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Abstract
In this paper, Bayesian shape-restricted function estimation using constrained Gaussian pro-

cesses (GPs) is revisited. The finite-dimensional Gaussian process approximation proposed in [26]
is considered. This approximation verifies a wide range of shape constraints such as monotonic-
ity, convexity and boundedness constraints in the entire domain. Through this approach, shape
constraints are reformulated as equivalent linear inequality constraints on the basis coefficients.
To generate a sample from the resulting constrained posterior distribution, we employ a recently
efficient circulant embedding technique. This technique involves absorbing a smooth relaxation of
the constraint set into the likelihood, a prior distribution, and elliptical slice sampling (ESS). Our
contribution in this article is threefold. First, we extend this technique to address sets of linear,
quadratic and nonlinear inequalities, enabling the incorporation of more general and multiple shape
constraints. These constraints can be applied individually, jointly, and sequentially. Furthermore,
this generalization allows the proposed approach to be easily adapted to other basis functions and
models. Second, we explore efficient samplers to approximate both the posterior and prior dis-
tributions, including Hamiltonian Monte Carlo and the Fast Fourier Transform. Furthermore, we
employ a highly efficient, large-scale approach for sampling from the prior distribution, resulting
in significant computational advantages. Third, we investigate the capability of this approach to
handle higher-dimensional input spaces and manage a large number of observations. The proposed
approach demonstrates flexibility, accuracy, and efficiency in both synthetic and real data studies.

Keywords Elliptical slice sampling · nonparametric regression · shape constraints · smooth relax-
ation · Toeplitz.

1 Introduction

Gaussian Processes (GPs) are employed as prior distributions over function spaces, used to solve
tasks such as regression, classification, feature extraction or hyperparameter optimization. Their
applicability extends across a multitude of disciplines, ranging from computer science to physics,
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biology, engineering, finance, and machine learning [15, 20, 36, 45]. GP models are specified by their
mean and covariance functions, which together define the behavior of the process. The flexibility
of GPs primarily arises from the covariance function. This function enables the integration of prior
knowledge, encompassing features such as smoothness, stationarity, and sparsity. It also allows for
the imposition of constraints on derivatives, further enhancing the model’s adaptability to diverse
data characteristics [11].

Various real-world applications in fields such as nuclear physics [48] and econometrics [5, 9, 10,
12, 21] have demonstrated situations where the data indicate that the underlying function adheres
to specific shape constraints. These constraints include properties like monotonicity, convexity, and
boundedness. Incorporating such constraints remains an active area of research, aiming to enhance
the applicability of GP models in diverse settings [6, 17, 23, 24, 25, 39, 43, 44]. Recently, the authors
in [40] provided an overview and survey of various strategies for integrating shape constraints into
GPs. In [42], constrained GPs have been utilized to estimate probability density functions (pdfs).

In the present paper, the finite-dimensional GP approximation originally proposed in [26] is
considered. To the best of our knowledge, this is the only GP model in the literature that is
capable of handling a wide range of shape constraints, such as monotonicity, boundedness, and
convexity, whether applied alone, together and sequentially. The main idea is to approximate the
parent GP using a finite-dimensional GP achieved through an appropriate basis expansion. These
basis functions exhibit attractive properties not necessary shared by other basis such as Bernstein
polynomials [13], regression splines [4, 30], and restricted splines [38]. Various constraints, includ-
ing monotonicity, convexity, and boundedness, are equivalently translated into linear inequality
constraints on the basis coefficients. This necessitates sampling from a high-dimensional truncated
multivariate normal (tMVN) distribution, for which existing algorithms include Gibbs sampling
[41], Metropolis-Hastings (MH) [8, 32], the minimax tilting method accept-reject sampler [2], and
the highly efficient Hamiltonian Monte Carlo (HMC) sampler [34].

Recently, a new highly efficient approach for sampling from a tMVN distribution restricted to
the positive orthant has been developed in [37]. Their method combines Elliptical Slice Sampling
(ESS) developed in [31], a modified prior, and a smooth relaxation of hard constraints. Therefore,
sampling from the full conditional tMVN distribution is accomplished by sampling from a prior
MVN distribution. The authors in [37] employ the highly efficient sampler, based on the fast Fourier
transform (FFT), for stationary GPs on a regular grid [47], denoted as samp.WC. Our contribution
in this paper is threefold. First, we extend the approach in [37] to handle general linear inequalities.
This extension enables the incorporation of various and multiple shape constraints, which can be
applied individually, jointly, and sequentially. Moreover, this generalization allows the proposed
approach to be easily adapted to other basis functions and models like those mentioned in the
introduction. Second, we employ highly efficient large-scale methods for sampling from the prior
distribution [28, 29], resulting in significant computational advantages. We further explore and
compare this approach with other highly efficient samplers, such as HMC and FFT. Third, we
explore the capability of this approach to handle higher-dimensional input spaces and manage a
large number of observations.

This article is organized as follows: Section 2 introduces the nonparametric function estimation
problem. In Section 3, we provide a brief review of the finite-dimensional GP approximation pro-
posed in [26]. Section 4 outlines the development of the proposed approach for sampling from the
posterior tMVN distribution. The performance of the proposed approach is demonstrated through
numerical experiments in this section. Section 5 extends the proposed approach to multidimensional
input spaces. Finally, Section 6 showcases the effectiveness of the proposed framework through ap-
plications with real-world data.
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2 Shape-restricted function estimation

In this section, the nonparametric function estimation through GP regression is considered, where
the unknown function satisfies shape constraints such as monotonicity, boundedness, or convexity.
The methodology developed in the present paper is able to incorporate multiple shape constraints,
either applied together and sequentially. We denote by {(xi, yi)}ni=1 the set of n training data, where
{xi} and {yi} are the covariates and the data, respectively. The following regression problem is
considered:

yi = f(xi) + εi, εi
i.i.d.∼ N (0, σ2), (1)

i = 1, . . . , n, where f represents an unknown function that generates the data y = [y1, . . . , yn]>,
xi ∈ Rd is a covariate of dimension d, and εi is an additive independent and identically distributed
(i.i.d.) zero-mean Gaussian noise with a constant variance of σ2. A GP prior distribution on the
unknown function f is assumed [45]. Let (Y (x))x∈D be a zero-mean GP with covariance function
k, where D is a subset of Rd, i.e., Y ∼ GP(0, k). Throughout this paper, we assume, without loss
of generality, that D = [0, 1]d. In GP modeling, the positive semi-definite covariance function k
is crucial. It encodes assumptions about the underlying function, including differentiability and
periodicity, through kernels. The Matérn family of kernels is widely used in computer experiments
and, in the univariate case, is defined as

k(x, x′) = τ 2 21−ν

Γ(ν)

(√
2ν

`
|x− x′|

)ν

Bν

(√
2ν

`
|x− x′|

)
, (2)

for any x, x′ ∈ D, where Γ(·) is the Gamma function and Bν(·) denotes the modified Bessel function
of the second kind of order ν. The parameter ν regulates the degree of smoothness of the GP
sample paths. A process with the Matérn kernel of order ν is dν − 1e times differentiable [45]. The
positive parameters τ 2 and ` are referred to as the signal variance and the correlation length-scale,
respectively. These parameters are generally unknown and need to be estimated from data. We
refer the reader to [16, 45] for a more detailed explanation on parameter estimation techniques.

In the following section, we briefly review the finite-dimensional approximation of GPs as pro-
posed in [26]. This approach enables the satisfaction of various shape constraints, including mono-
tonicity, convexity, and boundedness within both convex and non-convex sets. Furthermore, this
method can accommodate a wide range of shape constraints, whether applied individually, collec-
tively, and sequentially.

3 Finite-dimensional Gaussian approximation

In this section, the finite-dimensional approximation of GPs developed in [26] is briefly reviewed.
Let (Y (x))x∈D be a zero-mean GP with covariance function, where D ⊂ Rd. For the sake of
simplicity, we begin with the one-dimensional case, i.e., d = 1 and D = [0, 1]. We first introduce
some notations. We denote by {uj, j = 1, . . . , N} the set of equally spaced knots on D with spacing
∆N = 1/(N − 1), where uj = (j − 1)∆N . Let us mention that the methodology developed in the
present paper is also applicable to non-uniform discretization of D. We recall the basis functions
{φj} that will be used in the model developed in the present paper:

φj(x) := φ

(
x− uj

∆N

)
, (3)

for j ∈ {1, . . . , N}, where φ(x) := (1 − |x|)1[−1,1](x) is the hat function on [−1, 1]. It is worth
noting that other basis functions, such as those suggested in [26, 27], can be easily adapted to the
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methodology developed in the present paper. Let us recall that the hat functions {φj} in (3) have
two nice properties. First, the value of any hat function at any knot is equal to Kronecker’s delta
function (i.e., φj(ul) = δj,l), where δj,l is equal to one when j = l and zero otherwise. Second, for

any x ∈ D, we have
∑N

j=1 φj(x) = 1. Any continuous function f : D → R, that is, f ∈ C0(D,R) can
be approximated by a piecewise linear interpolating between the function values at the knots {uj},

f̃N(x) =
N∑
j=1

f(uj)φj(x), ∀x ∈ D, (4)

where {φj} are the basis functions defined in (3).

Proposition 1 (Uniform convergence). For any f ∈ C0(D,R), the piecewise linear function f̃N
defined in (4) converges uniformly to f when N tends to infinity.

Proof. From φ(x) ≥ 0 and
∑N

j=1 φj(x) = 1, for any x ∈ D, we have

|f̃N(x)− f(x)| =

∣∣∣∣∣
N∑
j=1

f(uj)φj(x)− f(x)
N∑
j=1

φj(x)

∣∣∣∣∣ =

∣∣∣∣∣
N∑
j=1

[f(uj)− f(x)]φj(x)

∣∣∣∣∣
≤

N∑
j=1

[|f(uj)− f(x)|φj(x)] ≤ sup
|x−x′|≤∆N

|f(x)− f(x′)| .

The proof of the proposition holds due to the fact that f is uniformly continuous on the compact
interval D.

Now, the finite-dimensional GP approximation is defined as follows:

Y N(x) =
N∑
j=1

Y (uj)φj(x) =
N∑
j=1

ξjφj(x), x ∈ D, (5)

where we denote Y (uj) = ξj for any j ∈ {1, . . . , N}. Given that (Y (x)x∈D ∼ GP(0, k), the coefficient
vector ξ = [ξ1, . . . , ξN ]> is a zero-mean Gaussian vector with a covariance matrix τ 2K, where

τ 2Kj,l = k(uj − ul), j, l = 1, . . . , N,

with τ 2 the signal variance. Due to the uniform discretization of the input domain D, the covariance
matrix τ 2K retains its stationary property and displays a Toeplitz structure. This property provides
a significant computational advantage in the sampling procedure (Section 4).

3.1 Conditioning on noisy observations with shape constraints

In this section, we introduce some notations to simplify the problem’s presentation. Consider C
as the convex set of functions that satisfy shape constraints, such as monotonicity, convexity, and
boundedness. The non-convex scenario has been investigated in [27]. For example, we may have

C =


Cb := {f ∈ C0(D,R) s.t. lb ≤ f(x) ≤ ub, ∀x ∈ D, and lb < ub ∈ R}
Cm := {f ∈ C0(D,R) s.t. f(x) ≤ f(x′), ∀x < x′ ∈ D}
Cc :=

{
f ∈ C0(D,R) s.t. f(x′)−f(x)

x′−x ≤ f(x′′)−f(x′)
x′′−x′ , ∀x < x′ < x′′ ∈ D

} (6)

which corresponds to boundedness, monotonicity (nondecreasing), and convexity constraints, re-
spectively. Here, C0(D,R) denotes the set of continuous functions from D to R. As outlined in
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[26], the basis functions {φj} defined in (3) ensure an equivalent reformulation of the functional
constraints Y N ∈ C as a finite set of linear inequality constraints on the basis coefficients {ξj} for
various shape constraints

Y N ∈ C ⇔ ξ ∈ E (7)

where E denotes a set of linear inequality constraints on the basis coefficients ξ ∈ RN . According
to (7), we obtain

E =


Eb :=

{
z ∈ RN : lb ≤ zj ≤ ub, ∀j = 1, . . . , N

}
Em :=

{
z ∈ RN : zj−1 ≤ zj, ∀j = 2, . . . , N

}
Ec :=

{
z ∈ RN :

zj−1 − zj−2

tj−1 − tj−2

≤ zj − zj−1

tj − tj−1

, ∀j = 3, . . . , N

} (8)

which corresponds to boundedness, monotonicity, and convexity constraints, respectively. Let us
mention that the above linear inequality constraints on the basis coefficients (8) can be written in
matrix form as follows: {

ξ ∈ RN s.t. Aξ + b ≥ 0m
}
, (9)

where A ∈ Rm×N represents the matrix of constraints, and b is a m-dimensional vector. For
instance, when ξ ∈ Em, we obtain

Ai,j =


−1 if j = i for any i = 1, . . . , N − 1;
1 if j = i+ 1 for any i = 1, . . . , N − 1;
0 otherwise;

(10)

and b = [0, . . . , 0]> ∈ Rm. This implies m = N − 1 linear inequality constraints on the coefficients
vector ξ. Let us recall that ξ = [ξ1, . . . , ξN ]> is a vector extracted from the zero-mean GP Y with
covariance function k. Therefore, ξ is a zero-mean Gaussian vector with a covariance matrix τ 2K.
Consequently, the pdf of the constrained distribution {ξ s.t. ξ ∈ E} is given by

p(ξ|ξ ∈ E) ∝ exp

(
− 1

2τ 2
ξ>K−1ξ

)
︸ ︷︷ ︸

(untruncated) prior

1E(ξ)︸ ︷︷ ︸
constrained set

, (11)

where τ > 0. The above pdf in (11) is proportional to the product of an untruncated MVN prior
and an indicator function representing the set of linear inequality constraints.

Now, Model (5) considering both noisy observations and shape constraints, is expressed as
follows:

Y N(x) =
N∑
j=1

ξjφj(x) s.t.

{
Y N(xi) + εi = yi (noisy observations),
Y N ∈ C (shape constraints),

(12)

where xi ∈ D is the covariate, yi ∈ R is the response and εi
iid∼ N (0, σ2), with σ2 the noise variance.

Following the equivalent in (7), the conditional distribution (12) can be written in matrix form as
follows:

Xξ + ε = y, ξ ∈ E , (13)

where y = [y1, . . . , yn]> is the vector of data, ε = [ε1, . . . , εn]> is the noise zero-mean Gaussian
vector, and X is the n×N design matrix defined by X i,j := φj(xi). With only noisy observations
{Xξ + ε = y}, we have {ξ|y} follows a MVN distribution N (µ,Σ) (see, for example, [45]), where{

µ = (X>X/σ2 +K−1/τ 2)−1X>y/σ2;
Σ = (X>X/σ2 +K−1/τ 2)−1.

(14)
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According to the previous notations, the constrained posterior distribution (13) is the following
truncated MVN:

{ξ|y,Aξ + b ≥ 0m} ∼ NT (µ,Σ,A, b), (15)

where NT (µ,Σ,A, b) is the truncated MVN distribution with mean vector µ, covariance matrix
Σ, constraints matrix A, and constraints vector b. In this context, the efficient HMC sampler
developed in [34] and implemented in the R package tmg can be used. However, in situations when
N is large, (X>X/σ2 +K−1/τ 2) keeps changing over each McMC iteration due to updates in σ2

and τ 2. This necessitates an N × N matrix inversion at every iteration. Moreover, within a large
McMC algorithm, updating the unknown covariance function parameters involves computing the
inversion of an N ×N matrix at each step.

In the following (Section 4), we develop an efficient approach for sampling from the constrained
posterior distribution given by Equation (15). This approach avoids matrix inversions (14) and the
need to sample from the full conditional tMVN distribution, as described in (15). Furthermore, it
can be trivially adapted with other basis functions and models. It is worth noting that in contrast
to the HMC sampler, the initial step of the proposed McMC approach does not necessitate the
validation of linear inequality constraints.

3.2 Mean and Maximum a posterior estimates (mAP and MAP)

Before presenting alternative approaches of sampling from the constrained posterior distribution
(13), we first define the two posterior estimates, namely maximum a posterior (MAP) and mean a
posterior (mAP). Let µ∗ be the posterior mode that maximises the pdf of the posterior distribution
(15). Then, maximizing the posterior pdf is equivalent to maximize the quadratic problem

µ∗ := arg max
ξ s.t. l≤Aξ≤u

{
−[ξ − µ]>Σ−1[ξ − µ]

}
, (16)

with condition mean µ and conditional covariance Σ as in (14). This is a quadratic optimization
problem subject to linear inequality constraints (see [3, 18]). The optimization problem in (16) is
equivalent to

µ∗ := arg min
ξ s.t. l≤Aξ≤u

{
ξ>Σ−1ξ − 2µ>Σ−1ξ

}
. (17)

Finally, the posterior mode µ∗ can then serve as a suitable starting point for the McMC sampler.
It can play an important role in avoiding numerical instability in the sampling procedure for a large
value of the approximate parameter η (see Section 4).

Definition 1 (MAP estimate). The Maximum a posteriori (MAP) estimate of Y N conditionally
on shape constraints and noisy observations is defined as

MN(x) :=
N∑
j=1

µ∗jφj(x) = Φ(x)>µ∗, x ∈ D,

where µ∗ = [µ∗1, . . . , µ
∗
N ]> is the posterior mode computed by (17) and Φ(x) = [φ1(x), . . . , φN(x)]>.

Comments on the MAP estimate
The MAP estimate is independent of the sampling process and is determined only by solving

a quadratic optimization problem subject to linear inequality constraints (17). However, it does
depends on the noise variance parameter σ2. In the sampling procedure developed in Section 4,
the noise variance parameter σ2 is estimated at each McMC iteration using the joint posterior, as
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presented in [37]. For this reason, we propose to plug the average of the estimated values of σ2

into the quadratic optimization problem to obtain the MAP estimate. The asymptotic behavior of
this estimate has been discussed in both [1] and [19], where they established a generalization of the
Kimeldorf-Wahba correspondence [22] for constrained noisy and noisy-free cases.

Definition 2 (mAP estimate). The mean a posteriori (mAP) estimate of Y N conditionally on
shape constraints and noisy observations is defined as

mN(x) := E
[
Y N(x)

∣∣y, Y N ∈ C
]

= Φ(x)>µ,

where µ := E [ξ|y, ξ ∈ E ] is the posterior mean which is computed from simulations, with E the set
of linear inequality constraints on the basis coefficients (8), and Φ(x) = [φ1(x), . . . , φN(x)]> ∈ RN .

The methodology developed in the following section for sampling from the constrained posterior
distribution (15) can also be applied to various other basis functions and models.

4 Constrained posterior sampling: alternative approaches

According to (13), we are interested in sampling from a constrained posterior distribution with the
following form:

p(ξ|y, ξ ∈ E) ∝ exp

(
− 1

2σ2
‖y −Xξ‖2

)
︸ ︷︷ ︸

likelihood function

exp

(
− 1

2τ 2
ξ>K−1ξ

)
︸ ︷︷ ︸

(untruncated) MVN prior

1E(ξ)︸ ︷︷ ︸
constraint

, ξ ∈ RN , (18)

where y ∈ Rn is the vector of data, X ∈ Rn×N is the matrix of design, E is a convex set in
RN representing the set of linear inequality constraints on the basis coefficients (8), and K is a
positive definite matrix. The methodology developed in this section generally applies to sets of
linear inequalities, as in (9), and to any such K. However, our specific interest lies in situations
where K is derived from the evaluation of a stationary covariance function on a regular grid, i.e.,
Kj,l = k(uj − uj), for any j, l = 1, . . . , N . This means that the covariance matrix K exhibits
a Toeplitz structure. The constrained posterior pdf in (18) is proportional to the product of a
likelihood function, an (untruncated) MVN prior, and an indicator function representing the set of
constraints. A simple calculation yields that p(ξ) in (18) is the density function of the following
MVN distribution (see e.g., [45], Section 2.1.1):

N

((
X>X

σ2
+
K−1

τ 2

)−1
X>y

σ2
,

(
X>X

σ2
+
K−1

τ 2

)−1
)

(19)

truncated to the set of linear inequality constraints E in RN . The main results developed in this sec-
tion draw inspiration from a recent innovative approach introduced in [37]. This approach is based
on absorbing a smooth relaxation of the constraint into the likelihood function, along with a circu-
lant embedding technique for sampling the constrained posterior distribution (13). This strategy
eliminates the necessity of sampling from the full conditional tMVN distribution (15) and avoids the
need to perform matrix inversions. Moreover, this approach allows us to perform sampling before
conditioning, rather than after, which can offer significant advantages in preserving the stationary
property during the sampling process. Our aim in this paper is to generalize this approach in order
to deal with sets of linear and nonlinear inequalities. This allows the incorporation of multiple shape
constraints, either together or sequentially. Furthermore, it enables the proposed approach to be
trivially adapted to other basis functions. Through this generalization, we retain the significant
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computational benefits without modifying the prior distribution of the basis coefficients.

Our main idea is to approximate the indicator function in (18) by a smooth (infinitely differen-
tiable) function and incorporate it into the likelihood function. Let us provide the following general
result:

Proposition 2 (Approximation of indicator function of inequality constraints). Let g be any piece-
wise continuous function on R. Then, the indicator function 1{g(·)≥0} can be approximated by a
scaled logistic sigmoid function as follows:

1{g(·)≥0}(x) ≈ 1

1 + exp[−ηg(x)]
, x ∈ R, (20)

where the parameter η > 0 controls the quality of the approximation. As η increases, the quality
of the approximation improves. The approximate function in (20) possesses the same degree of
differentiability as g and we have∣∣∣∣1{g(·)≥0}(x)− 1

1 + e−ηg(x)

∣∣∣∣ ≤ 1

1 + eη|g(x)| ,

for any x ∈ R.

Proof. Let us consider two cases: when g(x) < 0, then, 1{g(x)≥0} = 0. Thus,∣∣∣∣1{g(·)≥0}(x)− 1

1 + e−ηg(x)

∣∣∣∣ ≤ 1

1 + e−η|g(x)| ⇔ 1

1 + e−ηg(x)
≤ 1

1 + eη|g(x)| .

The second case when g(x) ≥ 0 holds since 1 − 1/[1 + exp{−ηg(x)}] = 1/[1 + exp{ηg(x)}], which
completes the proof of the proposition.

−6 −4 −2 0 2 4 6

−
1
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0
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.0

Trigonometric function cos(x)

−6 −4 −2 0 2 4 6

0
.0

0
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smooth approximation of the indicator function

eta=10

eta=5

Figure 1: The nonlinear function g(x) = cos(x) on [−2π, 2π] (left) and the smooth approximation
of the corresponding indicator function 1g(·)≥0(ξ) for two different values of η (right).

Figure 1 shows the the proposed approximation Jη of the indicator function in (20) for the
trigonometric function g(x) = cos(x). The results in Proposition 2 can be applied to m nonlinear
inequality constraints gi(ξ) ≥ 0, for any i = 1, . . . ,m. Furthermore, these results can be used to
handle m quadratic inequality constraints ξ>Ciξ+ d>i ξ+ ei ≥ 0, for any i = 1, . . . ,m, where Ci is
a N ×N matrix of dimension, di is an N -dimensional vector, and ei is a real number.

In the following section, we first focus on monotonicity constraints, where the set of linear
inequality constraints on the basis coefficients E in (18) is replaced by Em, see Equation (8). The
results of Proposition 2 well be employed in the algorithm developed in the next sections.
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4.1 Monotonicity constraints

In this section, the monotonicity constraint is considered. The authors in [26] proved that from
Model (5), Y N is monotone (non-decreasing) if and only if ξ ∈ Em, where

Em = {z ∈ RN : zj−1 ≤ zj, j = 2, . . . , N}. (21)

As a result, the constrained posterior pdf in (18) has the following form:

p(ξ|y, ξ ∈ Em) ∝ exp

(
− 1

2σ2
‖y −Xξ‖2

)
exp

(
− 1

2τ 2
ξ>K−1ξ

)
1Em(ξ), ξ ∈ RN . (22)

Sampling from the above constrained posterior pdf in (22) using an efficient circulant embedding
technique can be summarized in three steps that avoid matrix inversions and direct sampling from
the full conditional posterior tMVN distribution in (15).

First step: smooth approximation of the indicator function In the first step, we ap-
proximate the indicator function 1Em(ξ) in (22) through sigmoid functions as in Proposition 2.
Specifically, we use the logistic sigmoid function 1/[1 + exp(−x)], which corresponds to the cumu-
lative distribution function (cdf) of the logistic distribution. To be more precise, we use the scaled
logistic sigmoid approximation

1ξ1≤ξ2 ≈
eη(ξ2−ξ1)

1 + eη(ξ2−ξ1)
=

1

1 + e−η(ξ2−ξ1)
,

for large η > 0 to derive a smooth approximation called Jη(·) for 1Em(ξ),

1Em(ξ) ≈ Jη(ξ) =
N∏
j=2

eη(ξj−ξj−1)

1 + eη(ξj−ξj−1)
=

eη(ξN−ξ1)∏N
j=2[1 + eη(ξj−ξj−1)]

,

where η plays the role of controlling the quality of the approximation.
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Figure 2: Smooth approximations of the indicator function 1ξ1≤ξ2=1 for different values of η.

Figure 2 displays smooth approximations of the indicator function 1ξ1≤ξ2=1 ≈ 1
1+e−η(1−ξ1)

for

different values of η on the interval [−2, 3].
By substituting the smooth approximate Jη(·) of the indicator function 1Em(ξ) in (22), we obtain

the following density approximation p̃ of p, where the smooth relaxation of the constraints Jη has
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been absorbed into the likelihood:

p̃(ξ|y, ξ ∈ Em) ∝ exp

(
− 1

2σ2
‖y −Xξ‖2

)
exp

(
− 1

2τ 2
ξ>K−1ξ

)
Jη(ξ)

=

[
exp

(
− 1

2σ2
‖y −Xξ‖2

)
Jη(ξ)

]
exp

(
− 1

2τ 2
ξ>K−1ξ

)
=

[
exp

(
− 1

2σ2
‖y −Xξ‖2

) N∏
j=2

eη(ξj−ξj−1)

1 + eη(ξj−ξj−1)

]
︸ ︷︷ ︸

redefined likelihood

exp

(
− 1

2τ 2
ξ>K−1ξ

)
︸ ︷︷ ︸

(untruncated) MVN prior

. (23)

The parameter η plays the role of controlling the quality of the approximation; a higher value of η
yields a better approximation.

Second step: elliptical slice sampling In the second step, we use the efficient ESS method
developed in [31] to sample from the approximate posterior distribution in (23). Let us briefly
review the ESS. The ESS is a general technique employed for sampling from distributions with the
following form:

p(ξ) ∝ L(ξ)N (ξ; 0,K). (24)

The above density (24) is proportional to a product of a general likelihood function L(·) and a
zero-mean MVN prior, where L represents the redefined likelihood function in (23). In this context,
sampling from (24) can be performed using Metropolis-Hastings (MH) proposals [8, 32]:

ξ′ = ρν +
√

1− ρ2ξ, ν ∼ N (0,K), (25)

where ρ ∈ [−1, 1] is a step-size parameter, ξ is the current state, and ξ′ is the proposal state. Let
us recall that the MH acceptance ratio α = min {1, L(ξ′)/L(ξ)} is only relies on the likelihood ratio
and is independent of ρ. Moreover, this method is simple to implement and can be immediately
applied to a much wider variety of models with Gaussian priors.

The ESS is founded on the parametrization ρ = sin(θ) in (25), which offers an adaptive and
automated approach for tuning the step-size parameter ρ, ensuring acceptance at each step. Thus,
the MH proposal in (25) is reformulated as follows:

ξ′ = sin(θ)ν + cos(θ)ξ, ν ∼ N (0,K), (26)

where the angle θ is uniformly generated from a [θmin, θmax] interval which is shrunk exponentially
fast until an acceptable state is reached. For each specific value of θ, a uniform random number
is generated and compared to the likelihood ratio L(ξ′)/L(ξ). If the proposal ξ′ is not acceptable,
one shrinks the bracket of θ, and continues this process until acceptance. Detailed instructions on
how to shrink the bracket can be found in [31].

Third step: sampling from the (untruncated) MVN prior In the final step, sampling the
(untruncated) MVN prior, denoted as ν, from N (0,K) can be accomplished using highly efficient
samplers. Since the covariance matrix, K, is derived from a stationary covariance function defined
on a regular grid, the process of sampling ν from the prior MVN distribution N (0,K) is equiv-
alent to generating a stationary GP on a regular grid. In this scenario, different highly efficient
approaches can be employed. For example, the efficient Fast Fourier Transform (FFT) algorithm, as
introduced by [47], can be utilized. Furthermore, the authors of this paper have recently developed
two approaches for sampling from very large Gaussian vectors derived from stationary GPs. The
first approach is based on a large-scale Karhunen-Love Expansion (KLE), abbreviated as LS.KLE,

10



and is detailed in [29]. The second approach, known as the fast large-scale method, abbreviated as
Fast.LS, is presented in [28].

From Equation (23), the logarithm of the redefined likelihood is given by

log[L(ξ)] = − 1

2σ2
‖y −Xξ‖2 + η(ξN − ξ1)−

N∑
j=2

[
log
(
1 + eη(ξj−ξj−1)

)]
. (27)

Hence, the computational complexity for evaluating the log-likelihood in (27) is O(nN), where n
represents the number of samples and N denotes the dimension of the MVN prior ξ. The logarithm
of the redefined likelihood (27) can be expressed in matrix form as follows:

log[L(ξ)] = − 1

2σ2
‖y −Xξ‖2 −

m∑
i=1

[
log
(

1 + e−ηa
>
i ξ
)]
, (28)

where ai ∈ RN is the ith row of the constraints matrix A ∈ Rm×N defined in (10), where m = N−1.
In the numerical examples presented in the paper and based on Taylor’s approximation, we absorb
the sum in (28) into the logarithm to avoid computing the logarithm of (1 + e−ηa

>
i ξ) for m = N − 1

times. While there is little operational difference between the two approaches, our method offers
significant computational benefits in terms of running time, prediction accuracy, and coverage, as we
shall demonstrate below (Section 4.3). Furthermore, employing this technique makes the proposed
approach less sensitive to the parameter η and, thus, to the mass-shifting phenomenon described in
[49]. Similar to the methods introduced in the MUR technique [7, 29, 46], the proposed approach
involves conducting sampling before conditioning rather than after. It offers potential advantages
by maintaining the stationary property throughout the sampling process. Furthermore, it allows
simulating the posterior distribution in cases of extreme constraints, a task that becomes impossible
for the HMC sampler. Finally, through the proposed approach, there is no need to compute the
inverse of an n×n matrix at each McMC iteration. This can be of a significant advantage, especially
when the size of the data set n is high. Additionally, sampling the prior is independent of the noise
variance parameter σ2. This can be advantageous in some situations, which is not the case when
sampling directly from the full conditional posterior distribution (15).

4.2 Boundedness constraints

In this section, the boundedness constraints is considered. From [26] and Model (5), Y N verifies
boundedness constraints (i.e., Y N(x) ∈ [lb, ub], for any x ∈ D) if and only if ξ ∈ Eb, where

Eb = {z ∈ RN : lb ≤ zj ≤ ub, j = 1, . . . , N}. (29)

As a result, the constrained posterior pdf in (18) has the following form:

p(ξ|y, ξ ∈ Eb) ∝ exp

(
− 1

2σ2
‖y −Xξ‖2

)
exp

(
− 1

2τ 2
ξ>K−1ξ

)
1Eb(ξ), ξ ∈ RN . (30)

The only difference from the monotonicity (nondecreasing) constraints developed in Section 4.1 lies
in the indicator function in (22), where Em is replaced by Eb. Consequently, only the first step of the
circulant embedding technique will be modified. However, we still use the scaled logistic sigmoid
approximation

1lb≤ξ≤ub ≈
1

1 + e−η(ξ−lb) + e−η(ub−ξ) + e−η(ub−lb)

11



for large η > 0 to derive a smooth approximation called Jη(·) for 1Eb(ξ),

1Eb(ξ) ≈ Jη(ξ) =
N∏
j=1

1

1 + e−η(ξj−lb) + e−η(ub−ξj) + e−η(ub−lb)
(31)

where η plays the role of controlling the quality of the approximation.
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Figure 3: Smooth approximations of the indicator function 1[−2,1](·) for different values of η.

Figure 3 displays smooth approximations on the interval [−3, 3] of the indicator function 1[−2,1](·)
using Equation (31), with lb = −2 and ub = 1, for various values of η.

As for monotonicity constraints, by substituting the smooth approximate Jη(·) of the indicator
function 1Eb(ξ) in (30), we obtain the following density approximation p̃ of p, where the smooth
relaxation of the constraints Jη has been absorbed into the likelihood:

p̃(ξ|y, ξ ∈ Eb) ∝ exp

(
− 1

2σ2
‖y −Xξ‖2

)
exp

(
− 1

2τ 2
ξ>K−1ξ

)
Jη(ξ)

=

[
exp

(
− 1

2σ2
‖y −Xξ‖2

)
Jη(ξ)

]
︸ ︷︷ ︸

redefined likelihood

exp

(
− 1

2τ 2
ξ>K−1ξ

)
︸ ︷︷ ︸

(untruncated) MVN prior

. (32)

According to (31), the logarithm of the redefined likelihood in (32) can be expressed as follows:

− 1

2σ2
‖y −Xξ‖2 −

N∑
j=1

log
[
1 + e−η(ξj−lb) + e−η(ub−ξj) + e−η(ub−lb)

]
. (33)

It is worth noting that the logarithm of the likelihood function (33) above can be expressed in
matrix form as follows:

− 1

2σ2
‖y −Xξ‖2 −

m∑
i=1

log
[
1 + e−η(a>i ξ+bi)

]
, (34)

where ai ∈ RN represents the ith row of the constraints matrix A ∈ Rm×N and bi ∈ Rm is the
ith component of the vector b ∈ Rm, which contains the lower and upper bounds constraints. In

this boundedness case, we have m = 2 × N , A =

[
diag(N)
−diag(N)

]
and b =

[
−l
u

]
, with l and u the

vectors representing the lower and upper bounds, respectively, and diag(N) the N -dimensional
identity matrix. This matrix form expression allows the proposed approach to handle boundedness
constraints, where the lower and upper bounds can be any functions forming a convex set. For a
further discussion on this case, we refer the reader to [27].

12



Remark 1. For computational numerical advantages, the sum in (34) can be expressed as follows:

m∑
i=1

log
[
1 + e−η(a>i ξ+bi)

]
=

m∑
i=1

log
[
1 + e−η(ξ−l)i + e−η(u−ξ)i + e−η(u−l)i

]
,

where, for example, (ξ − l)i represents the ith element of the vector (ξ − l). This expression is
applicable to boundedness constraints, where there is no need to compute the matrix product Aξ at
each McMC iteration. This advantage will be highlighted in the numerical examples presented in
this paper. Finally, if the constraints matrix A ∈ Rm×N is such that the diagonal elements are equal
to λi ∈ R for i = 1, . . . ,m and zero otherwise, then

1{Aξ+b≥0m} ≈
m∏
i=1

1

1 + e−η(a>i ξ+bi)
=

m∏
i=1

1

1 + e−η(λiξi+bi)
.

This is the case when we have either an upper or a lower bound constraint.

The following section presents empirical demonstrations of the computational complexity and
predictive accuracy of the proposed approach in the context of shape-restricted function estimation.

4.3 Numerical performance

The aim of this section is to illustrate the performance of the proposed approach developed in Sec-
tion 4 in terms of computational running time, prediction accuracy, and uncertainty quantification.
Additionally, we provide a comparative analysis against the HMC sampler developed in [34] and
the embedding technique introduced in [37, 49].

Example 1 (Monotonicity constraints). In this numerical example, we consider the monotone
(nonincreasing) function

fm1(x) = −2/[1 + exp(−12x+ 3)], (35)

with x ∈ [0, 1]. This is a challenging situation because fm1 is monotone (nonincreasing) and remains
nearly flat between 0.6 and 1.

Figure 4 illustrates the monotone (nonincreasing) function estimation using the finite-dimensional
GP approximation (5). We randomly generate n = 100 samples from (1) using the true nonincreas-
ing function fm1 (black solid curve) and a noise standard deviation of σ = 0.5. The covariates {xi},
i = 1, . . . , n are generated using the lhsDesign function implemented in the R package DiceDesign
[14]. The Matérn covariance function (2) with a smoothness parameter ν = 1.5 has been employed.
The length-scale parameter ` has been chosen such that the correlation at the maximum possible
separation between the covariates equals 0.05. We adopt a joint posterior distribution based on the
inverse Gamma distribution to estimate the variance noise parameter σ2 and the signal variance
parameter τ 2 at each McMC iteration. The blue dashed-dotted curve represents the mAP estimate
(Definition 2), while the red dashed curve represents the MAP estimate (Definition 1). The black
solid curve represents the true nondecreasing function, and the gray shaded area represents the pos-
terior 95% confidence interval. The proposed LS-ESS approach developed in 4.1 has been employed
in the top two panels with N = 27 (left) and N = 100 (right). To avoid the mass-shifting phe-
nomenon [49] on the flat region [0.6, 1], we fix the parameter η at 100, thereby ensuring a “good”
approximation of (23). In the Middle two panels, the FFT approach [47] is employed to general
the prior MVN distribution in the last step of the algorithm developed in Section 4.1 with N = 27
(left) and N = 100 (right). This is the FFT-WC ESS approach developed in [37]. In the bottom
two panels, the HMC sampler has been used to generate samples from the full conditional tMVN
distribution (15) with N = 27 (left) and N = 100 (right). The computational time (in second) of
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Figure 4: Monotone function estimation using model (5) with three different approaches. Top: the
proposed LS-ESS approach with N = 27 (left) and N = 100 (right). Middle: the FFT-WC ESS
approach with N = 27 and N = 100 (right). Bottom: the HMC sampler with N = 27 (left)
and N = 100 (right). The computation time (in second) of running the McMC sampler for 6,000
iterations is displayed at the main part of each panel, where the first 1,000 iterations are discarded
as burn-in.

running the McMC sampler for 6,000 iterations is displayed in the main part of each panel, where
the first 1,000 iterations are discarded as burn-in. Under the same setting, when the dimension
N is fixed at 100, the proposed LS-ESS approach is six times (resp. four times) faster than the
HMC sampler (resp. FFT-WC ESS approach). It is worth noting that when all the parameters `, τ 2,
and σ are fixed, the proposed LS-ESS approach can generate 6,000 monotonic trajectories in 11.05
second when the dimension N is fixed at 500, while the HMC approach takes 35.72 seconds. Unlike
the circulant embedding technique approach we propose, when using the HMC sampler, the con-
strained posterior distribution fails to capture the flat region (when x ∈ [0.6, 1]). This is attributed
to the mass-shifting phenomenon when using the full conditional tMVN distribution, as described
in [49], which becomes more pronounced as the dimension N increases and as the posterior mode
gets closer to boundary constraints. The methodology developed in the present paper tackles this
problem through the parameter of approximation η. It is clear that the proposed LS-ESS approach
visually outperforms the HMC sampler in terms of prediction accuracy and coverage. Unlike the
HMC sampler, when employing the proposed approach, the mean of the constrained posterior dis-
tribution (mAP estimate) follows the MAP estimate. It is important to note that the performance
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of the HMC sampler, as well as that of the FFT-WC ESS approach, depends on the smoothness
parameter ν of the covariance function. In this numerical example, the results were obtained using
a smoothness parameter of ν = 1.5. However, when ν < 1.5, the computational running time of the
HMC sampler is longest. Furthermore, the FFT performs poorly when ν is high, as demonstrated in
[29]. The proposed LS-ESS approach does not suffer from this issue; it performs well in both cases,
i.e., with high and low values of the smoothness parameter ν.

Example 2 (Boundedness constraints). In this example, we examine the behavior of the posterior
distribution of the proposed LS-ESS approach as well as the HMC sampler using the nonnegative
function introduced in [35]. The function is defined as follows:

f(x) =
1

[1 + (10x)4]
+

1

2
exp

[
−100(x− 0.5)2

]
, x ∈ [0, 1]. (36)

This is a challenging situation because the underlying function f is bounded between 0 and 1,
flat, and approximately zero on the interval [0.7, 1].

Figure 5 depicts the posterior distribution behavior of the three approaches: LS-ESS (top pan-
els), FFT-WC ESS (middle panels), and HMC sampler (bottom panels), using the model defined in
equation (5). We randomly generate n = 100 samples from (1) using the true bounded function f
defined in (36) and a noise standard deviation of σ = 0.1. The covariates {xi}, i = 1, . . . , n are
generated using the lhsDesign function implemented in the R package DiceDesign [14]. The Matérn
covariance function (2) with a smoothness parameter ν = 1.5 has been employed. The length-scale
parameter ` has been chosen such that the correlation at the maximum possible separation between
the covariates equals 0.05. The noise and signal variance parameters, σ2 and τ 2 respectively, have
been estimated at each McMC iteration. The blue dashed-dotted curve represents the mean a poste-
rior (mAP) estimate (i.e., the mean of the posterior samples), while the red dashed curve represents
the MAP estimate. The black solid curve represents the true bounded function, and the gray shaded
area represents the posterior 95% confidence interval. The proposed LS-ESS approach has been em-
ployed in the top two panels with N = 27 (left) and N = 100 (right). The parameter η is fixed
at 100, providing a “good” approximation of (32). The FFT approach to generate the prior MVN
distribution in the last step of the algorithm developed in Section 4.1 is employed in the middle
panels with N = 27 (left) and N = 100 (right). In the bottom two panels, the HMC sampler has
been used with N = 27 (left) and N = 100 (right). The computational time (in second) of running
the McMC sampler for 6,000 iterations is displayed in the main part of each panel, where the first
1,000 iterations are discarded as burn-in. Under the same setting, when the dimension N is fixed
at 100, the proposed LS-ESS approach is six times (resp. three times) faster than the HMC sampler
(resp. FFT-WC ESS approach). Let us mention that when all the parameters `, τ 2, and σ are fixed,
the proposed LS-ESS approach can generate 6,000 bounded trajectories in 5.49 seconds when the di-
mension N is fixed at 500, while the HMC approach takes 19.69 seconds. This significant reduction
in computation time is attributed to both sampling from an efficient prior, Fast.LS, through ESS,
and the considerations outlined in Remark 1. As for the monotonicity constraint case, the computa-
tional running time of the HMC sampler (resp. FFT-WC ESS approach) becomes slower with a lower
(resp. higher) value of the smoothness parameter ν. It is worth noting that the posterior credible
intervals exhibit greater compression when employing the circulant embedding technique developed
in the present paper compared to sampling from the full conditional tMVN (15).

Run-time comparison (LS-ESS versus HMC) In this paragraph, we provide empirically
illustration of the computational complexity of the proposed LS-ESS approach. The monotone
(nonincreasing) and bounded synthetic functions fm1 and f , defined in (35) and (36) respectively,
are employed. In both cases, the covariates are generated uniformly on [0, 1]. The parameter η is
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Large−scale ESS
Running Time (s) =  2.82 and dimension N =  100
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Running Time (s) =  10 and dimension N =  100
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Hamiltonian Monte Carlo
Running Time (s) =  1.51 and dimension N =  27
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Hamiltonian Monte Carlo
Running Time (s) =  17.41 and dimension N =  100

true function
MAP
mAP

Figure 5: Same as Figure 4 for bounded function estimation.

fixed at 100 and the number of knots N = dn
8
e, where n represents the number of samples. The

Matérn covariance function (2) is employed, with the smoothness parameter ν fixed at 1.5, and the
length-scale parameter ` chosen to achieve a correlation of 0.05 at the maximum possible separation
between the covariates. The other parameters, σ2 (noise variance) and τ 2 (signal variance), are
updated using the joint posterior distribution, as described in [37]. The proposed LS-ESS approach
developed in the present paper, is compared to the highly efficient HMC sampler developed in [34]
and implemented in the R package tmg, in terms of computational running time per iteration.

Figure 6 displays the average running time per McMC iteration over ten replicated as a func-
tion of the sample size n for two McMC samplers: the LS-ESS approach proposed in this paper,
represented by the black solid curve, and the HMC sampler developed in [34], represented by the
black dashed curve. The left panel considers the monotonicity (nondecreasing) constraint, while
the right panel employs the nonnegativity constraint. It is worth noting that the HMC sampler
performs well in low dimensions, especially when N ≤ 125 (i.e., when n ≤ 1, 000). However, as both
the dimension N and the sample size n grow, the proposed LS-ESS demonstrates a clear advantage
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Figure 6: Average running time per McMC iteration (in seconds) over ten replicates plotted against
the sample size n for two Gibbs samplers: the proposed approach denoted LS-ESS (black solid
curve) and the HMC tmg (black dashed curve). The monotonicity (resp. boundedness) constraints
is considered in the left (resp. right) panel. The dimension N is fixed at dn/8e.

over the HMC sampler. Unlike the HMC sampler, the computational complexity of our approach
increases linearly with both the dimension N and the sample size n.

Example 3 (Multiple constraints: monotonicity and boundedness). The extension of the proposed
approach to sets of linear inequalities allows for the incorporation of multiple shape constraints
through Model (5). In this numerical example, monotonicity and boundedness constraints are jointly
considered. To achieve this, we examine the logistic function fm3(x) = 1/[1 + exp(−6x)], where
x ∈ D. This function is monotone (increasing) and bounded from above by 1.
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Figure 7: GP approximation from Model (5) using the proposed LS-ESS approach under only
monotonicity constraints (left) and under both monotonicity and boundedness constraints (middle).
The HMC approach is employed in the right panel under both constraints. The black dashed
horizontal line represents the upper bound constraint.

Figure 7 presents a side-by-side comparison between the proposed LS-ESS approach and the
HMC sampler using Model (5), with N = 27. The left panel illustrates the proposed approach under
only monotonicity constraints, while the middle and right panels demonstrate the two competitor
approaches under both monotonicity and boundedness constraints. The Matérn covariance function
(2) is employed with a smoothness parameter ν = 2.5. The length-scale parameter ` was chosen to
achieve a correlation of 0.05 at the maximum possible separation between the covariates. The signal
and noise variance parameters τ 2 and σ2 are updated at each McMC iteration. The black stars
represent the n = 100 synthetic training data generated from (1) using the function fm3 and a noise
standard deviation σ = 0.2. The black dashed horizontal line represents the upper bound constraint.
In the left panel, the posterior estimates (MAP and mAP) and the posterior 95% credible interval
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(gray shaded area) respect monotonicity constraints, but they violate the upper bound constraint.
In the middle and right panels, the posterior estimates and the 95% credible interval adhere to both
monotonicity and boundedness constraints. We visually observe that incorporating multiple shape
constraints significantly enhances prediction accuracy and reduces credible intervals. Furthermore,
the posterior distribution obtained through the proposed LS-ESS approach visually appears to be
more flexible than that obtained through the HMC sampler. It is worth noting that when the
dimension N is fixed at 100, the running time for generating 6,000 McMC iterations through
the proposed approach under both monotonicity and boundedness constraints was 3.7 seconds,
compared to 21.4 seconds for the HMC sampler. This significant reduction in computation time is
attributed to both sampling from an efficient prior, Fast.LS, through ESS, and the considerations
outlined in Remark 1.

Example 4 (Linear regression). The model employed in the present paper, referenced as Model (5),
generates piecewise linear trajectories, where the basis functions are the hat functions described in
(3). Consequently, when the number of knots N is fixed to two, Y N(·) generates linear paths/functions.
Hence, linear regression problems can be effectively addressed using the approach developed in this
paper. Let us consider the following increasing linear function: f(x) = 5x, x ∈ D.

*

*

***
**
*

*

*

*

*

*

*

*
*

*
*
*

*

*
**

*
***

*

*
***
*

*

*
*
*
*
**

* *

*

*
*

*
*

*

**
*

*

*

*

* **

*

*
*

**

**
***
*

*

*

**
*
*

*
*
*

*

*
*

*
**

*

*

**

***
**
*
*

*
*

*

**
*

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

4
5

*

*

***
**
*

*

*

*

*

*

*

*
*

*
*
*

*

*
**

*
***

*

*
***
*

*

*
*
*
*
**

* *

*

*
*

*
*

*

**
*

*

*

*

* **

*

*
*

**

**
***
*

*

*

**
*
*

*
*
*

*

*
*

*
**

*

*

**

***
**
*
*

*
*

*

**
*

monotonicity ESS approach

true function
MAP
mAP

Figure 8: GP approximation from Model (5) using the proposed LS-ESS approach under mono-
tonicity constraints. The black line represents the true monotone linear function x 7→ 5x.

In Figure 8, the black line represents the target linear function f(x) = 5x, and the black stars
represent the n = 100 observations obtained from (1) using the function f and a noise standard
deviation σ = 0.5. Model (5) is employed with N = 2. Additionally, the Matérn covariance function
with a smoothness parameter ν = 2.5 is used, with a length-scale parameter ` estimated through an
adaptive cross-validation technique. The Gaussian vector ξ = [ξ1, ξ2]> is then generated using the
LS-ESS approach developed in Section 4. The gray shaded area represents the 95% credible interval
obtained from 6,000 McMC iterations, where the first 1,000 iterations are discarded as burn-in.
The signal and noise variance parameters τ 2 and σ2 are updated at each iteration. For example,
the root-mean-squared-error (rmse) of fifty tested data is equal to 1.02 × 10−2 and 1.04 × 10−2 for
MAP and mAP estimates, respectively.

5 Higher dimensional input spaces

The finite-dimensional GP approximation defined in (5) can be extended to d-dimensional input
spaces by tensorization (see [26] for a further discussion on imposing shape constraints for d ≥ 2).
Consider x = (x1, . . . , xd) ∈ D with input space D = [0, 1]d, and a set of knots per dimension
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(u1
1, . . . , u

1
N1

), . . . , (ud1, . . . , u
d
Nd

). Then, the proposed GP approximation can be expressed as

YN1,...,Nd(x) =

N1∑
j1=1

. . .

Nd∑
jd=1

ξj1,...,jd
[
φ1
j1

(x1)× . . .× φdjd(xd)
]
, (37)

where ξj1,...,jd = Y (uj1 , . . . , ujd) and φζjζ are basis functions as defined in (3). Conditionally on data
and shape constraints, we get

YN1,...,Nd(xi) + εi = yi and ξj1,...,jd ∈ E ,

where xi ∈ D, yi ∈ R and εi
i.i.d.∼ N (0, σ2), with σ2 the noise variance. As in (7), E represents a set

of linear inequality constraints on the basis coefficient ξ = ξj1,...,jd . Then, the sampling approach
developed in Section 4 can be employed to the zero-mean Gaussian vector ξ with a prior covariance
matrix τ 2K. For instance, monotonicity constraints in two dimensions (i.e., d = 2) with respect to
the two input variables x1 and x2 provide

Em = {ξ ∈ RN1×N2 : ξj−1,j′ ≤ ξj,j′ and ξj,j′−1 ≤ ξj,j′},

for j ∈ {2, . . . , N1} for the first inequality and j′ ∈ {2, . . . , N2} for the second inequality.

As in one-dimensional cases, to avoid overfitting, it is more reasonable to choose the number of
knots to be less than the number of training samples n. It is worth noting that having less knots
than training samples can significantly impact the proposed McMC samplers, as they will then be
performed in low-dimensional spaces, where N = N1 × . . . × Nd � n. Therefore, sampling from
the posterior distribution can be achieved faster especially because of the incorporation of the data
into the likelihood function (28), where there is not need to inverse a full-rank matrix of dimension
n × n. It is worth noting that when all elements of the vector N = (N1, . . . , Nd) are equal to
two (i.e., Nζ = 2, for any ζ ∈ 1, . . . , d), the proposed approach can be seen as a generalization of
multidimensional linear regression problems.

5.1 Monotonicity in higher dimensions

The finite-dimensional GP approximation originally proposed in [26], was introduced with the
aim of interpolating a given number of noise-free observations y = [y1, . . . , yn]>. It was strictly
necessary to have more knots than training samples (N > n), a condition referred to as the degree of
freedom in [26]. Moreover, it involves restricted domains where certain McMC samplers, performed
poorly. Consequently, the extension to higher-dimensional input spaces was a challenge task. In this
numerical example, we show that, by considering noisy observations, the proposed approach can
be performed in higher dimensions. The relaxation of the set of constraints and the incorporation
of the observations into the likelihood (28) allow this approach to deal with a large number of
observations within a reasonable running time.

To do this, we consider the following 7D target function

f(x) = 3/[1 + exp (−10x1 + 2.1)] + arctan(5x2) +
7∑
i=3

(i− 1)xi,

where x = (x1, . . . , x7) ∈ [0, 1]7. This function is monotone non-decreasing with respect to all
its input variables xi, i = 1, . . . , 7. While some computations could potentially be simplified,
considering f as an additive function, we choose not to take advantage of this in order to test our
approach on a fully 7D example. The target function f is evaluated on a Latin-hypercube design
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at 5000 locations using lhsDesign function implemented in the R package DiceDesign [14]. The
training data y are generated from (1) using the target function f and a noise standard deviation
σ = 0.1. A tensor product of 1D Matérn covariance function (2) has been used with a smoothness
parameter ν = 2.5. We determine the number of knots as a balance between achieving high-quality
resolution in the approximation and minimizing computational running time. Consequently, we set
the number of knots per dimension to two, except for the first two dimensions (i.e., Nζ = 2, for
ζ = 3, . . . , 7), owing to the linearity of the target function concerning the corresponding variables.
For the first dimension, we choose N1 = 5, and for the second dimension, we choose N2 = 4, since
the function f exhibits more variation along these dimensions compared to the others.
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Figure 9: From left to right: the mAP estimate based on 6,000 McMC iterations, the MAP estimate
based on the posterior mode (17), and the target function. All these functions are evaluated at
(x1, x2, 0, . . . , 0) (top) and at (x1, 0, x3, 0, . . . , 0) (bottom), where (x1, x2, x3) ∈ [0, 1]3.

Figure 9 displays side by side the proposed MAP and mAP estimates together with the true
function evaluated at (x1, x2, 0, 0, 0, 0, 0). As in the one-dimensional cases, the mAP estimate is
obtained through 6,000 McMC iterations of the algorithm developed in Section 4, with 1,000 itera-
tions discarded as burn-in. While the MAP estimate is computed through the posterior mode (17).
Firstly, it should be noted that the proposed approach (37) is capable of capturing the monotonicity
dynamics of the target function across the entire domain. Secondly, generating 6,000 monotonic
surfaces using the approach developed in Section 4 takes less than 10 minutes, which includes the es-
timation of signal and noise variance τ 2 and σ2 respectively, at each iteration. However, computing
the MAP estimate which is independent of the sampling procedure requires couple of seconds.

Now, in Figure 10 and Table 1, we investigate the quality of the prediction using the two proposed
MAP and mAP estimates. Figure 10 shows side by side the predictive MAP and mAP estimates
versus the true noise-free observations. Table 1 summarizes the regression error measurements for
the two proposed MAP and mAP estimates. Based on the results from the one-dimensional cases
and findings in [27], the MAP estimate consistently outperforms the mAP estimate across various
criteria. For instance, the root-mean-squared-error (rmse) is equal to 7.56 × 10−2 when using
the MAP estimate for prediction, while it is equal to 8.09 × 10−2 when using the mAP estimate.
Additionally, the performance of the MAP estimate is further validated using the Q2 criterion.
This criterion is defined as Q2 = 1−SMSE, where SMSE represents the standardized mean squared
error [45]. The Q2 criterion equals one if the predictive mean matches the test data and is less
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Figure 10: Side by side prediction accuracy: predictive MAP and mAP estimates versus true noise-
free observations.

mAP MAP
MAE 6.04× 10−2 5.83 × 10−2

MSE 0.65× 10−2 0.57 × 10−2

RMSE 8.09× 10−2 7.56 × 10−2

SMSE 7.91× 10−4 6.90 × 10−4

Q2 99.92× 10−2 99.93 × 10−2

PVA 0.90 1.04
WAIC −6.38× 103 −6.38× 103

Table 1: Comparison of regression error measures for the two proposed mAP and MAP estimates.

than one otherwise. For the MAP and mAP estimates, it is equal to 99.93 and 99.92, respectively.
The computation time for the MAP estimate is significantly faster compared to the mAP estimate.
Therefore, it may be considered an ideal and accurate estimate of the conditional posterior process.
Finally, it is worth noting that the proposed sampling strategy developed in this paper improves
the prediction of the mAP estimate and corrects the behavior of the posterior distribution.

5.2 Monotonicity and boundedness in 2D

The aim of this section is to investigate the performance of the proposed approach under multiple
constraints. To achieve this, we consider the following target function

f(x) = 1/[1 + exp (−10x1)] + x3
2,

where x = (x1, x2) ∈ [0, 1]2. This function is monotone non-decreasing with respect to x1 and x2

and bounded from above by the function fu(x1, x2) = 1/[1 + exp (−10x1)] + x3
2 + 0.5 (gray surface

in Figure 11). The target function f is evaluated on a Latin-hypercube design at 1000 locations
using lhsDesign function implemented in the R package DiceDesign [14]. The training data y are
generated from (1) using the target function f and a noise standard deviation σ = 0.1. A tensor
product of 1D Matérn covariance function (2) has been used with a smoothness parameter ν = 2.5.
We set the number of knots to N1 = 7 for the first dimension and N2 = 5 for the second dimension,
resulting in 35 knots and basis functions. This is because the function f exhibits more variation
along the first dimension compared to the second dimension.

In Figure 11, Model (37) is employed, where we display side by side the proposed MAP and
mAP estimates along with the target function. The mAP estimate is obtained through 6,000 McMC
iterations of the algorithm developed in Section 4, with 1,000 iterations discarded as burn-in. While
the MAP estimate is computed through the posterior mode (17). With only 35 basis functions,
the proposed approach (37) effectively captures the monotonicity dynamics of the target function
across the entire domain while also adhering to boundedness constraints. Once again, the MAP
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Figure 11: Prediction accuracy of model (37) under both monotonicity and boundedness constraints.
From left to right: mAP estimate based on 6,000 McMC iterations, MAP estimate based on the
mode (17), and the target function.

estimate outperforms the mAP estimate in terms of prediction accuracy, with an RMSE equal to
1.52× 10−2 compared to 1.57× 10−2.

6 Real-world data application

In this section, we evaluate the performance of the approach developed in this paper through real-
world data applications.

6.1 Age and income data

The dataset used comprises age (in years) and the logarithm of income (log.income) for 205 Canadian
workers, sourced from a 1971 Canadian Census Public Use Tape. The objective is to estimate the
logarithm of income as a function of age. The real-life data serves to highlight the superior prediction
accuracy of the proposed LS-ESS approach developed in the present paper.
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Figure 12: Estimation accuracy of the two competing methods applied on the age-income data.
The black stars represent the training data. The blue dashed-dotted curve represents the mAP
estimate, while the gray shaded area represents the 95% confidence interval. The red dashed curve
represents the MAP estimate. The WAIC values corresponding to the two competing methods are
displayed in the main of each panel based on 6,000 McMC posterior sample paths.

Figure 12 presents a computational comparison between the proposed large-scale approach (LS-
ESS) and the HMC approach for age-income real-world data application. The black stars represent
the n = 205 training samples. The GP approximation defined in (5) is employed, where N is fixed
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at 40 to avoids overfitting [33]. The Matérn covariance function (2) is employed with a smoothness
parameter ν fixed at 2.5. The length-scale parameter ` is estimated using an adaptive cross-
validation technique based on the MAP as a predictive estimate. The noise variance parameter σ2

and the signal variance parameter τ 2 are updated at each McMC iteration. In the left panel, the
proposed LS-ESS approach is employed to generate 6,000 McMC sample paths from the constrained
posterior distribution. In the right panel, the HMC sampler developed in [34] and implemented
in the R package tmg is used. The blue dashed-dotted curve represents the mean of the posterior
sample paths (mAP) estimate, while the red dashed curve represents the MAP estimate. The gray
shaded area represent the 95% credible interval based on 6,000 McMC sample paths, where the
first 1,000 iterations are discarded as burn-in. The two approaches fit the data well in general.
However, unlike the HMC sampler, the proposed LS-ESS approach captures the flat region for age
≥ 26. For age ≤ 26, the HMC sampler fails to capture the trend, in contrast to the proposed
LS-ESS approach. The Watanabe-Akaike information criterion (WAIC) value corresponding to
the two methods is displayed in the main of each panel, and it is much smaller for the proposed
approach. This indicates that the proposed LS-ESS approach fits the data better than the HMC
sampler and it is more appropriate for fitting the age and income data. Furthermore, this confirms
the results obtain in [49], where the authors demonstrated that the tMVN approach (i.e., sampling
from the full conditional distribution (15)) is biased with a mass-shifting phenomenon appears in
the marginal distribution. The WAIC value obtained using the proposed LS-ESS approach is close
to that obtained using the efficient dependent global local prior DGL shrinkage approach developed
in [49]. It is worth mentioning that the mAP estimate, when using the proposed LS-ESS approach,
aligns with the MAP estimate, and the credible interval covers the MAP estimate. This means that
the through the proposed LS-ESS approach, the behavior of the constrained posterior distribution
is rectified.

6.2 Light Detection and Ranging Data

The Light Detection and Ranging (LiDAR) data consist of 221 observations from a LiDAR exper-
iment, containing information on range and logratio. The predictor range represents the distance
traveled before the light is reflected back to its source, while the response variable logratio is the
logarithm of the ratio of received light from two laser sources. The data suggests that the true
underlying function exhibits a monotone (nonincreasing) constraints with a flat region.
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Figure 13: Same as Figure 12 for Light Detection and Ranging Data (LiDAR).

Figure 13 shows the estimation accuracy of the two competing methods applied on the LiDAR
data. The GP approximation defined in (5) is employed, where N is fixed at 45 to avoids overfitting
[33]. The Matérn covariance function (2) is employed with a smoothness parameter ν fixed at 2.5.
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The length-scale parameter ` is estimated using an adaptive cross-validation technique. The noise
variance parameter σ2 and the signal variance parameter τ 2 are updated at each McMC iteration.
The proposed LS-ESS approach is employed in the left panel, while the HMC sampler is applied
in the right panel. The LS-ESS approach seems to fit the data better, especially over the region
where the value of logratio starts to decrease. To confirm this result, we compute the overall WAIC
value for the two competing approaches. The proposed LS-ESS approach obtains a smaller WAIC
value of −489.17 again the value of −471.11 for the model with HMC sampler. This indicates that
the proposed LS-ESS approach is more appropriate for fitting the LiDAR data. The WAIC value
obtained using the proposed LS-ESS approach is approximately equal to the one obtained with the
efficient shrinkage DGL approach developed in [49]. As for age and income data, the mAP estimate,
when using the proposed LS-ESS approach, aligns with the MAP estimate, and the credible interval
covers the MAP estimate.

7 Conclusion

In this paper, we revisit Bayesian shape-restricted function estimation. We consider the finite-
dimensional Gaussian process approximation originally proposed in [26]. This method provides an
equivalent formulation of shape constraints in terms of basis coefficients. Our contribution draws
inspiration from the efficient approach developed in [37] for generating samples from the posterior
distribution restricted to the positive orthant. First, we extend their method to manage sets of linear
inequalities, enabling it to address more complex convex and non-convex constraints. Additionally,
this adaptation simplifies its application to other models and basis functions. Second, we compare
different highly efficient samplers for approximating both the posterior and prior distributions,
including the Hamiltonian Monte Carlo and the Fast Fourier Transform methods. Third, we explore
the extension of this approach to higher-dimensional input spaces. The effectiveness and accuracy
of our proposed approach are demonstrated through studies using both synthetic and real data.
The relaxation of the set of constraints allows the proposed approach to be flexible and capable of
handling large datasets.
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