress tensor, where the velocity
field is u = (u, v, w) with u, v, and w representing the velocity components in the x, y,
and z directions, respectively. Let also p be the pressure field and g the gravity acceleration
along the y axis. The incompressible Navier-Stokes equations for both fluids in the domain
Ωf = Ωa ∪ Ωw are:

∂u

∂t
+ (u ·∇)u = −1

ρ
∇p+

1

ρ
∇ · 2µD(u) + g in Ωf , (3)

∇ · u = 0 in Ωf , (4)

where the temporal evolution of the bi-fluid interface, and thus µ and ρ, is governed by the
transport equation:

∂α

∂t
+ u ·∇α = 0 in Ωf . (5)

This system is complemented with initial conditions u(x, t = 0) = u0, p(x, t = 0) =
p0, and α(x, t = 0) = α0, boundary conditions on the external boundary Γe for velocity
u(x, t) and VOF α(x, t), and boundary conditions on the structure boundary Γs, as well
as conditions through the bi-fluid interface Γf [33].

The motion of the floating rigid body is governed by Newton’s laws:

m
du

dt
= Fext, (6)

dJω

dt
= M ext, (7)

where m and J are the mass and inertia matrix of the body, and u and ω denote the linear
and angular velocities.

The forces and torques are computed by:

Fext = −
∫
Γs

T(u, p)n dx+ g, (8)

Mext = −
∫
Γs

r ∧ T(u, p)n dx, (9)

where T(u, p) = −pI + µ(∇u+∇uT ) is the stress tensor, n is the unit outward vector to
Γs, and r = x− xG with xG representing the body center of mass.

In this study, the numerical solution of the Navier-Stokes equations is computed using the
commercial software StarCCM+ [34]. The governing equations are discretized on an overset
Chimera mesh, where a foreground body-fitted grid refined near the body is superimposed
on an octree backward grid refined around the air-water interface. A typical computational
mesh used in this study is shown in Figure 2.

Figure 2: Sketch of the computational mesh.

For open flows, artificial boundary conditions are typically applied at external bound-
aries. These may include Dirichlet or Neumann conditions, or more sophisticated absorbing
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or non-reflecting conditions [35, 36], depending on the complexity of the problem under
consideration. Imposing appropriate boundary conditions remains one of the main chal-
lenges in Computational Fluid Dynamics (CFD). In open flows, such as the one described
in Figure 1, boundary conditions are usually applied far from the body, resulting in a large
computational domain. The computational costs required to solve the Navier-Stokes equa-
tions in such a computational domain can become prohibitively large. To decrease these
costs, reduced-order models can be employed, either as a substitution model or to provide
more suitable boundary conditions that allow for a reduction in the size of the computational
domain [37, 38].

Instead of computing the solution of the Navier-Stokes equations on a fine mesh with
possibly millions of cells, we can approximate the solution using a few global basis functions
(typically on the order of O(10)). In this study, the global basis functions are computed
using Proper Orthogonal Decomposition (POD).

2.3 Low-fidelity subspace: Proper Orthogonal Decomposition
The goal is to approximate the numerical high-fidelity solution Uh of the governing equa-
tions (3)-(5) by a POD ansatz Ũ with few Nr = O(10) global basis functions {ϕi}Nr

i=1 ,
i.e.

Uh(x, t) ≈ Ũ(x, t) = U(x) +

Nr∑
n=1

an(t)ϕn(x). (10)

The field U can be the velocity field u, the pressure field p, the density field ρ, the VOF
field α, or even a mixed field (u, p, ρ, α) (or other alternatives), and U is a reference field.
The latter is usually the average in time, a shift or non equilibrium mode [39, 40], or zero.

The Proper Orthogonal Decomposition (POD) was first introduced in turbulence by
Lumley [41] in 1967 to identify the coherent structures in a turbulent flow. For a review of
the POD, readers are referred to [42, 43]. The goal is to find the deterministic functions
ϕ(x) that are most similar in an average sense to data U(x, t) = Uh(x, t)−U(x). In what
follows, the snapshot method introduced by Sirovich [44] is used.

The construction of the low-fidelity subspace, the POD basis functions, is called the
offline stage. It is based on the following steps.

First, one has to collect a set of Ns snapshots {Uh(x, ti)}Ns
i=1. Usually, the snapshots

are extracted at discrete times {ti}Ns
i=1 where ti = T0+(i− 1)∆T , for given values of T0 and

∆T . Note that snapshots can also be sampled on different input parameters ηi (as it will
be the case hereafter for different wave parameters). Without loss of generality, the POD
description only consider time, and we then build U(x, ti) = Uh(x, ti)−U(x), where U(x)
is the temporal average of the Ns snapshot Uh(x, ti).

In what follows, the snapshots are extracted (and possibly interpolated) on a uniform
Cartesian grid composed by nc cells. In this study, we consider U = (u, v, w, α)T . One
possible drawback of computing POD basis functions from velocity and VOF fields together
is that the same number of modes is considered for both velocity and VOF, leading to a sub-
optimal data compression. However, the main advantage is that only one POD is necessary,
and all the variables are closely linked. If needed, one could also add the (scaled) pres-
sure field to U . The snapshots matrix is S = [U(x, t1)

T U(x, t2)
T · · · U(x, tNs

)T ] ∈
R4nc×Ns . Numerically, we have:
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S =



u(x1, t1) u(x1, t2) · · · u(x1, tNs)
...

...
...

u(xnc
, t1) u(xnc

, t2) · · · u(xnc
, tNs

)

v(x1, t1) v(x1, t2) · · · v(x1, tNs
)

...
...

...
v(xnc

, t1) v(xnc
, t2) · · · v(xnc

, tNs
)

w(x1, t1) w(x1, t2) · · · w(x1, tNs)
...

...
...

w(xnc , t1) w(xnc , t2) · · · w(xnc , tNs)

α(x1, t1) α(x1, t2) · · · α(x1, tNs
)

...
...

...
α(xnc

, t1) α(xnc
, t2) · · · α(xnc

, tNs
)



∈ R4nc×Ns . (11)

The temporal correlation matrix is

R = ST S ∈ RNs×Ns . (12)

If one wants to consider another parameter η, the snapshots matrix become S = (Sη1 , Sη2 , . . . ,SηNm
),

where Nm is the number of sampling points for parameters η, and Sηi is the snapshot ma-
trix (11) built with η = ηi, and we finally have Ns := Ns ×Nm snapshots.

We then solve the following eigenvalues problem

Rψn = λnψn, n = 1, · · · , Ns (13)

where the λ1 ≥ λ2 ≥ · · · ≥ λNs
≥ 0.

The POD basis functions, also called POD modes, are:

ϕn =
1√
λn

Sψn, n = 1, · · · , Ns, (14)

and the associated POD temporal coefficients are an = ψn√
λn

.
Finally, from the relative information content RIC(n) =

∑n
i=1 λi/

∑NS

i=1 λi, the POD
basis is truncated to keep only the Nr ≪ Ns most dominant modes {ϕi}Nr

i=1, such that
RIC(Nr) > δ, with a user defined threshold δ usually taken to be larger than 99%.

Let Φ ∈ R4nc×Nr be the matrix built with the Nr first POD modes, i.e.

Φ =



ϕu(x1, t1) ϕu(x1, t2) · · · ϕu(x1, tNr )
...

...
...

ϕu(xnc
, t1) ϕu(xnc

, t2) · · · ϕu(xnc
, tNr

)

ϕv(x1, t1) ϕv(x1, t2) · · · ϕv(x1, tNr
)

...
...

...
ϕv(xnc

, t1) ϕv(xnc
, t2) · · · ϕv(xnc

, tNr
)

ϕw(x1, t1) ϕw(x1, t2) · · · ϕw(x1, tNr )
...

...
...

ϕw(xnc , t1) ϕw(xnc , t2) · · · ϕw(xnc , tNr )

ϕα(x1, t1) ϕα(x1, t2) · · · ϕα(x1, tNr
)

...
...

...
ϕα(xnc

, t1) ϕα(xnc
, t2) · · · ϕα(xnc

, tNr
)



∈ R4nc×Nr . (15)
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The equation (10) writes:
U ≃ Ũ = U +Φa, (16)

with a = (a1, a2, . . . , aNr
)T .

Defining the sub-matrices

Φu =

 ϕu(x1, t1) ϕu(x1, t2) · · · ϕu(x1, tNr )
...

...
...

ϕu(xnc , t1) ϕu(xnc , t2) · · · ϕu(xnc , tNr )

 ∈ Rnc×Nr

Φv =

 ϕv(x1, t1) ϕv(x1, t1) · · · ϕv(x1, tNr
)

...
...

...
ϕv(xnc

, t1) ϕv(xnc
, t2) · · · ϕv(xnc

, tNr
)

 ∈ Rnc×Nr

Φw =

 ϕw(x1, t1) ϕw(x1, t2) · · · ϕw(x1, tNr
)

...
...

...
ϕw(xnc

, t1) ϕw(xnc
, t2) · · · ϕw(xnc

, tNr
)

 ∈ Rnc×Nr

Φα =

 ϕα(x1, t1) ϕα(x1, t2) · · · ϕα(x1, tNr
)

...
...

...
ϕα(xnc

, t1) ϕα(xnc
, t2) · · · ϕα(xnc

, tNr
)

 ∈ Rnc×Nr ,

(17)

each physical field can be approximated onto these basis:

u ≃ ũ = u+Φua,

v ≃ ṽ = v +Φva,

w ≃ w̃ = w +Φwa,

α ≃ α̃ = α+Φαa.

One advantage of computing a global POD basis with U = (u, v, w, α)T is that the same
temporal coefficients a are used for each component.

Note that for out-of-sample computation, i.e. for t ̸= ti or η ̸= ηi (different operat-
ing conditions), the temporal coefficients a have to be computed using an external model.
Usually, a projection-based reduced order model is used, like a Galerkin or Petrov-Galerkin
model. However, for the bi-fluid case studied here, the last term in equation (3) would lead
to a fourth-order tensor that is not compatible with model order reduction. Hyper-reduction
techniques [45, 46] can be in principle used to mitigate that problem. However these intru-
sive approaches are impossible in the context of a commercial software where the sources,
and thus the numerical residuals, are not available. A modified and extended version of the
Galerkin-free approach introduced in [37] is used and presented hereafter.

In what follows, the POD basis functions are numerically computed on a Cartesian mesh
that corresponds to the coarser cell size present in the high-fidelity mesh (see Figure 2).
If a body is present in the computational domain, mesh points lying in all possible body
locations (during motion) are removed. Usually, a Cartesian box is removed. One solution
is computed the POD basis functions only on union of the two gray domains in Figure 3.
Indeed, the body is subjected to move only in the white domain.

2.4 Multi-fidelity hybrid model
2.4.1 General process
The multi-fidelity model proposed here couples a high-fidelity solver with a low-fidelity
solver, where the Proper Orthogonal Decomposition (POD) temporal coefficients {ai}Nr

i=1 are
obtained using localized information. This information is provided by high-fidelity solutions
on subdomains, and possibly by imposed values at external local sensors. Let Ωlf denote the
subdomain where the low-fidelity model is used, Ωhf denote the subdomain where the high-
fidelity model is used, and Ωo = Ωlf ∪Ωhf represent the overlapping domain where localized
information is exchanged between high-fidelity and low-fidelity models. Let {xSi }Mi=1 be
the locations of M sensors, where some information Ûi = (ûi, v̂i, ŵi, α̂i)

T is given (at
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least partially). For some applications, we may have M = 0. A sketch of the domain
decomposition is provided in Figure 3.

ΩHF

Γh f

Body

Ωo

Ωh f

Ωl f

xS

x
x

x
x

x

x

x

x

xx

Figure 3: Domain decomposition for the coupling methodology. The overlapping domain Ωo

is dark-gray colored. The high-fidelity domain Ωhf is the union of the white and dark gray
domains, and the low-fidelity domain Ωlf is the union of the light and dark gray domains.

The main requirements for the high-fidelity domain are as follows:
• It should be as small as possible to reduce computational costs.
• It should be located in regions where the POD representation is not accurate enough,

such as highly nonlinear regions, especially in the vicinity of structures like floating
bodies.

• It should surround all possible unsteady locations of the floater (if any).
• It should have at least Nr −M discrete points to obtain a well-posed minimization

problem for {ai}Nr
i=1 described hereafter.

The objective is to find the temporal coefficients a∗ = (a∗1, a
∗
2, · · · , a∗Nr

)T such that the
reduced solution Ũ = U + Φa is as close as possible to the high-fidelity solution Uhf on
the overlapping domain Ωo, while also being close to the observed (and possibly imposed)
values {Ûi}Mi=1 at the M sensor points. Similarly to data Û , the field Ũ evaluated at a
point-wise location xSi is denoted Ũi. Depending on the sensor locations, interpolations
may be required to compute Ũi.

Mathematically, at a given time t, the temporal coefficients a∗i satisfy:

a∗ = argmin
a

(
1

|Ωo|

∫
Ωo

(
Uhf − Ũ

)2
dx+

β

M

M∑
i=1

(
Ûi − Ũi

)2)
, with Ũ = U +Φa,

(18)
where the parameter β is used to weight the sensor contributions. For low values of β, the
Reduced Order Model (ROM) approximation, Ũ = U +Φa∗, is mostly influenced by the
Full Order Model (FOM) solution Uhf . For large values of β, the ROM is mostly influenced
by the sensor data Û , thus providing new information to the FOM. Values in between,
β ≈ 1, offer a compromise between FOM and sensor data contributions.

In what follows, we consider only the Volume of Fluid (VOF), α̂i, as measurable by
sensors. These data represent water elevation, which is usually easy to measure. The
minimization problem (18) is thus:

a∗ = argmin
a

(
1

|Ωo|

∫
Ωo

(
Uhf − Ũ

)2
dx+

β

M

M∑
i=1

(α̂i − α̃i)
2

)
. (19)
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However, the following minimization problem:

a∗ = argmin
a

(
1

|Ωo|

∫
Ωo

(αhf − α̃)
2
dx+

β

M

M∑
i=1

(α̂i − α̃i)
2

)
, (20)

with α̃ = α+Φαa, provides better results and is used in the remaining part of this study.
Each physical field used in the POD snapshots can finally be approximated as:

ũ = u+Φua∗, (21)
ṽ = v +Φva∗, (22)
w̃ = w +Φwa∗, (23)
α̃ = α+Φαa∗. (24)

2.4.2 Continuous multi-fidelity model
The multi-fidelity model finally writes:

∂u

∂t
+ (u ·∇)u = −1

ρ
∇p+

1

ρ
∇ · 2µD(u) + g in Ωhf , (25)

∇ · u = 0 in Ωhf , (26)
∂α

∂t
+∇ · (αu) = 0 in Ωhf , (27)

u = ũ = u+Φua∗ on Γhf , (28)
v = ṽ = v +Φva∗ on Γhf , (29)
w = w̃ = w +Φwa∗ on Γhf , (30)
α = α̃ = α+Φαa∗ on Γhf , (31)

a∗ = argmin
a

(
1

|Ωo|

∫
Ωo

(αhf − α̃)
2
dx+

β

M

M∑
i=1

(α̂i − α̃i)
2

)
with α̃ = α+Φαa. (32)

Here, Dirichlet boundary conditions are used for both velocity and the VOF fields.
Note that the field reconstructions (28)-(31) actually extend over the entire domain Ωlf

(including the boundaries Γhf ), thus providing a propagation model.

2.4.3 Discrete approach
The high-fidelity and low-fidelity solutions can be computed on different meshes. In this
study, the high-fidelity solution U is computed on an octree grid refined near the interface,
possibly coupled with an overset grid (when floating structures are considered). The low-
fidelity solution Ũ is computed on a uniform Cartesian grid, corresponding to the coarser
level of refinement in the octree grid. Interpolations are thus required for equations (28)-
(32), where information between subdomains has to be exchanged. Different interpolation
functions are introduced:

• I↓ is an interpolator from the high-fidelity mesh (octree) to the low-fidelity mesh
(Cartesian uniform). It is used, for instance, to numerically compute the integral over
Ωo (the first term in (32)).

• I↑ is an interpolator from the low-fidelity mesh to the high-fidelity mesh. It is used,
for instance, to evaluate the Dirichlet boundary conditions (28)-(31) on Γhf , u = I↑(ũ)
(similarly for v, w, and α). The property I↑ = I−1

↓ is expected, however it might not
be satisfied numerically.

• Is is an interpolator from the low-fidelity Cartesian mesh to sensor locations xSi ∈ Ωlf ,
i.e., αi = Is(α). It is used to evaluate the second term in (32).

Equations (28)-(31) become:

u = I↑(ũ) v = I↑(ṽ) w = I↑(w̃) α = I↑(α̃) on Γhf , (33)

9



and equation (32) becomes:

a∗ = argmin
a

(
1

|Ωo|

∫
Ωo

(I↓(α)− α̃)
2
dx+

β

M

M∑
i=1

(α̂− Is(α̃))2
)
. (34)

The integral over the overlapping domain Ωo is numerically computed on the low-fidelity
Cartesian mesh for simplicity reasons. One can prefer to use the high-fidelity octree mesh,
and the first term in equation (34) would be replaced by 1

|Ωo|
∫
Ωo

(α− I↑(α̃))2 dx.

2.4.4 Errors computations
In what follows, ξ can be a velocity component u, v or w, or the VOF α. Let ξHF be the
reference high-fidelity solution computed on the large computational domain ΩHF . The two
following fields are defined from the coupling algorithm: The field ξhf is the high-fidelity
solution computed on the small domain Ωhf , and the field ξ̃ is the low-fidelity solution
computed in domain Ωlf . The relative errors are:

εξhf (t) =

√∫
Ωhf

(ξHF (x, t)− ξhf (x, t))2dx√∫
Ωhf

ξHF (x, t)2dx
, (35)

εξlf (t) =

√∫
Ωlf\Ωo

(ξHF (x, t)− ξ̃(x, t))2dx√∫
Ωlf\Ωo

ξHF (x, t)2dx
. (36)

Solutions ξHF , ξhf and ξ̃ are computed on different grids. It is, thus, more convenient
to compute the error on the same grid, and we chose the uniform Cartesian grid used to
computed the low-fidelity solution. Numerically, errors (35) and (36) are approximated by:

ε̃ξhf (t) =
∥I↓(ξHF (t))− I↓(ξhf ( t))∥Ωhf

∥I↓(ξHF (t))∥Ωhf

, (37)

ε̃ξlf (t) =
∥I↓(ξHF (t))− ξ̃( t)∥Ωlf\Ωo

∥I↓(ξHF (t))∥Ωlf\Ωo

, (38)

where ∥ · ∥Ωi
stands for the discrete L2-norm on a domain Ωi.

The total numerical error on the whole domain Ωf can be approximated by ε̃ξ(t) =

ε̃ξhf (t) + ε̃ξlh(t). However, note that ε̃ξ(t) is not equivalent to the relative L2 error on ΩHF .
In what follows we will only consider temporal average error over a given horizon T , and we
define:

εξhf (t) =

∫
T

ε̃ξhf (t) dt, (39)

εξlf (t) =

∫
T

ε̃ξlf (t) dt. (40)

3 Parameter sensitivity analysis
As shown in the previous sections, various parameters must be selected, such as the num-
ber of Proper Orthogonal Decomposition (POD) modes or the sizes of the computational
domains, Ωhf and Ωo.

In this analysis, we consider a simple dam break-like configuration without a body nor
wave forcing (M = 0). This test case is computationally affordable and allows for in-
depth parameter sensitivity analysis. While other flow configurations may yield different
optimal parameter values, this study serves to identify the parameters crucial to the coupling
strategy.

A three-dimensional domain ΩHF with dimensions [LX ×LY ×LZ ] = [10× 6× 0.4]m is
considered. The small size of LZ ensures reasonable computational costs.
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The initial position of the water-air interface Γf is analytically defined by:

Γ0
f = Hw e

− 1
2 (x+

3
2y)

2

+Hs, (41)

where parameter Hw determines the initial wave height relative to the sea level Hs at
x→ ±∞. The height Hs is adjusted to achieve a desired water volume in the computational
domain. Here, we consider 0m ≤ Hw ≤ 1m to obtain smooth waves commonly observed in
the wave energy sector, where extreme waves are rare.

The overall configuration is depicted in Figure 4.

ΩHF

Ωl f

Ωh f

Ωo

Γh f
Γ f

x
y

x
z

Figure 4: Sketch of the flow configuration with different computational domains. The initial
condition (41) for Hw = 0.6m and Hs = 0m is shown by the blue line.

No-slip boundary conditions, u = 0 m/s, are enforced on the boundaries orthogonal to
the x and y directions, while symmetry boundary conditions are applied to the boundary
orthogonal to the z direction.

The objective of this section is to conduct a sensitivity analysis of various physical and
numerical parameters. Numerical sensitivities pertain to mesh discretization for the Full
Order Model (FOM) (Sec. 3.1), temporal coupling scheme (Sec. 3.2), number of snapshots
Ns, and number of POD modes Nr (Sec. 3.3). Geometrical sensitivities involve the size of
the small high-fidelity domain Ωhf (Sec. 3.4) and the size of the overlapping domain Ωo
(Sec. 3.5).

Sensitivity analyses are conducted independently on each parameter while keeping all
others fixed, potentially introducing biases in the analysis. To mitigate such biases, ideal
scenarios will be considered for fixing the remaining parameters.

3.1 Mesh sensitivity analysis
The primary objective is to compute an accurate solution Uh of the Navier-Stokes equa-
tions (3)-(5) over the entire domain ΩHF , necessary for the offline stage of Proper Orthogonal
Decomposition (POD) computed in Ωlf ⊂ ΩHF .

Four different meshes {Mi}4i=1 are employed to discretize the domain ΩHF spatially. In
all cases, a hierarchical Cartesian (octree) mesh is utilized. Far from the air-water interface,
the mesh is uniform in all three directions, i.e., ∆x = ∆y = ∆z = h. Each mesh includes
two levels of refinement near the air-water interface, with the initial position defined by
Hw = 0.6m and Hs = 0m in equation (41). The simulation time-step is set to ∆t = 0.002 s.
The characteristics of the different meshes are summarized in Table 1, where nic, with n1c >
n2c > n3

c > n4
c , represents the initial number of cells for mesh Mi. Since Adaptive Mesh

Refinement (AMR) is applied, the number of mesh cells may slightly evolve over time as the
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air-water interface moves. The average relative errors

εξmesh =

∫
T

√∫
ΩHF

∥ξMi
− ξM1

∥22dx√∫
ΩHF

∥ξM1
∥22dx

dt,

for i = {2, 3, 4} and ξ = u, v, w, p, and α, where integrals over ΩHF are discretized on a
uniform Cartesian grid that fits the coarser level of the coarser grid (M4), are also reported
in this table.

Mesh h(m) nc εumesh εvmesh εwmesh εαmesh εpmesh

M4 0.2 1.8× 104 1.7e-3 6.6e-4 3.9e-2 1.8e-4 2.1e-5
M3 0.1 8.5× 104 1.0e-3 3.3e-4 1.5e-2 1.1e-4 1.0e-5
M2 0.05 4.4× 105 5.2e-4 1.7e-4 8.6e-3 5.0e-5 3.5e-6
M1 0.025 2.5× 106 - - - - -

Table 1: Mesh characteristics and relative errors with respect to the finest mesh M1.

For each quantity (u, v, w, α, and p), a first-order behavior is observed.
In the subsequent analysis, we will use the mesh M2 with h = 0.05m that presents a

good trade-off between computational cost and accuracy.

3.2 Sensitivity of the multi-fidelity model resolution
Once the solution Uh is obtained on the M2 mesh, the POD basis functions {Φi}Nr

i=1 can be
computed in an offline process, and the coupling model (25)-(32) can then be integrated in
time. The final goal is to compute, at each time step, the POD coefficients {a∗i }

Nr
i=1.

The Navier-Stokes equations (25)-(27) are discretized in time using an implicit scheme.
It is thus natural to impose the boundary conditions (28)-(31) at time t(n+1) = t(n) +
∆t, and the minimization problem becomes a fully coupled non-linear problem, where all
equations (25)-(32) have to be solved at the same time, i.e. the solution U = (u, v, w, α)
and POD coefficients a∗ must be solved simultaneously. This non-linear minimization can
be expensive in the numerical viewpoint, and the goal is, thus, to compare the solution of
the implicit coupling with a more simple explicit one, where boundary conditions (28)-(31)
are provided in an explicit way, at time t(n). The minimization problem (32) (or (34)) for an
explicit coupling reduces to a least square problem, where the Nr POD coefficients {a∗}Nr

i=1

are computed from the known solution U obtained at the previous time step. As already
mentioned, the number of discrete points Np over the overlapping domain Ωo should satisfy
Np > Nr −M . Then, the least square problem requires to compute Nr unknowns using Np
equations. In the algebraic point of view, the over-determined minimization problem (34)
is approximated by a∗ = argmin

a
(Aa− b)2, where A ∈ RNp×Nr and b ∈ RNp .

The first Np −M lines of A and b are built from the term

1

|Ωo|

∫
Ωo

(αhf − α̃)
2
dx,

while the last M lines are built from the term

β

M

M∑
i=1

(α̂i − α̃i)
2
.

The POD coefficients are obtained solving the associated normal equation ATAa∗ =
AT b.

In order to avoid truncation errors in the POD expansion (Nr ≤ Ns), boundary condi-
tions (28)-(31) are provided by the reference high-fidelity solution Ũ = UHF , pre-computed
on the large domain for the same physical configuration (41). Indeed, this is equivalent to
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consider all the POD modes built from snapshots computed at all times t(k) without any
truncation.

In the implicit version, conditions (28)-(31) are imposed using Ũ (n+1) = U
(n+1)
HF , while

in the explicit version, the conditions (28)-(31) are imposed from Ũ (n) = U
(n)
HF . In both

versions, due to possible different meshes used in large computational domain ΩHF and in
the small computational domain Ωhf , interpolations are performed, and we have Ũ (k) =

I↓(U (k)
HF ), where k = n for the explicit version, and k = n + 1 for the implicit version.

The boundary conditions imposed for the small computation domain (28)-(31) are thus
U (k) = I↑ ◦I↓(U (k)

HF ). Unfortunately, on the numerical viewpoint, we do not have I↓ = I−1
↑ ,

and numerical errors are, thus, necessarily introduced, leading to a non-zero error even if
appropriate implicit boundary conditions are applied. Moreover, due to interpolations on
the velocity fields, the mass conservation may be locally violated, possibly leading to some
pressure oscillations.

For the following numerical example, a high-fidelity solution UHF (velocity, VOF and
pressure) is first computed on the entire large domain ΩHF presented in Figure 4 up to
T = 3 s, and snapshots are extracted at each computational time step ∆t, chosen to be
fixed in this study. A high-fidelity solution Uhf is then computed in the small high-fidelity
domain Ωhf , where boundary conditions U = I↑ ◦ I↓(UHF ) are applied on Γhf .

From now, and until the sensitivity analysis of the size of the domain Ωhf , we consider
the case R6 that will be presented in Section 3.4. No overlapping region is need here.

Domain Case ε̄uhf ε̄vhf ε̄whf ε̄αhf ϵ̄phf

Ωhf

Implicit dt = 0.002 s 2.60e-5 1.69e-5 1.89e-3 5.78e-6 2.06e-6
dt = 0.004 s 7.15e-5 5.13e-5 3.19e-3 1.49e-5 4.89e-6

Explicit dt = 0.002 s 2.98e-5 1.91e-5 1.94e-3 7.58e-6 2.37e-6
dt = 0.004 s 8.67e-5 5.93e-5 3.28e-3 2.23e-5 6.00e-6

Table 2: Relative errors of the multi-fidelity approach with two time steps, for explicit and
implicit coupling.

Two cases are considered for this multi-fidelity coupling, a time step ∆t = 0.002 s and a
time step ∆t = 0.004 s. For both time steps, the errors (39) (computed for the velocity, the
volume fraction, and for the pressure) are comparable in the implicit and explicit cases, see
Table 2. Due to the interpolations, the errors using implicit boundary conditions are not
zero. Since implicit and explicit coupling give comparable errors, for sake of simplicity and
efficiency, the explicit version with ∆t = 0.004 s will be used in what follows.

For in-sample test, i.e. when same parameters in (41) are used in both ΩHF and Ωlf ,
the error (37) computed with exact explicit boundary condition gives a lower bound for
the coupling methodology. The exact boundary conditions can be equivalently computed by
POD using Nr = Ns = Ni, with Nr the number of POD modes, Ns the number of snapshots,
and Ni the number of temporal iterations required by the high-fidelity solution. Extra errors
will, thus, inevitably be added when considering reduced basis with Nr ≪ Ns ≤ Ni.

3.3 POD Sensitivity Analysis
The goal now is to perform sensitivity analysis of the number of retained POD modes Nr,
and of the number of snapshots Ns. A numerical simulation is run in domain ΩHF with
Hw = 0.60 m and Hs = 0 m up to T = 3 s. For the sensitivity of the number of POD
modes Nr, snapshots of UHF = (u, v, w, α)T are collected at each time-step ti = i∆t with
∆t = 0.004 s, and we have Ns = Ni = 750. The POD is computed from modified snapshots
U = UHF −U , where U denotes the temporal average over the Ns snapshots.

The POD eigenvalue spectrum {λi/λ1}Ns
i=1 and relative information content RIC(Nr) =∑Nr

i=1 λi/
∑Ns

i=1 λi are plotted in Figure 5.
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Figure 5: Eigenvalue spectrum (left) and RIC (right) with respect to the number of POD modes
Nr.

The relative projection errors for ξ = u, v, w and α over the domain ΩHF

εξproj(Nr) =

∫
T

∑Ni

i=1 ∥I↓(ξHF (ti))− (ξ +
∑Nr

k=1 a
proj
k (ti)Φ

ξ
k))∥ΩHF∑Ni

i=1 ∥I↓(ξHF (ti))∥ΩHF

dt, (42)

are plotted in Figure 6, where the temporal coefficients aprojk (ti) correspond to the POD
eigenvectors. These errors traduce the filtering effect of the POD truncation, and quantify,
thus, the error due to the truncated modes.

0 10 20 30 40 50 60 70 80 90 100
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Nr
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εw
pro j

εα
pro j

Figure 6: Evolution of the projection error εproj with respect to the number of POD modes Nr.

The trend of the errors plotted in Figure 6 follows the trend of the POD eigenvalues in
Figure 5: the errors are decreasing with the number of POD modes.

In what follows, a sensitivity analysis of the number of retained POD modes, Nr, and
the number of snapshots, Ns, is performed on the hybrid multi-fidelity model (25)-(27). The
errors (37) and (38) are computed for velocity and VOF.

3.3.1 Sensitivity of the number of modes Nr

The sensitivity of the number of modes Nr is studied keeping constant the number of snap-
shots Ns = 750 over the entire domain ΩHF . We recall that the goal of the hybrid fidelity
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coupling is twofold. The POD reduced order solution Ũ = U+Φa∗ with the optimized coef-
ficients a∗ is used to give appropriate boundary conditions for the small high-fidelity domain
Ωhf , and also to propagate information through the large domain, Ωlf \ Ωo = ΩHF \ Ωhf .

From now, and until the sensitivity analysis of the size of the overlapping domain Ωo
that will be presented in Section 3.5, we consider Ωo = Ωhf .

Both errors (39) and (40) are reported in Table 3. One of the most important variable for

Domain Case ε̄u ε̄v ε̄w ε̄α

Ωlf \ Ωo

Nr = 5 7.28e-4 6.53e-4 1.25e-3 1.10e-4
Nr = 10 2.57e-4 1.88e-4 9.98e-4 4.75e-5
Nr = 20 1.17e-4 8.09e-5 7.98e-4 2.60e-5
Nr = 30 7.63e-5 5.35e-5 7.09e-4 1.86e-5
Nr = 50 6.01e-5 4.61e-5 6.33e-4 1.28e-5
Nr = 100 5.71e-5 4.68e-5 5.95e-4 1.11e-5

Ωhf

Nr = 5 1.36e-3 1.10e-3 1.06e-1 2.61e-4
Nr = 10 4.42e-4 3.21e-4 2.11e-2 6.55e-5
Nr = 20 3.34e-4 2.27e-4 2.91e-2 2.58e-5
Nr = 30 1.91e-4 1.32e-4 1.08e-2 2.63e-5
Nr = 50 1.49e-4 1.08e-4 7.81e-3 2.65e-5
Nr = 100 1.16e-4 8.40e-5 4.86e-3 2.73e-5

Table 3: Relative errors over the high-fidelity domain Ωhf and over the remaining low-fidelity
domain Ωlf \ Ωo.

0.5 1 1.5 2 2.5 3
−150
−100
−50

0
50

100

Time (s)

a i

ai projection ai coupling

Figure 7: Comparison of the POD temporal coefficients a(t) obtained by projection (eigenvectors
of the POD) and by the coupling strategy, a∗(t).

the future wave energy converter application is the VOF α, and Table 3 shows that starting
from Nr = 20, the VOF error is almost constant in the domain Ωhf . The higher VOF
POD modes are probably being filtered by the interpolator I↑ used to impose boundary
conditions. Since all the other errors are still decreasing with Nr, we arbitrarily chose a
slightly larger value, Nr = 30.

A comparison of the temporal evolutions of the first five POD coefficients aprojk (t) ob-
tained by projection (eigenvectors of the POD) and by the coupling strategy a∗(t), is given in
Figure 7. Good agreements are observed, validating, thus, the reduced order model obtained
with the Galerkin-free coupling strategy.

3.3.2 Sensitivity of the number of snapshots Ns

The number of POD basis functions is Nr = 30. The projection errors with respect to Ns
are shown in Table 4. For each variable a first order is observed: the error is divided by n,
using n times more snapshots. We arbitrarily choose Ns = 250 in what follows.
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Ns Multiple of ∆t RIC (%) ε̄uproj ε̄vproj ε̄wproj ε̄αproj
50 15 99.80 6.4e-4 2.6e-4 7.3e-3 2.7e-4
75 10 99.78 4.6e-4 2.0e-4 5.6e-3 1.9e-4
150 5 99.77 2.3e-4 1.1e-4 3.1e-3 9.7e-5
250 3 99.77 1.4e-4 6.4e-5 1.9e-3 5.8e-5
750 1 99.77 4.7e-5 2.1e-5 6.4e-4 1.9e-5

Table 4: Sensitivity analysis on the number of snapshots Ns.

3.4 Sensitivity of the size of high-fidelity domain Ωhf

An important choice concerns the size of the small high-fidelity domain Ωhf . We still consider
here Ωo = Ωhf . Each configuration under consideration is noted RD, and is parameterized
with the ratio D = |ΩHF |

|Ωhf | . All the simulations previously shown used R6. We consider here
two other sizes, namely a larger one with R3, and a smaller one with R8. The three cases are
outlined in Figure 8. Table 5 shows the ratio of the number of mesh cells at initialization,
Rncells

=
n
ΩHF
cells

n
Ωhf
cells

. The relation is not linear, but depends on the form and position of Ωhf ,
because the majority of the cells are concentrated around the free surface, where there is a
mesh refinement.

ΩHF ΩHF ΩHF

Ωh f Ωh f Ωh f

Case R3 Case R6 Case R8

Figure 8: Test cases for varying size of Ωhf .

Case Rncells

R3 1.69
R6 3.38
R8 4.50

Table 5: Number of mesh cells ratio Rncells
for the the three test case R3, R6 and R8.

The errors (39) and (40) are displayed in Table 6. We can observe that the errors
obtained for the R3 and R6 cases are almost the same, while the error for the R8 case is
larger. A good trade-off between computational time and accuracy seems to be the R6 case.
This case has been chosen in the previous sections and will continue to be used in what
follows.
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Domain Case ε̄u ε̄v ε̄w ε̄α

Ωlf \ Ωo

R3 6.77e-5 3.92e-5 7.38e-4 1.42e-5
R6 7.63e-5 5.35e-5 7.09e-4 1.86e-5
R8 1.34e-4 1.20e-4 7.86e-4 2.52e-5

Ωhf

R3 1.44e-4 1.41e-4 9.69e-3 2.08e-5
R6 1.91e-4 1.32e-4 1.08e-2 2.63e-5
R8 6.31e-4 3.09e-4 2.27e-2 4.88e-5

Table 6: Errors (39) and (40) for test cases R3, R6 and R8.

3.5 Sensitivity of the size of the overlapping domain Ωo

In the previous analysis, the overlapping region was chosen to be Ωo = Ωhf , which corre-
sponds hereafter to the reference case 0. Three other frame-shaped domains Ωo are also
considered and are presented in Figure 9.

Ωh f Ωh f

Ωh f Ωh f

Case 0 Case a

Case b Case c

Figure 9: Overlapping domains Ωo tested.

If no sensors are considered (M = 0), the minimization problem for a∗ is well-posed if
the number of mesh cells Np included in Ωo is Np ≥ Nr. Each configuration considered here
satisfies this requirement.

The average relative errors computed in the small high-fidelity domain Ωhf and in the
low-fidelity domain Ωlf \ Ωo are reported in Table 7. The errors obtained in case (c) are
quite close to those obtained in case 0 (used until now). The errors obtained in cases (a) and
(b) are one order of magnitude higher. Indeed, the most sensitive boundary conditions for
Ωhf are the lateral ones (left and right) where appropriate conditions have to be imposed,
especially for the water level, numerically imposed by Volume of Fluid (VOF) α. A large
overlapping zone is thus required in this region, and case (c) satisfies this requirement, and
will be used in what follows.
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Domain Case ε̄u ε̄v ε̄w ε̄α

Ωlf \ Ωo

0 7.61e-5 5.33e-5 7.22e-4 1.86e-5
a 2.23e-3 1.98e-3 4.45e-3 2.92e-4
b 1.81e-3 1.80e-3 2.47e-3 2.59e-4
c 2.30e-4 2.06e-4 8.05e-4 2.83e-5

Ωhf

0 1.85e-4 1.29e-4 1.14e-2 2.61e-5
a 3.50e-3 3.63e-3 4.28e-1 3.67e-4
b 2.48e-3 2.32e-3 1.39e-1 5.12e-4
c 3.09e-4 2.49e-4 1.17e-2 4.73e-5

Table 7: Relative errors with respect to the overlapping domain.

3.6 Sensitivity of the sampling for out-of-sample prediction
The final configurations resulting from the previous sensitivity analysis are as follows:

• The M2 mesh is used to discretize the large high-fidelity computational domain ΩHF .
• The time step is ∆t = 0.004 s.
• An explicit coupling is used to exchange information between high and low-fidelity

models.
• The number of snapshots is Ns = 250 (extracted uniformly with ∆ts = 0.012 s over

T = 3 s).
• The number of retained POD modes is Nr = 30.
• The small high-fidelity domain Ωhf corresponds to case R6.
• The overlapping domain Ωo corresponds to case (c).

In the previous sections, the data collected from simulations with initial conditions using
Hw = 0.60m are used to build the POD basis functions for the coupled model that repro-
duces the simulation for the same initial conditions. In other words, we are performing an
in-sample test, also called a reproduction problem. In this section, data from simulations
based on different initial conditions Hw are collected and used in the training phase, and
the coupling algorithm is evaluated for the simulation initialized with Hw = 0.60m (case 0),
which is not included in the database. Several training sets are considered (see Figure 10),

0 A B C D E
0.5

0.55

0.6

0.65

0.7

Case

H
w

(m
)

Figure 10: Quantitative (left) and graphical (right) definition of the variable parameter, Hw,
for the out-of-sample tests. Case 0 is the in-sample test, taken as reference. Case E groups the
snapshots from all the other cases, except Case 0.

combining different Hw. The chosen Hw are progressively farther from the target initial
conditions (cases A, B, C, and D), or are all collected in a large dataset (case E). Note that
we use Ns = 250 snapshots for each simulation, and, for instance, the database for case E
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is thus composed by 8 × 250 snapshots. However, for each case (0, A, B, C, D, and E),
Nr = 30 POD modes are considered.

Domain Case ε̄u ε̄v ε̄w ε̄α

Ωlf \ Ωo

0 6.29e-5 4.23e-5 7.09e-4 1.74e-5
A 1.09e-4 8.57e-5 1.27e-3 2.41e-5
B 2.68e-4 2.32e-4 1.43e-3 4.84e-5
C 3.54e-4 2.82e-4 1.47e-3 6.75e-5
D 6.76e-4 5.56e-4 1.57e-3 1.18e-4
E 3.21e-4 2.68e-4 1.30e-3 5.83e-5

Ωhf

0 1.72e-4 1.19e-4 1.26e-2 1.37e-5
A 3.43e-4 2.14e-4 2.29e-2 1.95e-5
B 3.64e-4 2.48e-4 2.11e-2 5.14e-5
C 4.50e-4 2.98e-4 1.66e-2 5.97e-5
D 6.18e-4 4.94e-4 2.26e-2 2.02e-4
E 4.58e-4 2.96e-4 2.04e-2 7.12e-5

Table 8: Relative errors on the high-fidelity domain Ωhf and on the remaining low-fidelity
domain Ωlf \ Ωo for the different sampling test cases.

Table 8 shows that the solution for the baseline configuration (case 0) can be well ap-
proximated using training sets that do not contain the in-sample snapshots. In particular,
datasets from initial conditions closer to the target (case A) give good results. The relative
errors increase when the training points are farther from the baseline configuration. The
large dataset (case E) provides good results with an expected better robustness than the
other cases A-D. Better sampling strategies can be considered, but it is out of the scope of
this paper.

4 Wave energy converter
The goal is to numerically model a class of wave energy converters, where the energy har-
vesting devices are floating bodies with rigid motions driven by sea waves. Floating wave
energy converters are typically deployed in deep waters, ideally located far from the shore-
line. These devices are equipped with a mooring system and harness the oscillatory motion
generated by the waves to produce energy [47]. They can exhibit varying degrees of freedom,
with notable prototypes including point absorbers, overtopping devices, surface attenuators,
and rotating mass devices.

We consider here a sphere floating on sea waves, the latter being imposed by M > 0
sensors in the coupling strategy. The floating body is defined as a point absorber, i.e., the
only degree of freedom is in the y direction (aligned with gravity). The objective is to predict
the wave behavior and the motion of the floating body subjected to an imposed wave. The
wave is defined with some characteristics W0 (period, height, and wavelength) defined in
Table 9. The sketch of the domain decomposition is depicted in Figure 11. The boundary
Γhf now has an extra part, orthogonal to the z direction (see top figure in Figure 11),
and the green points represent the M sensors where information on the incoming wave is
measured.

The initial computational domain, noted Ωsim, expands to 85m×45m×10m. The large
size of this domain is necessary to take into account the water depth, the multiple wave-
lengths, and artificial forcing zones that avoid spurious reflections. A symmetry condition
is used to reduce the computational burden of the FOM simulation, and is also kept in the
coupled model, see Figure 11.

However, without loss of generality, we consider a smaller domain ΩHF ⊂ Ωsim to reduce
the memory footprint and CPU costs for POD basis functions. Even though it is necessary
to compute the actual solution on Ωsim, we only consider its trace on ΩHF . Similar to the
previous test case, the domain ΩHF is 10m× 6m× 0.8m. This allows us to consider more
than one wavelength in the domain. However, the size of ΩHF in the z direction is twice the
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Figure 11: Domain decomposition for the sphere simulation.

one used in the sensitivity analysis section. This is necessary to numerically model three-
dimensional effects near the floating body. Moreover, the domain has only one symmetry
plane, passing through the middle of the sphere. The dimension of Ωhf also slightly changes.
Even though the x and y dimensions still correspond to the R6 case, there is a modification
in the z direction, with the creation of the new boundary (see top of Figure 11). Likewise,
the overlapping region conserves the same size in the x and y directions, corresponding to
test case (c) presented in the dedicated section, but a new area is added in the z direction.
With the new dimensions, the volume ratio between ΩHF and Ωhf becomes 8, yielding a
bigger reduction with respect to the test case used in the sensitivity analysis. The domain
Ωhf is 4m × 2.5m × 0.6m, which represents 0.015% of the volume of the real simulation
domain ( |Ωsim|

|Ωhf | = 6375).
Numerically, ΩHF is composed of 413457 cells, Ωhf is composed of 53703 cells, and Ωo

is composed of 38493 cells. For simplicity reasons, we use M = 3482 sensors covering a
domain of dimensions 0.2m× 2m× 0.8m, see figure 13.

An overset mesh is used for the sphere in the whole domain Ωsim, and in the small
domain Ωhf . The POD basis functions are only computed on Ωlf = Ωo ∪ (ΩHF \ Ωhf ).

We denote by IS the In-Sample case where the POD basis is computed with database
from the baseline condition W0, and by OOS the Out-Of-Sample case where the POD basis
is computed with database from conditions W1 and W2. Waves W0, W1 and W2 are
defined in Table 9.

Wave Wave period (s) Wave height (m) Wavelength (m)
W0 2 0.2 6.25
W1 1.95 0.18 5.94
W2 2.05 0.22 6.56

Table 9: Wave characteristics.

The number of POD modes is always Nr = 30. Each simulation lasts T = 6 s, allowing
an incoming wave to impact the floater. The snapshots are collected at ∆t = 0.012 s, for a
total of NS = 500 for each simulation.

The computed errors are reported in Table 10. The errors obtained in the Out-Of-Sample
(OOS) case are slightly larger than in the In-Sample (IS) case, but they are comparable.
The evolution of the vertical translation of the body and the vertical force acting on it are
plotted in Figure 12. For the IS case, the temporal evolution of the force and the position of
the body is very close to the reference one (HF). For the OOS case, the difference between
the predicted solution and the reference one is slightly larger, but the overall behavior is
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good. It is thus possible to obtain good predictions for Out-Of-Sample cases with large CPU
gains. Indeed, we recall that |Ωhf |

|Ωsim| = 0.015%, allowing significant CPU savings.

Domain Case ε̄u ε̄v ε̄w ε̄α

Ωlf \ Ωo
IS 2.40e-4 1.67e-4 4.35e-4 3.02e-5

OOS 4.74e-4 3.39e-4 1.09e-3 5.23e-5

Ωhf
IS 4.35e-4 3.08e-4 1.59e-3 4.38e-5

OOS 4.80e-4 3.87e-4 1.62e-3 7.77e-5

Table 10: Errors for In-Sample (IS) and Out-Of-Sample (OOS) tests.
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Figure 12: Evolution of the force acting on the body and the heave motion of the body.

Finally, a snapshot of the air-water interface (from the VOF variable α) with the spherical
point absorber obtained with the multi-fidelity model is given in figure 13. The air-water
interface is continuous across the whole domain, no spurious effects being observed near the
overlapping zone.

5 Conclusion
The primary objective of this study was to efficiently model the behavior of Wave Energy
Converters (WECs) when exposed to sea waves. This problem is intricate, as it involves the
interactions between a floating structure and the fluid corresponding to actual sea waves. In
this study, we considered a bi-fluid model for air and water, wherein the interface is embedded
and modelled using the Volume Of Fluid (VOF) method. The Full Order Model (FOM),
based one the Navier-Stokes equations with VOF and fluid-structure interactions, was solved
using the commercial software STARCCM+. While the solution of the Full Order Model
is accurate, it becomes prohibitively costly when applied to large-scale WEC problems.
Indeed, modelling actual sea waves necessitates a significantly large computational domain
to accurately generate and potentially dampen waves, particularly to prevent reflections.

In light of these challenges, Reduced Order Models (ROMs) are essential to save com-
putational resources. In this study, we employed Proper Orthogonal Decomposition (POD)
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Figure 13: Snapshot of the air-water interface (from the VOF variable α) with the spherical
point absorber obtained with the multi-fidelity model. The green domain represents ΩHF , the
violet domains represent the total support of the minimization problem, given by both the
overlapping domain (around the sphere) and the sensor locations, here taken over a region close
to the inlet boundary (on the left). Only one half of the domain in the z direction is actually
computed, the visualization in the whole domain is obtained by symmetry.
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as the data compression reduction technique. However, classical POD projection-based
(Petrov-)Galerkin ROM for bi-fluid flows poses compatibility issues with model order reduc-
tion. Its complexity, manifested in the form of a fourth-order tensor in the leading dynamical
system, presents significant hurdles. To overcome this difficulty, hyper-reduction techniques
can be used but are challenging or impossible to apply with commercial codes where the
source code is not directly available.

To address these challenges, we have proposed a non-intrusive approach that does not
require access to numerical residuals or mathematical models. We have developed a domain
decomposition Galerkin-free approach coupled with sensor information to impose incoming
waves. Our multi-fidelity model integrates POD ROM and FOM spatially, with FOM uti-
lized near obstacles where viscous effects and non-linearities prevail, while a POD ansatz is
employed for smoother flow regions.

Our coupling methodology simplifies to a least square minimization problem, making it
easily applicable to simulations of moving bodies, including wave energy conversion.

We have began by considering a simple prototype, a point absorber sphere, but our
methodology can easily be extended to more complex and full-scale WECs with multiple
degrees of freedom. Furthermore, without altering the coupling strategy, additional details
such as mooring or control systems can be incorporated for a more realistic simulation.

Parameter tuning, such as adjusting domain sizes or the number of POD modes, is
problem-specific and can be tailored to strike a balance between accuracy and speed-ups.
The accuracy is improved considering a large number of POD modes with a large high-
fidelity domain. Conversely, the speed-up can be increased considering a small high-fidelity
domain coupled with few POD modes.

The approach has been validated for in-sample cases, where the POD subspace was
trained using appropriate wave parameters. This represents a reproduction scenario, as we
previously simulated this problem to obtain the POD modes. More notably, our method
is also able to predict solutions for unseen parameters in out-of-sample simulations. The
results maintain accuracy while significantly reducing CPU costs. This is achieved by lever-
aging a small high-fidelity domain, which represents only a fraction of the original domain
used in training the POD modes. The efficiency of our hybrid fidelity model enables inten-
sive simulations, making it suitable for optimization tasks and facilitating multiple-query
simulations.

Our ongoing work includes addressing the optimal sensor location problem to further im-
prove results. Additionally, we are exploring clustering techniques on snapshots to enhance
efficiency. This involves reducing the POD offline stage while simultaneously improving
the online stage by decreasing the number of POD modes for each cluster. This strategy
can be viewed as a method for approximating a non-linear problem with piece-wise linear
approaches.

Our ultimate goal is to model and optimize farms comprising multiple WECs. We
envision achieving this through an algorithm that integrates multiple POD/FOM patches,
augmenting the size of the minimization problem while retaining simplicity as a least-square
problem.
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