N
N

N

HAL

open science

Using a Waflle Iron for Automotive Point Cloud
Semantic Segmentation
Gilles Puy, Alexandre Boulch, Renaud Marlet

» To cite this version:

Gilles Puy, Alexandre Boulch, Renaud Marlet.

Oct 2023, Paris, France. pp.3356-3366, 10.1109/ICCV51070.2023.00313 . hal-04496531

HAL Id: hal-04496531
https://hal.science/hal-04496531v1
Submitted on 8 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Using a Waffle Iron for Automotive Point Cloud
Semantic Segmentation. 2023 IEEE/CVF International Conference on Computer Vision (ICCV 2023),

https://hal.science/hal-04496531v1
https://hal.archives-ouvertes.fr

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Using a Walffle Iron for Automotive Point Cloud Semantic Segmentation

Gilles Puy!

Alexandre Boulch!

Renaud Marlet!?

lvaleo.ai, Paris, France 2LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

Abstract

Semantic segmentation of point clouds in autonomous
driving datasets requires techniques that can process large
numbers of points efficiently. Sparse 3D convolutions have
become the de-facto tools to construct deep neural networks
for this task: they exploit point cloud sparsity to reduce
the memory and computational loads and are at the core
of today’s best methods. In this paper, we propose an al-
ternative method that reaches the level of state-of-the-art
methods without requiring sparse convolutions. We actu-
ally show that such level of performance is achievable by
relying on tools a priori unfit for large scale and high-
performing 3D perception. In particular, we propose a
novel 3D backbone, WaffleIron, made almost exclusively
of MLPs and dense 2D convolutions and present how to
train it to reach high performance on SemanticKITTI and
nuScenes. We believe that WaffleIron is a compelling al-
ternative to backbones using sparse 3D convolutions, espe-
cially in frameworks and on hardware where those convo-
lutions are not readily available. The code is available at
https://github.com/valeoai/Wafflelron.

1. Introduction

Lidar sensors deliver rich information about the 3D envi-
ronment surrounding autonomous vehicles. Semantic seg-
mentation of point clouds delivered by these lidars permits
to autonomous vehicles to make sense of this 3D informa-
tion in order to take proper and safe decisions. When study-
ing the leaderboard of SemanticKITTI [2], we rapidly no-
tice that all the top methods leverage sparse 3D convolu-
tions. For example, the recent work 2DPASS [43] relies on
an adapted version of SPVCNN [34] which, once trained
with the help of images of the scene captured synchronously
with the lidar, is currently the state-of-the-art method. As
another example, Cylinder3D [51], later improved in [12],
use sparse 3D convolutions on cylindrical voxels (particu-
larly adapted to rotating lidars) with asymmetrical kernels
suited to capture the geometry of the main objects in driv-
ing scenes.

Despite the undeniable success and efficiency of sparse

convolutions, we seek here for 3D backbones which are free
of them. Indeed, sparse convolutions remain available in
a limited number of deep learning frameworks and hard-
ware (essentially PyTorch and NVIDIA GPUs). One rea-
son might be because they are challenging to implement ef-
ficiently [33]. Another reason may be because they are not
as widely used as, e.g., dense 2D convolutions, and are thus
not the first to be implemented in a new framework. There-
fore, we would like to construct a 3D backbone (i) built
with tools more broadly available than sparse convolutions,
but which (ii) can reach the level of performance of the top
methods on automotive datasets, while (iii) remaining easy
to implement and to use. This would offer a compelling
alternative to sparse 3D backbone, especially when sparse
convolutions are not available.

We actually construct a novel 3D backbone built almost
exclusively with standard MLPs and dense 2D convolu-
tions, both readily available in all deep learning frameworks
thanks to their wide use in the whole field of computer vi-
sion. Our backbone architecture, Wafflelron, is illustrated
in Fig. 1, and is inspired by the recent MLP-Mixer [36]. It
takes as input a point cloud with a token associated to each
point. All these point tokens are then updated by a sequence
of layers, each containing a token-mixing step (made of
dense 2D convolutions) and a channel-mixing step (made
of a MLP shared across points).

In addition, we explain how to train WaffleIron to make
it reach the performance of the current best methods on au-
tomotive semantic segmentation benchmarks. The perfor-
mance we obtain shows that standard MLPs and dense 2D
convolutions, despite being a priori unfit for 3D segmenta-
tion, are sufficient to construct a 3D backbone reaching the
state of the art.

Finally, WaffleIron is at least as easy to implement and
to tune as any other backbone. The implementation consists
in repeated applications of basic layers directly on the point
tokens (an example of complete implementation is available
in the supplementary material). The performance increases
with the network width and depth, until an eventual satura-
tion. The main hyperparameter to tune is the resolution of
the 2D grid used for discretization before 2D convolution,
but for which we observe stable results over a wide range

3379

Residual connection

Batch Norm

E
2
WI block =
O
©
[aa]
\
B 7/
/ WI block
£
[}
4
Ay I
[$)
8 D:l:l/
FFN with

channelwise
2D convolutions

s

Figure 1. WaffleIron backbone. This 3D backbone takes as input point tokens, provided by an embedding layer (not represented), and
updates these point representations L times via a point token-mixing layer (containing the WI block) followed by a channel-mixing layer.
The WI block consists of a 2D projection along one of the main axes, a feed-forward network (FFN) with two dense channel-wise 2D
convolutions with a ReLU activation in the hidden layer, and a simple copy of the 2D features to the 3D points. The channel-mixing
layer contains a batch-norm, a MLP shared accross each point, and a residual connection. The WaffleIron backbone is free of any point
downsampling or upsampling layer, farthest point sampling, nearest neighbor search, or sparse convolution.

of values (facilitating its tuning). The two most technical
components to implement are reduced to: (i) the embed-
ding layer used before WaffleIron and providing the point
tokens, and (ii) the 2D projections followed by feature dis-
cretizations (applied before dense 2D convolutions).

In summary, our contributions are the following.

* We propose a novel and easy-to-implement 3D back-
bone for automotive point cloud semantic segmenta-
tion, which is essentially made of standard MLPs and
dense 2D convolutions.

* We show that the hyperparameters of WaffleIron are
easy to tune: the performance increases with the width
and depth, until an eventual saturation; the perfor-
mance is stable over a large range of 2D grid resolu-
tions.

* We present how to train WaffleIron to reach the per-
formance of top-entries on two autonomous driving
benchmarks: SemanticKITTI [2] and nuScenes [5].
This shows that standard MLPs and dense 2D convo-
lutions are actually sufficient to compete with the state
of the art.

2. Related Work

We divide the related works into four categories: point-
based methods, that work directly on points and update
point representations throughout the network; projection-
based methods, that project the points on a 2D grid at
the input of the network, extract pixel-wise representa-
tions with a 2D network, and finally back-project the fea-
tures in 3D for segmentation at the output of the net-
work; sparse convolution-based methods, which voxelize
the point clouds and uses sparse convolutions; fusion-based
methods, which leverage different point cloud representa-
tions in parallel and fuse the corresponding features.

Point-based methods. PointNet [25] is the first method
that appeared in this category, quickly followed by its im-
proved version, PointNet++ [26]. Several methods then fol-
lowed to improve the definition of point convolution, e.g.,

[35, 38, 4], to scale to large point clouds by exploiting
point clustering, e.g., [18, 6], to optimize point sampling,
e.g., [44, 13], or make point convolution faster to compute,

e.g., [32]. Following the trend in image understanding, we
also witness a growing amount of works, e.g., [48, 23, 17],
exploiting transformer architectures, which are particularly
suited to handle unordered set of points. Recently, Point-

3380

Next [27] revisited and optimized PointNet++ with more
modern tools and showed that it is still highly competitive
in several benchmarks. In general, point-based methods are
particularly effective to process dense point clouds such as
those obtained with depth cameras in indoor scenes. These
methods, unless combined with other point cloud represen-
tations, are seldomly used to process sparse outdoor lidar
point clouds.

Among these point-based methods, let us discuss in more
details two works which share some similarities with ours.
The first work is PointMixer [8] which takes inspiration
from the MLP-Mixer [36]. Despite the same source of in-
spiration, we remark several fundamental differences with
our work. (i) The architecture differs significantly from
WaffleIron: PointMixer is a U-Net architecture with down-
sampling/upsampling layers, while we keep the resolution
of point cloud fixed and do not use any skip connection be-
tween the early and last layers. (ii) The spatial-mixing step
is also fundamentally different as it is constructed using sev-
eral sets of nearest neighbors points, while we use dense 2D
convolutions. (iii) The method is used on dense point clouds
captured in indoor scenes. The second work is PointMLP
[21] which proposes a simple point-based network made
only of MLPs. The PointMLP architecture is also very dif-
ferent from ours, starting with the spatial-mixing strategy
which is done by aggregating information over sets of k-
nearest neighbors. In addition, the application of PointMLP
is limited to small scale point clouds for shape classification
and part segmentation.

Projection-based methods. Projection-based methods
are more used to process point clouds acquired with ro-
tating lidars than point-based approaches. By working al-
most entirely on 2D feature maps, they usually benefit from
very fast computations. Yet, their performance remains be-
low methods leveraging sparse convolutions. Among these
methods, we find some using the spherical (range) projec-
tion [22] or the bird’s eye view projection [47]. Recent im-
provements have been achieved by making the convolution
kernels better suited to the type of “images” produced by
projection of the point clouds [40], by using techniques that
reduce the loss information in the 2D encoder-decoder ar-
chitectures [10], by solving an auxiliary tasks such as sur-
face reconstruction [30], adding a learned post-processing
step in 3D [15], or exploiting vision transformers pretained
on image datasets [1].

Sparse convolution-based methods. These type of meth-
ods leverage point cloud sparsity to reduce the computa-
tional and memory load. In particular, they compute the re-
sult of the convolution only on occupied voxels [9]. These
methods become particularly efficient on autonomous driv-
ing scenes, e.g., when, adapting the shape of the voxels to
the point sampling structure [51]. Recently, some improve-

ments have been obtained on these architectures by lever-
aging knowledge distillation techniques [12, 19]. Finally,
some attention mechanisms are also now exploited on top
of sparse convolution-based architectures to, e.g., adapt the
classification layer to the input point cloud [50] or to im-
prove feature quality [7, 45, 49, 16].

Fusion-based methods. These methods try to combine
the advantage of different point representations to improve
semantic segmentation. They rely on, e.g., bird’s eye view
and range representations used in a sequence [| 1], or used in
parallel for fusing deep features [20, 28]. Another strategy
is to combine fine-grained features provided by point repre-
sentation with high-level voxel representations [34, 46, 24].
RPVNet [41] fuses features extracted at multiple layers of
three different networks, each dealing with range, point or
voxel representations.

3. Our Method
3.1. WaffleIron Backbone

High-level description. Wafflelron is illustrated in Fig. 1.
It takes as input a point cloud with a F'-dimensional token
associated to each point. These point tokens, obtained by an
embedding layer described in Sec. 3.2, are updated L times
thanks to token-mixing layers and channel-mixing layers.
The core component of the token-mixing layer is our novel
WI block. It is made of a 2D projection along one of the
main axes, a discretization of the features on a 2D grid, and
a feed-forward network (FFN) with dense 2D convolutions.
The channel mixing layer is essentially made of an MLP
shared across each point.

Formal definition. WaffleIron takes as input a point cloud
with N points whose Cartesian xyz-coordinates are de-
noted by p; € R%,i = 1,..., N. Each point is associated
with a point token fi(o) € R¥ provided by a embedding
layer (see Sec. 3.2). To simplify the following equations,
we group all the point tokens in a large matrix F(®) of size
F' x N. These tokens are then transformed by a series of L
layers, each satisfying

GO —F® L WI (BN(F©)), M
FU+1) — GO 4 MLP (BN (G) @)

to obtain the deep point features F(X) & RE*N | then
used to classify each point thanks to a single linear layer.'
Eq. (1) and Eq. (2) corresponds to the token-mixing step
and channel-mixing step, respectively. BN denotes batch
normalization. The MLP is applied point-wise and contains
two layers with a ReL U activation after the first layer.

In our implementation, we also used two layerscale layers [37]: one
after the WI block and one after the MLP.

3381

The WI block mixes the features spatially as illustrated
in the lower part of Fig. 1. It processes input 3D features
F € RF*N in three steps to obtain the residual which sat-
isfies WI(F) = Inflat o Conv o Flat(F). These three steps
are described below.

1. Flat(-): Project (“flatten”) the points on one of the
planes (x,y), (z,z) or (y,z). Discretize the chosen
plane into M cells of size p x p. Within each 2D cell,
average the 3D features of all points falling in this cell.
We thus obtain the 2D feature map Flat(F) € RF*M,

2. Conv(-): Process the 2D feature map Flat(F) with a
feed-forward network (FFN) consisting of two layers
of channel-wise 2D convolutions and a ReLU activa-
tion in the hidden layer. We obtain the 2D feature map
Conv(Flat(F)).

3. Inflat(-): For each 3D point, find the 2D cell into
which this point falls into, and copy (“inflate”) the cor-
responding feature from Conv(Flat(F)). This yield
the residual WI(F) € RF*V,

The name of our method, Wafflelron, is inspired by the
effect of the first step on the point cloud: it is flattened and
imprinted with a regular 2D grid, as if it was compressed
between the plates of a waffle iron.

Flat(-) and Inflat(-) implementations. The computa-
tions in Flat(-) and Inflat(-) are cheap. Both steps can be
implemented using a sparse-dense matrix multiplication. It
is sufficient to store a sparse matrix S € RV *M with N
non-zero entries and structured as follows. For each 3D
point p;: (a) compute the index j € {1,..., M} of the 2D
cell into which this point falls into (by quantizing p;); (b) set
the entry in the i row and the J th column of S to 1. Then,
the 2D feature map in the Flat(-) step satisfies Flat(F) =
FS@ NS, where N € RE*HN s a matrix where all entries
are set to 1 and @ is the element-wise division. Note that
NS indicates the number of 3D points falling in each 2D
cell, ensuring a proper average of 3D features falling in the
same cells. Finally, the 3D residual WI(F) obtained in the
Inflat(-) step satisfies WI(F) = Conv(Flat(F)) ST.

3.2. Practical Considerations

Choice of the projection plane. In our proposed archi-
tecture, we repeatedly project along each main axis. Con-
cretely, we sequentially project on planes (x,y), (z, z) and
(y,z) atlayer £ = 1, £ = 2, and ¢ = 3, respectively, and
repeat this sequence until layer £ = L. In our experiments,
we thus choose L as a multiple of 3. We nevertheless study
the impact of different projection strategies in Sec. 4.7.

Resolution of the 2D grids. For simplicity, we choose a
single resolution p x p for all 2D grids used in the network.

2D convolutions. We use basic 2D kernels of size 3 x 3 for
all layers throughout the network.

Embedding layer. Let h; denote the low-level features
readily available at point p;, e.g., the height, range and li-
dar intensity of the point. Inspired by DGCNN ([38], the
embedding layer extracting the initial tokens fi(o) merges
global and local information around each point:

fi(O) _ LN([LN(h;), max MLP(h; — h;)]) 3)

JEN;
where LN denotes linear layers and /; the set of k nearest

points to p;. The features h; are pre-normalized by a batch
normalization layer before applying (3).

3.3. Discussion

Ease of implementation. A PyTorch implementation of
Wafflelron is available in the supplementary material: it
consists of repeated applications of basic layers directly on
the point tokens, highlighting the implementation simplic-
ity. We have successfully tested this implementation on
NVIDIA GPUs but also, up to minor adaptations, on AMD
GPUs, on which, as far as we know, no efficient implemen-
tation of sparse convolutions are readily available. This il-
lustrates that WaffleIron is easily usable on different hard-
wares.

We chose to keep the resolution of the point cloud con-
stant all the way through the backbone. This avoids the im-
plementation of point downsampling and upsampling lay-
ers, the tuning of the associated point sampling technique,
and the multiple nearest neighbors searches that are usually
involved. Despite the absence of such layers, WaffleIron
requires reasonable computing capacity: the model used to
obtain our final result on SemanticKITTI can be trained on
a single NVIDIA Tesla V100 GPU with 32 GB of mem-
ory. Nevertheless, improvements of WaffleIron could in-
clude downsampling layers to optimize the computation and
memory loads.

Besides the embedding layer, the other most technical
step to implement is the projection on 2D planes followed
by feature discretization on a 2D grid. We greatly simpli-
fied this step: we project only along one of the main axes
(so the projected coordinates are available without extra-
computation); we use a single 2D grid resolution; feature
discretization can be done by multiplication with a fixed
(non-learnable) sparse matrix constructed thanks to a sim-
ple quantization of the point coordinates.

Ease of hyperparameter tuning. We show in Sec. 4.4
that the performance improves on all datasets when increas-
ing the width F' and depth L of WaffleIron until a poten-
tial saturation. The final choice for these values could, for
example, be guided essentially by the desired or available

3382

) 2 > S

5) & o c‘,go 5 & g v ¢I7)°§ &0 3§ ,%s%

§ o S 8§ « & 5 T & S fF &2 F o F & 5 3

$5s £ 88§55 £ 8§3F538§5s585885
Method s § §F 5 § & § & $ & & & 5§ 5§ 8 ¥ L& §F g g &
RandLA-Net [13] « 53.9|94.2 26.0 25.8 40.1 38.9 49.2 482 7.2 90.7 60.3 73.7 20.4 86.9 56.3 81.4 61.3 66.8 49.2 47.7
KPConv [35] v/ 58.8196.0 30.2 42.5 33.4 443 61.5 61.6 11.8 88.8 61.3 72.7 31.6 90.5 64.2 84.8 69.2 69.1 56.4 47.4
SalsaNext [10] v/ 59.5/91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1
NAPL [50] 61.6]96.6 32.3 43.6 47.3 47.5 51.1 53.9 36.5 89.6 67.1 73.7 31.2 91.9 67.4 84.8 69.8 68.8 59.1 59.2
PCSCNet [24] 62.7195.7 48.8 46.2 36.4 40.6 55.5 68.4 55.9 89.1 60.2 72.4 23.7 89.3 64.3 84.2 68.2 68.1 60.5 63.9
KPRNet [15] v/ 63.1|95.5 54.1 47.9 23.6 42.6 65.9 65.0 16.5 93.2 73.9 80.6 30.2 91.7 68.4 85.7 69.8 71.2 58.7 64.1
Lite-HDSeg [29] v 63.8]92.3 40.0 54.1 37.7 39.6 59.2 71.6 54.1 93.0 68.2 78.3 29.3 91.5 65.0 78.2 65.8 65.1 59.5 67.7
SVASeg [49] 65.2196.7 56.4 57.0 49.1 56.3 70.6 67.0 15.4 92.3 659 76.5 23.6 91.4 66.1 85.2 72.9 67.8 63.9 65.2
AMVNet [20] v/ 6531962 59.9 54.2 48.8 45.7 71.0 65.7 11.0 90.1 71.0 75.8 32.4 92.4 69.1 85.6 71.7 69.6 62.7 67.2
GFNet [28] v/ 65.4196.0 53.2 48.3 31.7 47.3 62.8 57.3 44.7 93.6 72.5 80.8 31.2 94.0 73.9 852 71.1 69.3 61.8 68.0
JS3C-Net [42] 66.0]95.8 59.3 52.9 54.3 46.0 69.5 65.4 39.9 88.8 61.9 72.1 31.9 92.5 70.8 84.5 69.8 68.0 60.7 68.7
SPVNAS [34] 66.4197.3 51.5 50.8 59.8 58.8 65.7 65.2 43.7 90.2 67.6 75.2 169 91.3 65.9 86.1 73.4 71.0 64.2 66.9
2DPASS™ [43] 67.4196.3 51.1 55.8 54.9 51.6 76.8 79.8 30.3 89.8 62.1 73.8 33.5 91.9 68.7 86.5 72.3 71.3 63.7 70.2
Cylinder3D [51] 67.8197.1 67.6 64.0 50.8 58.6 73.9 67.9 36.0 91.4 65.1 75.5 32.3 91.0 66.5 85.4 71.8 68.5 62.6 65.6
(AF)Q-S3Net[1 69.7194.5 65.4 86.8 39.2 41.1 80.7 80.4 74.3 91.3 68.8 72.5 53.5 87.9 63.2 70.2 68.5 53.7 61.5 71.0
RPVNet [41] 70.3197.6 68.4 68.7 44.2 61.1 75.9 74.4 43.4 93.4 70.3 80.7 33.3 93.5 72.1 86.5 75.1 71.7 64.8 61.4
SDSeg3D [19] 70.4197.4 58.7 54.2 54.9 65.2 70.2 74.4 52.2 90.9 69.4 76.7 41.9 93.2 71.1 86.1 74.3 71.1 65.4 70.6
GASN [45] 70.7196.9 65.8 58.0 59.3 61.0 80.4 82.7 46.3 89.8 66.2 74.6 30.1 92.3 69.6 87.3 73.0 72.5 66.1 71.6
WaffleIron v/ 70.8197.2 70.0 69.8 40.4 59.6 77.1 75.5 41.5 90.6 70.4 76.4 38.9 93.5 72.3 86.7 75.7 71.7 66.2 71.9
PVKD [12] 71.2197.0 67.9 69.3 53.5 60.2 75.1 73.5 50.5 91.8 70.9 77.5 41.0 92.4 69.4 86.5 73.8 71.9 64.9 65.8

Table 1. Semantic segmentation performance on SemanticKITTI test set. The second column indicates if the method is free of sparse
convolutions (SpConv). The best and second-best IoUs are bold and underlined, respectively. The scores are obtained from the official
leaderboard of SemanticKITTI when available, otherwise from the respective paper. Regarding 2DPASS*, we report the results of the

baseline of |
score of methods published before the date of submission.

computation resources. The sole remaining parameter to
tune in WaffleIron is the resolution p x p of the 2D grid
in the Flat(-) step. The optimal value of this parameter
is dataset-dependent but we noticed that results remain sta-
ble for a wide range of values, which makes intensive fine-
tuning unnecessary. In particular, a resolution of 50 cm is
nearly optimal for both SemanticKITTI and nuScenes.

4. Experiments
4.1. Datasets

We conduct experiments on two large-scale autonomous
driving datasets: SemanticKITTI [2] and nuScenes [5].

SemanticKITTI. This dataset contains 22 sequences
where each point cloud is segmented into 19 semantic
classes. We use the usual split where the first 11 sequences
constitute the training set, except the 8" sequence used for
validation, and the last 11 sequences constitute the test set.

nuScenes. Each point in this dataset [5] is annotated with

] trained with lidar data but no images, i.e., in the same setting as the other methods in this table. The table contains the

one of the 16 considered semantic classes. The dataset con-
tains 1000 scenes acquired in Boston and Singapore. We
use the official split with 700 scenes for training, 150 scenes
for validation and 150 scenes for test.

4.2. Implementation Details

During training and test, the point clouds are slightly
downsampled by keeping only one point per voxel of size
10 cm. We use mixed precision for computations. At test
time, the predicted labels are propagated to all points of the
original point cloud by nearest neighbor interpolation.

Training. To control the memory usage and facilitate batch
processing, we pre-process the point cloud as follows. We
keep the size M of the 2D grids used in the WI blocks
fixed. This is achieved by cropping the input point cloud
to a fixed range. On SemanticKITTI, we use a range of
(=50 m, 50 m) along the z,y axes and (—3 m, 2m) along
the z-axis, as in [51]. On nuScenes, we use the same range
of along the x,y axes and (—5m, 5m) along the z-axis.

3383

2]

g& & g go g é"g) § & ¥ S

S & & 3 5 § & & %y I 5 & F 58

N S .5) IS S] S N § IS < 5 & S)

Method K §F F F &5 F S 5§ 8§ §F f 5 s 5 F g 0§ 9
(AF)2-S3Net [7] 622|603 12.6 82.3 80.0 20.1 62.0 59.0 49.0 422 674 942 680 641 68.6 829 824
RangeNet++[22] /655|660 21.3 772 80.9 302 668 69.6 52.1 542 723 941 66.6 635 70.1 83.1 79.8
PolarNet [47] /710|747 282 853 909 35.1 775 713 588 574 761 965 71.1 747 740 873 85.7
SalsaNext [10] /722|748 341 859 884 422 724 722 63.1 613 765 960 708 712 715 86.7 84.4
SVASeg [49] 747|73.1 445 884 86.6 482 80.5 777 65.6 575 82.1 965 70.5 747 746 873 869
AMVNet [20] / 76.1[798 324 822 864 625 819 753 72.3 83.5 65.1 974 67.0 78.8 746 90.8 87.9
GFNet [28] /761|811 316 760 905 602 80.7 753 718 825 65.1 97.8 67.0 80.4 762 91.8 88.9
Cylinder3D [51] 76.1|76.4 403 912 93.8 513 78.0 789 649 62.1 844 968 71.6 764 754 90.5 87.4
2DPASS*T [43] 762|753 435 953 912 545 789 728 62.1 70.0 832 963 732 742 749 88.1 859
RPVNet [41] 77.6|78.2 434 927 932 49.0 857 805 66.0 669 840 969 73.5 759 760 90.6 88.9
WaffleIron (ours) ~ 77.6|78.7 51.3 93.6 882 472 865 81.7 689 69.3 83.1 969 743 756 742 872 852
SDSeg3D [19] 7770775 494 939 92.5 549 867 80.1 67.8 65.7 86.0 964 740 749 745 860 82.8
SDSeg3D! [19] 787|782 52.8 945 93.1 545 88.1 822 694 67.3 86.6 964 745 752 753 87.1 84.1
WaffleIron' (ours) ~ 79.1|79.8 53.8 943 87.6 49.6 89.1 83.8 70.6 72.7 849 97.1 758 765 759 87.8 863

Table 2. Semantic segmentation performance on nuScenes validation set. The second column indicates if the method is free of sparse
convolutions (SpConv). Best and second-best scores are bold and underlined. The scores of each method are obtained from their respective

paper, except for RangeNet++, PolarNet, SalsaNext for which they were obtained from [

], and for AMVNet obtained from [41]. Regard-

ing 2DPASS”*, we report the scores obtained for the network trained using lidar data and no images, i.e., in the same setting as the other
methods in this table. Test time augmentations (TTA), indicated by T, are used in some methods; we thus report the score of WaffleIron
with and without TTA. The table contains the score of methods published before the date of submission.

We also keep the number of points N = 20 000 fixed. If
the input point cloud has a size larger than /V, then we pick a
point at random and keep its closest N — 1 points, otherwise
the point cloud is zero padded.

All models are trained using AdamW for 45 epochs, with
a weight decay of 0.003, a batch size of 4, and a learn-
ing rate scheduler with a linear warmup phase from 0 to
0.001 during the first 4 epochs followed by a cosine anneal-
ing phase that decreases the learning rate to 10~° at the end
of the last epoch. The loss is the sum of the cross-entropy
and the Lovész loss [3]. The point tokens are computed with
16 nearest neighbors in the embedding layer (3). We apply
classical point cloud augmentations on nuScenes and Se-
manticKITTI: random rotation around the z-axis, random
flip of the direction of the x and y-axis, and random scal-
ing. Unless mentioned otherwise, we also use stochastic
depth [14] with a layer drop probability of 0.2.

Test and validation. Because the range along each axis
considered at train time is sufficiently large to contain
nearly the whole point clouds, we continue cropping the
points clouds on the same range during validation and test.
The labels of the points outside the range are obtained by
nearest neighbors interpolation. We use all the input points
after voxel downsampling (hence do not constraint N) dur-
ing test and validation. Some methods leverage test time

augmentations, e.g., [51, 12, 43]; when applied, we average
the softmax pointwise probabilities obtained with 10 dif-
ferent augmentations (random rotation, flip and stochastic
depth activated). We do not use model ensemble to boost
the test or validation performance.

Input features. Unless mentioned otherwise, the input fea-
ture h; to the embedding layer is a 5-dimensional vector
which contains the lidar intensity, the Cartesian coordinates
xyz and range of the corresponding point p;.

4.3. Performance on Autonomous Driving Datasets

On both datasets, we train a WaffleIron backbone with
L = 48 layers. We use F' = 256-dimensional point tokens
and a grid resolution p of 40 cm on SemanticKITTI . We
use [= 384 and p = 60 cm on nuScenes. These choices
of hyperparameters are justified in the next sections.

SemanticKITTI. We evaluate our method on the test split.
We adopt the training and inference practices used by the
best performing techniques, e.g., [41, 51, 12, 43]. In par-
ticular, the model is trained using both the training and val-
idation splits, and test time augmentations are used at in-
ference. In addition to the classical rotation, flip, scaling
augmentations during training, [4 1, 43] use instance cutmix
augmentations. Taking also inspiration from the sugges-

3384

- - - T
===3== nuScenes - WaffleIron-6-64
== nuScenes - WaffleIron-12-256
75 |- — ——
—
70 |- —
N
% 65 BT TTTTTITLLL L L T T3
’é‘ _____ ettt
60 T» =
55 |- —
KITTI - WaffleIron-6-64
KITTI - WaffleIron-12-256 | |
50 g g :
20 30 40 50 60 70 80

p (cm)
Figure 2. Influence of the grid resolution p on the performance
of WaffleIron. We train each backbone on the training set of
nuScenes or SemanticKITTI and compute the mloU on the cor-
responding validation set. We report the average mloU% obtained
at the last training epoch of two independent runs.

tions made in the official code repository of [12], we com-
bine instance cutmix with polarmix [39]. We provide fur-
ther details about instance cutmix and polarmix in Sec. 4.5.

We present the results obtained on the test set in Tab. 1.
WaffleIron is ranked second in term of global mIoU, just 0.4
point away from PVKD. We surpasses the mloU obtained
with popular methods such as Cylinder3D and SPVNAS.
It is interesting to notice that WaffleIron is among the best
methods in the segmentation of small and rare objects such
as bicycles, motorcycles, poles and traffic-signs. The take-
home message is that WaffleIron is among the top perform-
ing methods on SemanticKITTI, making it a compelling al-
ternative if, e.g., one is constrained to using regular deep
network layers.

nuScenes. The model is trained on the official training
split. We present in Tab. 2 the scores obtained by Waffle-
Iron and other methods on the validation set. Once again
the results show that WaffleIron can reach the current best
mloUs. As before, it is interesting to notice that WaffleIron
performs well on rare and small objects such as bicyles, mo-
torcycles and pedestrians. It confirms it is possible to reach
the top of the leaderboard on nuScenes with WaffleIron.

4.4. Sensitivity to Hyperparameters

We denote by Wafflelron-L-F' a backbone with L lay-
ers and F-dimensional point tokens. We only use here 3-
dimensional vectors h; (lidar intensity, height and range of
p;) and do not use stochastic depth for training. We justify
the use of 5-dimensional vectors h; and stochastic depth in
the next section.

2D grid resolution. We study the impact of p on each

nuScenes (p = 60cm)

L=6 L=12 L=24 L=48
F =64 65.2 ; -]
F=128 708 - .)
F=256 732 75.2 75.4 76.1

KITTI (p = 40cm)

L=6 L=12 L=24 L=48
F = 64 58.2 - - ;
F=128 614 - .]
F=256 618 62.6 - 62.5

Table 3. Influence of the width F' and depth L on the perfor-
mance of Waffleron. We train each backbone on the training set
of nuScenes or SemanticKITTI and compute the mIoU on the cor-
responding validation set. We report the average mloU% obtained
at the last training epoch of two independent runs.

dataset for two versions of our network: Waffle[ron-6-64
and WaffleIron-12-256. We notice in Fig. 2 that the perfor-
mance are stable for a large range of grid resolutions. On
nuScenes, the mloU% varies by at most one point for p be-
tween 40 cm and 80 cm with a maximum reached at 60 cm.
Similarly, on SemanticKITTI, the mIoU% varies by at most
one point for p between 20 cm and 60 cm, with a maxi-
mum reached at 40 cm. In summary, WaffleIron is only
mildly sensitive to the grid resolution, and, therefore, can
accommodate a coarse tuning of this parameter. In particu-
lar, p = 50 cm could be a good default value to accommo-
date nearly optimally both datasets.

Choice of F' and L. We study in Tab. 3 the impact of
increasing L and F' in WaffleIron. We notice the same be-
havior on both datasets with an increase of performance as
both L and F' increases, with the start of a saturation on
SemanticKITTI. On SemanticKITTI, we did not notice any
improvement or degradation for F' > 256 at L = 48. We
chose WaffleIron-48-256 to obtain our result on the test set.
On nuScenes, we were able to improve the results when us-
ing F' = 384 (see supp. mat.), hence our choice in Sec. 4.3.

4.5. Regularizations and input features

In this section, we show the benefit of using more reg-
ularizations via data augmentations with instance cutmix
and polarmix (only on SemanticKITTI), and via the use of
stochastic depth during training. We also justify the use
of 5-dimensional input vectors h;, as opposed to the 3-
dimensional h; used in Sec. 4.4. We present here the re-
sults on SemanticKITTI. A similar study is available in the
supp. mat. for nuScenes. “Baseline” refers to a WaffleIron-
48-256 backbone trained with 3-dimensional input vectors

3385

Baseline Baseline & Cut/Polar-mix

I N cuvPolar-mix & 5-dim h;

B B cupotarmix & 5-dim h; & Stoch. depth

~o n©
8 1915 ©m 1910 B
Fe8a Ne S060 Lo -
— >0 o~ e 2 ®
—© © Ao 0
o Tag & 2%
0 00 S0 %0 % 0 T~
i © SR B - ©
0 I~ ! 7 0
0 © ce 38 ©e
>0 o “
e w3 - n
— - M
ol 5
0
e T T T T T T T T T T T T T T T T T T T
3 O\ S S Nt > o R J SRS
< ¥ & F S ¥ ¢ & Y SIS RS
‘é@\ o"d < S ¢ ¥ ¢ S & \&b & & &S
S & > < > & 0 & &
NS & &

0\.

Figure 3. Influence of polarmix, instance cutmix, input vectors h;, and stochastic depth on the performance of WaffleIron on Se-
manticKITTI. We train and evaluate WaffleIron-48-256 backbones on the official train and validation set, respectively. We report the
average mloU% obtained at the last training epoch of two independent runs. To improve readability, we omitted the IoU% on motorcyclist,

which varies between 0.0 and 1.3.

(lidar intensity, height and range), no stochastic depth, no
instance cutmix or polarmix.

Instance cutmix & polarmix on SemanticKITTI. Fol-
lowing [41, 43], we use instance cutmix on rare-class
objects to improve the segmentation performance on Se-
manticKITTI. In our implementation, we extract all in-
stances of the following classes: bicycle, motorcycle, per-
son, bicyclist, other vehicles. During training, we randomly
select at most 40 instances of each class; we apply a ran-
dom rotation around the z-axis, a random flip along the di-
rection of the x or y-axes, and a random rescaling on each
instance; we place each instance at a random location on a
road, parking or sidewalk. We did not apply instance cut-
mix on motorcyclists. Indeed, our method (like many oth-
ers) reaches very low score on this class on the validation
set. Tuning instance cutmix on motorcyclists is thus impos-
sible as we cannot measure its beneficial or adverse effect.
We therefore make the choice to not apply instance cutmix
on motorcyclists. In addition, we also use polarmix [39] on
the same classes as instance cutmix.

The impact of these augmentations is presented in Fig. 3.
The mIoU% improves from 62.5 to 66.8, with, as expected,
most of the improvement due to a large boost of perfor-
mance in the classes used for these augmentations.

Input features & stochastic depth. We start by showing
the interest of using 5-dimensional input vectors h; (inten-
sity, x, y, 2, and range of p;) instead of 3-dimensional in-
put vectors (intensity, height=z, range). The impact of this
change of input vector is presented in Fig. 3 on top instance
cutmix and polarmix: the mloU% increases from 66.8 to

Time (ms) ~ Mink34 Minkl8 Slz(‘)ingIjN %%’PCESI‘SI; Ours
nuScenes 94 66 74 94 92
SemKITTI 114 91 104 80 193

Table 4. Inference time of several backbones and WaffleIron-48-
256 (ours: embedding + backbone + classification) estimated on
the validation sets of nuScenes and semanticKITTI, using a batch
size of 1 and a NVIDIA GeForce RTX 2080 Ti.

67.6 with an improvement on most classes. Finally, using
stochastic depth on top of all presented recipes permits us
to achieve our best mloU% of 68.0 on the validation set.

4.6. Inference time

We report the inference time (embedding + WaffleIron
+ classification) of WaffleIron-48-256 on nuScenes and Se-
manticKITTI in Tab. 4. Note that, here, we used the func-
tion torch.gather instead of a matrix-vector multiplica-
tion with sparse matrices to implement Inflat(-) and the
batch normalization in Eq. (2) were merged with the first
linear layer of the following MLP.

The inference time of WaffleIron-48-256 is compara-
ble to other sparse convolution-based methods on nuScenes
and a bit slower (x 1.7) than the well-known MinkUNet34
on SemanticKITTI. Note that the modified SPVCNN in
2DPASS (SPVCNNY) is wider and deeper on nuScenes than
on SemanticKITTI, hence the faster running time on the lat-
ter.

3386

nuScenes (p = 60cm)

Projection Baseline Reverse Parallel BEV

WaffleIron-12-256 75.2 75.0 734 748
WaffleIron-48-256 76.1 - - 76.0

KITTI (p = 40cm)

Projection Baseline Reverse Parallel BEV

WaffleIron-12-256 62.6 60.9 61.2 633
WaffleIron-48-256 62.5 - - 63.7
WaffleIron-48-2567 66.8 - - 66.8

Table 5. Influence of the projection strategy on the performance
of WaffleIron. We train each backbone on the training set of
nuScenes or SemanticKITTI and compute the mloU on the cor-
responding validation set. We report the average mloU% obtained
at the last training epoch of two independent runs. ' indicates that
the backbone was trained with instance cutmix and polarmix aug-
mentations.

4.7. Other choices of projection strategy

We present in Tab. 5 the effect of using different projec-
tion strategies in our WI block. These strategies are the fol-
lowing. Baseline corresponds to the sequence of projections
described in Sec. 3.2, i.e., used to produce all our results so
far. Reverse consists in reversing the order of the projections
used in Baseline. Parallel consists in performing three pro-
jections on (z,y), (x, z) and (y, z) in parallel at each layer.
The projected feature maps are processed by different 2D
FFNs. The resulting feature maps are then inflated, added
together, and used as residual in (1). We choose to com-
pare this projection strategy to the others while keeping the
number of 2D convolutions fixed. The actual depth of the
network with this strategy is thus divided by three. BEV
consists in projecting on the (x,y) plane at all layers. All
experiments are conducted in the same setting as in Sec. 4.4.

First, reversing the sequence of projections has almost no
effect on nuScenes where the mloU% decrease by 0.2 point.
We notice however a decrease in mloU on SemanticKITTI.
We will see below that, on this dataset, projecting only on
(z,y) permits to improve the performance in absence of
strong augmentations. We suppose that starting by project-
ing on (x, y) has a positive effect thanks to, maybe, a better
start in identifying the main structures.

Second, computing multiple projections in parallel is
less optimal than computing them in a series: we loose -1.4
point and -1.8 point in mlou% with respect to the baseline
on SemanticKITTI and nuScenes, respectively.

Finally, projecting only in BEV has a negligible impact
on the average mloU on nuScenes: we loose at most -0.4
point in mlou% with respect to the baseline sequence of

projections. We explain this result because most structures
and objects remain well identifiable in the bird’s eye view in
autonomous driving datasets. On SemanticKITTI, the base-
line sequence of projections yields the same performance
than the BEV projections only if strong data augmentations
(instance cutmix and polarmix) are used during training. In
absence of these augmentations, projecting only in bird’s
eye view might have played the role of a regularization
which helped the generalization to unseen data.

5. Conclusion

We proposed Wafflelron, a novel and easy-to-implement
3D backbone for automotive point cloud semantic segmen-
tation, which is essentially made of standard MLPs and
dense 2D convolutions. We showed that its hyperparame-
ters are easy to tune and that it can reach the mloU of top
entries on two autonomous driving benchmarks.

Thanks to the use of dense 2D convolutions, we foresee
other potential applications where WaffleIron could be use-
ful. In particular, the tasks semantic completion and or oc-
cupancy completion, see, e.g., [30, 31], where the WI layer
could be used to densify the input point cloud.

Acknowledgments. We thank the Astra-vision team at In-
ria Paris for helpful discussions and insightful comments.
We also acknowledge the support of the French Agence
Nationale de la Recherche (ANR), under grant ANR-21-
CE23-0032 (project MultiTrans). This work was granted
access to the HPC resources of CINES under the allocation
GDA2213 for the Grand Challenges AdAstra GPU made by
GENCI.

References

[1] Angelika Ando, Spyros Gidaris, Andrei Bursuc, Gilles Puy,
Alexandre Boulch, and Renaud Marlet. RangeViT: Towards
Vision Transformers for 3D Semantic Segmentation in Au-
tonomous Driving. In CVPR, 2023. 3

[2] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke,
C. Stachniss, and J. Gall. SemanticKITTI: A Dataset for Se-
mantic Scene Understanding of LiDAR Sequences. In ICCV,
2019. 1,2,5

[3] Maxim Berman, Amal Rannen Triki, and Matthew B
Blaschko. The lovdsz-softmax loss: A tractable surrogate
for the optimization of the intersection-over-union measure
in neural networks. In CVPR, 2018. 6

[4] Alexandre Boulch, Gilles Puy, and Renaud Marlet. Fka-
conv: Feature-kernel alignment for point cloud convolution.
In ACCV, November 2020. 2

[5] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuScenes: A multi-
modal dataset for autonomous driving. In CVPR, 2020. 2,
5

3387

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

Mingmei Cheng, Le Hui, Jin Xie, Jian Yang, and Hui Kong.
Cascaded Non-local Neural Network for Point Cloud Se-
mantic Segmentation. In /ROS, 2020. 2

Ran Cheng, Ryan Razani, Ehsan Taghavi, Enxu Li, and
Bingbing Liu. (AF)2-S3Net: Attentive Feature Fusion With
Adaptive Feature Selection for Sparse Semantic Segmenta-
tion Network. In CVPR, 2021. 3,5,6

Jaesung Choe, Chunghyun Park, Francois Rameau, Jaesik
Park, and In So Kweon. PointMixer: MLP-Mixer for Point
Cloud Understanding. In ECCV, 2022. 3

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
Spatio-Temporal ConvNets: Minkowski Convolutional Neu-
ral Networks. In CVPR, June 2019. 3

Tiago Cortinhal, George Tzelepis, and Eren Erdal Aksoy.
SalsaNext: Fast, Uncertainty-Aware Semantic Segmentation
of LiDAR Point Clouds. In Advances in Visual Computing,
2020. 3,5, 6

Martin Gerdzhev, Ryan Razani, Ehsan Taghavi, and Liu
Bingbing. TORNADO-Net: mulTiview tOtal vaRiatioN se-
mAntic segmentation with Diamond inceptiOn module. In
ICRA, 2021. 3

Yuenan Hou, Xinge Zhu, Yuexin Ma, Chen Change Loy, and
Yikang Li. Point-to-Voxel Knowledge Distillation for Li-
DAR Semantic Segmentation. In CVPR, 2022. 1, 3, 5, 6,
-

Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan
Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.
RandLA-Net: Efficient Semantic Segmentation of Large-
Scale Point Clouds. In CVPR, 2020. 2, 5

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian
Weinberger. Deep networks with stochastic depth. In ECCV,
2016. 6

Deyvid Kochanov, Fatemeh Karimi Nejadasl, and Olaf
Booij. KPRNet: Improving projection-based LiDAR seman-
tic segmentation. arXiv:2007.12668, 2020. 3, 5

Xin Lai, Yukang Chen, Fanbin Lu, Jianhui Liu, and Jiaya Jia.
Spherical Transformer for LIDAR-Based 3D Recognition. In
CVPR, 2023. 3

Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang
Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified Trans-
former for 3D Point Cloud Segmentation. In CVPR, 2022.
2

Loic Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. In
CVPR, 2018. 2

Jiale Li, Hang Dai, and Yong Ding. Self-distillation for ro-
bust lidar semantic segmentation in autonomous driving. In
ECCV,2022. 3,5,6

Venice Erin Liong, Thi Ngoc Tho Nguyen, Sergi Wid-
jaja, Dhananjai Sharma, and Zhuang Jie Chong. AMVNet:
Assertion-based Multi-View Fusion Network for LiDAR Se-
mantic Segmentation. arXiv:2012.04934, 2020. 3, 5,6

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu.
Rethinking Network Design and Local Geometry in Point
Cloud: A Simple Residual MLP Framework. In ICLR, 2022.
3

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

3388

Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill
Stachniss. RangeNet ++: Fast and Accurate LiDAR Seman-
tic Segmentation. In IROS, 2019. 3, 6

Chunghyun Park, Yoonwoo Jeong, Minsu Cho, and Jaesik
Park. Fast Point Transformer. In CVPR, 2022. 2

Jaehyun Park, Chansoo Kim, and Kichun Jo Soyeong
Kim and. PCSCNet: Fast 3D semantic segmentation of Li-
DAR point cloud for autonomous car using point convolution
and sparse convolution network. Expert Systems with Appli-
cations, 2023. 3, 5

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation. In CVPR, 2017. 2

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. PointNet++: Deep Hierarchical Feature Learning
on Point Sets in a Metric Space. In NeurIPS, 2017. 2
Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai,
Hasan Abed Al Kader Hammoud, Mohamed Elhoseiny, and
Bernard Ghanem. PointNeXt: Revisiting PointNet++ with
Improved Training and Scaling Strategies. In NeurIPS, 2022.
3

Haibo Qiu, Baosheng Yu, and Dacheng Tao. GFNet: Geo-
metric Flow Network for 3D Point Cloud Semantic Segmen-
tation. Transactions on Machine Learning Research, 2022.
3,5,6

Ryan Razani, Ran Cheng, Ehsan Taghavi, and Liu Bing-
bing. Lite-HDSeg: LiDAR Semantic Segmentation Using
Lite Harmonic Dense Convolutions. In ICRA, 2021. 5
Christoph B. Rist, David Schmidt, Markus Enzweiler, and
Dariu M. Gavrila. SCSSnet: Learning Spatially-Conditioned
Scene Segmentation on LiDAR Point Clouds. In /EEE Intel-
ligent Vehicles Symposium, 2020. 3,9

Luis Roldao, Raoul de Charette, and Anne Verroust-Blondet.
LMSCNet: Lightweight Multiscale 3D Semantic Comple-
tion. In 3DV, 2020. 9

Radu Alexandru Rosu, Peer Schiitt, Jan Quenzel, and Sven
Behnke. LatticeNet: Fast point cloud segmentation using
permutohedral lattices. In Robotics: Science and Systems,
2020. 2

Haotian Tang, Zhijian Liu, Xiuyu Li, Yujun Lin, and Song
Han. TorchSparse: Efficient Point Cloud Inference Engine.
In MLSys, 2022. 1

Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji
Lin, Hanrui Wang, and Song Han. Searching efficient 3d
architectures with sparse point-voxel convolution. In An-
drea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, editors, ECCV, 2020. 1, 3, 5

Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, Francois Goulette, and Leonidas J.
Guibas. KPConv: Flexible and Deformable Convolution for
Point Clouds. In /ICCV, October 2019. 2, 5

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario
Lucic, and Alexey Dosovitskiy. MLP-Mixer: An all-MLP
Architecture for Vision. In NeurIPS, 2021. 1, 3

(37]

(38]

[39]

[40]

(41]

(42]

[43]

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going Deeper With
Image Transformers. In /CCV, 2021. 3

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
On Graphics, 2019. 2, 4

Aoran Xiao, Jiaxing Huang, Dayan Guan, Kaiwen Cui, Shi-
jian Lu, and Ling Shao. PolarMix: A General Data Aug-
mentation Technique for LiDAR Point Clouds. In NeurIPS,
2022. 7,8

Chenfeng Xu, Bichen Wu, Zining Wang, Wei Zhan, Peter
Vajda, Kurt Keutzer, and Masayoshi Tomizuka. Squeeze-
SegV3: Spatially-Adaptive Convolution for Efficient Point-
Cloud Segmentation. In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm, editors, ECCV, 2020.
3

Jianyun Xu, Ruixiang Zhang, Jian Dou, Yushi Zhu, Jie Sun,
and Shiliang Pu. RPVNet: A Deep and Efficient Range-
Point-Voxel Fusion Network for LiDAR Point Cloud Seg-
mentation. In ICCV, 2021. 3, 5,6, 8

Xu Yan, Jiantao Gao, Jie Li, Ruimao Zhang, Zhen Li, Rui
Huang, and Shuguang Cui. Sparse single sweep lidar point
cloud segmentation via learning contextual shape priors from
scene completion. In AAAIL 2021. 5

Xu Yan, Jiantao Gao, Chaoda Zheng, Chao Zheng, Ruimao
Zhang, Shuguang Cui, and Zhen Li. 2DPASS: 2D Priors
Assisted Semantic Segmentation on LiDAR Point Clouds.
In ECCV, 2022. 1, 5,6, 8

[44]

[45]

[46]

(47]

(48]

[49]

(50]

[51]

3389

Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and
Shuguang Cui. PointASNL: Robust Point Clouds Processing
Using Nonlocal Neural Networks With Adaptive Sampling.
In CVPR, 2020. 2

Maosheng Ye, Rui Wan, Tongyi Cao Shuangjie Xu, and
Qifeng Chen. Efficient Point Cloud Segmentation with
Geometry-Aware Sparse Networks. In ECCV, 2022. 3, 5

Feihu Zhang, Jin Fang, Benjamin Wah, and Philip Torr.
Deep FusionNet for Point Cloud Semantic Segmentation. In
ECCV, 2020. 3

Yang Zhang, Zixiang Zhou, Philip David, Xiangyu Yue, Ze-
rong Xi, Boqing Gong, and Hassan Foroosh. PolarNet:
An Improved Grid Representation for Online LiDAR Point
Clouds Semantic Segmentation. In CVPR, 2020. 3, 6
Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H.S. Torr, and
Vladlen Koltun. Point Transformer. In ICCV, 2021. 2

Lin Zhao, Siyuan Xu, Liman Liu, Delie Ming, and Wenbing
Tao. SVASeg: Sparse Voxel-Based Attention for 3D LiDAR
Point Cloud Semantic Segmentation. Remote Sens., 2022. 3,
5,6

Yangheng Zhao, Jun Wang, Xiaolong Li, Yue Hu, Ce Zhang,
Yanfeng Wang, and Siheng Chen. Number-Adaptive Proto-
type Learning for 3D Point Cloud Semantic Segmentation.
In ECCVW, 2022. 3,5

Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin
Ma, Wei Li, Hongsheng Li, and Dahua Lin. Cylindrical and
Asymmetrical 3D Convolution Networks for LIDAR Seg-
mentation. In CVPR, 2021. 1,3, 5,6

