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We give a description of operator algebras of free wreath 
products in terms of fundamental algebras of graphs of 
operator algebras as well as an explicit formula for the 
Haar state. This allows us to deduce stability properties 
for certain approximation properties such as exactness, 
Haagerup property, hyperlinearity and K-amenability. We 
study qualitative properties of the associated von Neumann 
algebra: factoriality, fullness, primeness and absence of Cartan 
subalgebra and we give a formula for Connes’ T -invariant and 
τ -invariant. We also study maximal amenable von Neumann 
subalgebras. Finally, we give some explicit computations of K-
theory groups for C*-algebras of free wreath products. As an 
application we show that the reduced C*-algebras of quantum 
reflection groups are pairwise non-isomorphic.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

After Woronowicz developed the general theory of compact quantum groups [60–62]
which covers, in particular, the deeply investigated q-deformations of compact Lie groups 
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constructed by Drinfeld and Jimbo [20,21,33], new examples of compact quantum groups 
emerged from the works of Wang [57,58]. A particularly relevant quantum group for the 
present work is the quantum permutation group S+

N (see Section 2.6) for which the repre-
sentation theory has been completely understood by Banica [1] and its operator algebras 
(as well as approximation properties) have been extensively studied by Brannan and 
Voigt [9,54]. In order to find natural quantum subgroups of S+

N , quantum automorphism 
groups of finite graphs were introduced in [7]. Since the classical automorphism group 
of the graph obtained as the N -times disjoint union of a finite connected graph G is 
given by the wreath product of the classical automorphism group of G by SN , it became 
important to introduce a free version of the wreath product.

The free wreath product construction was achieved by Bichon in [8]: given a compact 
quantum group G, Bichon constructed and studied the free wreath product G �∗ S+

N of 
G by S+

N (see Section 2.7). Some generalizations of free wreath products by S+
N were 

considered in [39,27,46,29,28]. Concerning the representation theory of G �∗ S+
N , it has 

been studied in many specific cases before achieving the general result [10,36,37,39,27,
46,29]. While some approximation properties are known to be preserved by the free 
wreath product construction, very little is known about the operator algebras associated 
to G �∗ S+

N . It seems that the main reason why these operator algebras are not already 
completely understood is that there is no explicit computation of the Haar state. The 
first result of the present paper is an explicit formula for the Haar state of G �∗ S+

N

(Theorem 3.2). While studying free wreath products, we realized that the full C*-algebra 
C(G �∗ S+

N ) of the free wreath product can actually be written as the full fundamental 
C*-algebra of a graph of C*-algebras [22]. However, in contrast with [22], G �∗ S+

N is 
not the fundamental quantum group of a graph of quantum groups. Nevertheless, our 
description in terms of graph of C*-algebras allows us to produce a specific state, called 
the fundamental state in [22], which is shown to be the Haar state of C(G �∗ S+

N ). This 
allows a complete description of the reduced C*-algebra Cr(G �∗ S+

N ) as the reduced 
fundamental C*-algebra of a graph of C*-algebras as well as a description of the von 
Neumann algebra L∞(G �∗ S+

N ) as the fundamental von Neumann algebra of a graph of 
von Neumann algebras.

Concerning approximation properties, our description in terms of graph of operator 
algebras of the free wreath product allows us to deduce the following. To state our 
result, we will the following terminology: we will always denote by Ĝ the discrete dual 
of a compact quantum group G, and we say that Ĝ has the Haagerup property if L∞(G)
has the Haagerup property (with respect to the Haar state see [15]) and that Ĝ is exact
when the reduced C*-algebra Cr(G) is an exact C*-algebra. When G is Kac, we say 
that its dual Ĝ is hyperlinear if the finite von Neumann algebra L∞(G) embeds in an 
ultraproduct of the hyperfinite II1-factor. Finally, G is called co-amenable when the 
canonical surjection from its full C*-algebra C(G) to Cr(G) is an isomorphism, and we 
say that Ĝ is K-amenable when this canonical surjection is a KK-equivalence.

Theorem A. Given N ∈ N∗ and G a compact quantum group. The following holds.
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(1) Ĝ is exact if and only if Ĝ �∗ S+
N is exact.

(2) Ĝ has the Haagerup property if and only if Ĝ �∗ S+
N has the Haagerup property.

(3) If G is Kac then Ĝ is hyperlinear if and only if Ĝ �∗ S+
N is hyperlinear.

(4) • If N ≥ 5, G �∗ S+
N is not co-amenable for any G.

• If N ∈ {3, 4} then G �∗ S+
N is co-amenable if and only if G is trivial.

• G �∗ S+
2 is co-amenable if and only if G is trivial or if G � Z/2Z.

(5) Ĝ is K-amenable if and only if Ĝ �∗ S+
N is K-amenable.

Let us mention that some of the statements in Theorem A are already known in specific 
cases but our proofs, based on our description in terms of graphs of operator algebras, 
are completely different. The stability of exactness under the free wreath product with 
S+
N is known [37,27] for N ≥ 4 while the stability of the Haagerup property is not known 

in the form above. Actually, most of the previous proofs of approximation properties 
were based on a monoidal equivalence argument so that it was not possible to deduce 
properties which are not stable under monoidal equivalence. To deduce approximation 
properties, the common trick was to strengthen the definition of these properties so that 
they become invariant under monoidal equivalence. Hence, what is known in relation 
with the Haagerup property is actually the stability of the central ACPAP [36,37,27,46]. 
One exception is the case N = 2 which has been completely described by Bichon [7]. 
From Bichon’s description, it has been possible to deduce in [19, Corollary 7.11] that, 
when G is Kac, Ĝ �∗ S+

2 has the Haagerup property if and only if Ĝ has the Haagerup 

property. Concerning hyperlinearity, it is already known that Ŝ+
N (for all N) and the 

discrete duals of the quantum reflection groups Ẑs �∗ S+
N (for 1 ≤ s ≤ +∞ and N ≥ 4) 

are residually finite hence hyperlinear [2]. The now classical argument is based on the 
topological generation method developed by Brannan-Collins-Vergnioux [3]. The stability 
of hyperlinearity of Theorem A is completely new and our argument is not based on the 
topological generation method. The stability of K-amenability is also new. It was known 

that Ŝ+
N is K-amenable [54] and, again by using a monoidal equivalence argument, it 

was known [26] that if G is torsion-free and satisfies the strong Baum-Connes conjecture 

then Ĝ �∗ S+
N is K-amenable. One of the consequences of our result on K-amenability 

which seems to have been unknown is that duals of quantum reflection groups are K-
amenable. A more interesting application of our description in terms of graph of operator 
algebras is about the qualitative properties of the von Neumann algebra L∞(G �∗S+

N ) for 
which nothing is known, outside of the factoriality in some specific cases. It is known that 
L∞(G �∗S+

N ) is a full II1-factor whenever G = Γ̂ is the dual of a discrete group and N ≥ 8
[36] and it is also a non-Gamma II1-factor whenever G is a compact matrix quantum 
group of Kac type and N ≥ 8 [56]. Using results about the structure of amalgamated 
free products von Neumann algebra [49,50,32,31] we are able to deduce the following. 
Let (σG

t )t be the modular group of the Haar state on L∞(G) and T (M) the Connes’ T
invariant of the von Neumann algebra M .
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Theorem B. Suppose that Irr(G) is infinite and N ≥ 4. Then L∞(G �∗ S+
N ) is a non-

amenable full and prime factor without any Cartan subalgebra. Moreover:

• If G is Kac then L∞(G �∗ S+
N ) is a type II1 factor.

• If G is not Kac then L∞(G �∗ S+
N ) is a type IIIλ factor for some λ �= 0 and:

T (L∞(G �∗ S+
N )) = {t ∈ R : σG

t = id}.

Moreover, the Connes’ τ -invariant of the full factor L∞(G �∗ S+
N ) is the smallest 

topology on R for which the map (t 	→ σG
t ) is continuous.

To our knowledge, there was no result about the maximal amenable von Neumann 
subalgebras of L∞(G �∗ S+

N ) in the literature. A von Neumann subalgebra A ⊂ M is 
called with expectation if there a normal faithful conditional expectation P → A. A ⊂ P

is called maximal amenable if A is amenable and, for any intermediate von Neumann 
algebra A ⊂ P ⊂ M if P is amenable then A = P . A ⊂ P is called maximal amenable 
with expectation if A is amenable with expectation and, for any A ⊂ P ⊂ M , if P is 
amenable with expectation then A = P .

Recall that L∞(G �∗ S+
N ) is generated by N free copies of L∞(G) given by νi :

L∞(G) → L∞(G �∗ S+
N ), 1 ≤ i ≤ N , and by L∞(S+

N ) ⊂ L∞(G �∗ S+
N ) plus some relations 

(see Section 2.7). Let u = (uij)ij ∈MN (C) ⊗L∞(S+
N ) be the fundamental representation 

of S+
N so that L∞(S+

N ) is generated by the coefficients uij of u. We use [5] to deduce the 
following.

Theorem C. Let G be a compact quantum group and N ≥ 2. The following holds.

(1) If L∞(G) is amenable and Irr(G) is infinite then, for all 1 ≤ i ≤ N , the von 
Neumann subalgebra of L∞(G �∗ S+

N ) generated by {νi(a)uij : a ∈ L∞(G), 1 ≤
j ≤ N} is maximal amenable with expectation in L∞(G �∗ S+

N ).
(2) If G is Kac then L∞(S+

4 ) ⊂ L∞(G �∗ S+
4 ) is maximal amenable.

Finally, we compute K-theory groups of the C*-algebras C(G �∗ S+
N ) and Cr(G �∗ S+

N )
(recall that they are KK-equivalent whenever Ĝ is K-amenable). In the next Theorem, 
we denote by C•(G) either the full C∗-algebra or the reduced C∗-algebra of G.

Theorem D. For any compact quantum group G and integer N ∈ N∗ we have,

K0(C•(G �∗ S+
N )) � K0(C•(G))⊗ (ZN2

)⊕K0(C(S+
N ))/(ZN2

)

�
{

K0(C•(G))⊕N2
/Z2N−2 if N �= 3,

K0(C•(G))⊕N2
/Z3 if N = 3.

and,

K1(C•(G �∗ S+
N )) � K1(C•(G))⊕N2 ⊕K1(C(S+

N ))
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�
{

K1(C•(G))⊕N2 ⊕ Z if N ≥ 4,
K1(C•(G))⊕N2 if 1 ≤ N ≤ 3.

In particular, for the quantum reflection groups Hs+
N = Ẑs �∗S+

N , which have K-amenable 
duals, if N ≥ 4,

K0(C•(Hs+
N )) �

{
ZN2−2N+2 if s = +∞,

ZsN2−2N+2 if s < +∞,
K1(C•(Hs+

N )) �
{

ZN2+1 if s = +∞,

Z if s < +∞,

and if N ∈ {1, 2, 3},

K0(C•(Hs+
N )) �

{
ZN ! if s = +∞,

Z(s−1)N2+N ! if s < +∞,
K1(C•(Hs+

N )) �
{

ZN2 if s = +∞,

0 if s < +∞,

It seems that the only attempt to compute the K-theory of free wreath products was 
done in [26] in which they compute K-theory groups of some quantum groups which 
are not free wreath product with S+

N but only monoidally equivalent to a free wreath 
products with S+

N . Actually the K-theory is computed for some quantum groups of the 
form G �∗ SOq(3), where the free wreath product is in the sense of [27]. The method 
of computation in [26], which is based on the ideas of the works of Voigt [53,54] and 
Voigt-Vergnioux [55] is to prove the strong Baum-Connes property and then find an 
explicit projective resolution of the trivial action. However, they could not do it for free 
wreath products by S+

N but they showed that this can be done for G �∗SOq(3) with some 
specific G such as free products of free orthogonal and free unitary quantum groups as 
well as duals of free groups. While our method cannot provide results on the stability of 
the strong Baum-Connes conjecture for free wreath products, it has the advantage to be 
extremely simple and also applicable to any free wreath product with S+

N . Our K-theory 
computations are based on our decomposition as fundamental algebras and the results 
of [23]. We also use the result of [54] on the computation of the K-theory of C•(S+

N ). 
As mentioned to us by Adam Skalski, it seems unknown whether or not the reduced 
C*-algebras of quantum reflection groups Hs+

N are isomorphic or not for different values 
of the parameters N, s. Our K-theory computation in Theorem D solves this question: 
we show in Corollary 7.1 that for all N, M ≥ 8 one has Cr(Hs+

N ) � Cr(Ht+
M ) ⇔ (N, s) =

(M, t). We do have to restrict the parameters to N, M ≥ 8 since our proof uses the 
unique trace result of Lemeux [36], which is valid only for N ≥ 8. We also compute 
some other K-theory groups of free wreath products, such as F̂m �∗ S+

N and deduce that 
reduced (as well as full) C*-algebras C•(F̂m �∗ S+

N ) are pairwise non-isomorphic.
The paper is organized as follows. After the introduction in Section 1, we have in-

cluded preliminaries in Section 2 in which we detail all our notations concerning operator 
algebras and quantum groups. We also prove in this preliminary Section that the von 
Neumann algebra L∞(G) of a compact quantum group G is diffuse if and only if it is 
infinite-dimensional. This result, which will be useful in the study of von Neumann alge-
bras of free wreath product, also solves a question left open in [2] in which it is mentioned 
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that it is unknown if the von Neumann algebra of a quantum reflection group Zs �∗ S+
N

is diffuse when N ≤ 7. Section 2 also contains important remarks on free product quan-
tum groups, semi-direct product quantum groups, quantum permutation groups and free 
wreath product quantum groups, as well as amalgamated free wreath products (in the 
sense of Freslon [28]). In particular, we identify the amalgamated free wreath product 
G �∗,H S+

N at N = 2 with a semi-direct product. In Section 3 we explain how operator 
algebras of amalgamated free wreath products can be described as fundamental algebras 
of graphs of operator algebras. Section 4 contains the proof of the amalgamated version 
of Theorem A, Section 5 contains the proof of the amalgamated versions of Theorem B
and C. In Section 6, we give a formula describing an amalgamated free wreath product of 
a fundamental quantum group of a graph of quantum groups by S+

N as the fundamental 
quantum group of a graph of quantum groups given by free wreath products. Finally, 
section 7 contains the proof of Theorem D and some other K-theory computations.

2. Preliminaries

2.1. Notations

All Hilbert spaces, C*-algebras and preduals of von Neumann algebras considered 
in this paper are assumed to be separable. The inner product on an Hilbert space H
is always linear on the right. The C*-algebra of bounded linear maps from H to H is 
denoted by B(H) and, given vectors ξ, η ∈ H we denote by ωη,ξ ∈ B(H)∗ the bounded 
linear form on B(H) defined by (x 	→ 〈η, xξ〉). For T ∈ B(H), we denote by Sp(T ) the 
spectrum of T and by Spp(T ) the point spectrum of T . The symbol ⊗ will denote the 
tensor product of Hilbert spaces, von Neumann algebras as well as the minimal tensor 
product of C*-algebras.

2.2. Full von Neumann algebras

Let M be a von Neumann algebra with predual M∗. We consider on Aut(M) the 
topology of pointwise convergence in M∗ i.e. the smallest topology for which the maps 
Aut(M) → M∗, α 	→ ω ◦ α are continuous, for all ω ∈ M∗, where M∗ is equipped 
with the norm topology. It is well known that Aut(M) is a Polish group (since M∗ is 
separable). When ω ∈M∗ is a faithful normal state, we may consider the closed subgroup 
Aut(M, ω) < Aut(M) of automorphisms preserving ω. Note that the induced topology 
from Aut(M) to Aut(M, ω) is the smallest topology making the maps Aut(M, ω) →
L2(M, ω), α 	→ α(a)ξω continuous, for the norm on L2(M, ω), where ξω is the cyclic 
vector in the GNS construction L2(M, ω) of ω. We record the following Remark for later 
use.

Remark 2.1. Note that if (M, ω) is a von Neumann algebra with a faithful normal state 
ω and A ⊂ M is a von Neumann subalgebra with a ω-preserving normal conditional 
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expectation M → A then, the subgroup AutA(M, ω) = {α ∈ Aut(M, ω) : α(A) =
A} < Aut(M, ω) is closed and the restriction map AutA(M, ω) → Aut(A, ω), α 	→ α|A
is continuous.

Let Inn(M) ⊂ Aut(M) be the normal subgroup of inner automorphisms and 
Out(M) := Aut(M)/Inn(M) be the quotient group. Equipped with the quotient topol-
ogy, Out(M) is a topological group and it is Hausdorff if and only if Inn(M) ⊂ Aut(M) is 
closed. In that case (since M∗ is assumed to be separable) Out(M) := Aut(M)/Inn(M)
is actually a metrizable topological group so the convergence of sequences in Out(M)
completely characterizes the topology. Following Connes [14], a von Neumann algebra is 
called full if Inn(M) ⊂ Aut(M) is closed. A normal faithful semi-finite weight ϕ on M
is called almost-periodic if its modular operator ∇ϕ has pure point spectrum. Connes 
defines [14] the invariant Sd(M) of a full von Neumann algebra as the intersection of 
point spectrum of ∇ϕ for ϕ a normal faithful semi-finite almost-periodic weight and 
shows that the closure of Sd(M) is the S-invariant S(M).

The famous noncommutative Radon-Nykodym Theorem of Connes [13] shows that, 
for any pair of normal faithful states (actually semi-finite weights) ω1 and ω2 on M , their 
modular groups σω1

t and σω2
t have the same image in Out(M), for all t ∈ R. Hence, there 

is a well defined homomorphism δ : R → Out(M), called the modular homomorphism, 
defined by δ(t) = [σω

t ], where ω is any normal faithful state on M and [·] denotes the 
class in Out(M).

Connes defines in [14], the invariant τ(M) of a full von Neumann algebra M as the 
smallest topology on R for which the modular homomorphism δ is continuous. When M
is full (and M∗ is separable), Out(M) is clearly a metrizable topological group hence, 
(R, τ(M)) is also a metrizable topological group. In particular, the topology τ(M) is 
completely characterized by the knowledge of which sequences are converging to zero.

2.3. Compact quantum groups

For a discrete group Γ we denote by C∗(Γ) its full C*-algebra, C∗
r (Γ) its reduced 

C*-algebra and L(Γ) its von Neumann algebra. We briefly recall below some elements of 
the compact quantum group (CQG) theory developed by Woronowicz [60–62].

For a CQG G, we denote by C(G) its maximal C*-algebra, which is the enveloping 
C*-algebra of the unital ∗-algebra Pol(G) given by the linear span of coefficients of 
irreducible unitary representations of G. The set of equivalence classes of irreducible 
unitary representations will be denoted by Irr(G). We will denote by εG : C(G) → C

the counit of G which satisfies (id ⊗ εG)(u) = idH for all finite dimensional unitary 
representations u ∈ B(H) ⊗ C(G).

Let us recall below the modular ingredients of a CQG. Let us fix a complete set of 
representatives ux ∈ B(Hx) ⊗ C(G) for x ∈ Irr(G). It is known that for any x ∈ Irr(G)
there exists a unique x ∈ Irr(G), called the contragredient of x, such that Mor(1, x ⊗
x) �= {0} and Mor(1, x ⊗ x) �= {0}, where 1 denotes the trivial representation of G. 
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Both the spaces Mor(1, x⊗ x) and Mor(1, x ⊗ x) are actually one-dimensional. Fix non-
zero vectors sx ∈ Hx ⊗ Hx and sx ∈ Hx ⊗ Hx such that sx ∈ Mor(1, x ⊗ x) and 
sx ∈ Mor(1, x⊗x). Let Jx : Hx → Hx be the unique invertible antilinear map satisfying 
〈Jxξ, η〉 = 〈sx, ξ ⊗ η〉 for all ξ ∈ Hx, η ∈ Hx and define the positive invertible operator 
Qx = J∗

xJx ∈ B(Hx). Then, there exists a unique normalization of sx and sx such that 
‖sx‖ = ‖sx‖ and Jx = J−1

x . With this normalization, Qx is uniquely determined, we do 
have Tr(Qx) = Tr(Q−1

x ) = ‖sx‖2, Qx = (JxJ∗
x)−1 and Sp(Qx) = Sp(Qx)−1 (Tr is the 

unique trace on B(Hx) such that Tr(1) = dim(Hx)). The number Tr(Qx) is called the 
quantum dimension of x and is denoted by dimq(x). From the orthogonality relations:

(id⊗ hG)((ux)∗(ξη∗ ⊗ 1)uy) = δx,y1
dimq(x) 〈η,Q

−1
x ξ〉

it is not difficult to check that, with L2(G) =
⊕

x∈Irr(G) Hx⊗Hx, ξG := 1 ∈ H1⊗H1 = C

and λG : C(G) → B(L2(G)) the unique unital ∗-homomorphism such that

λG((ωη,ξ ⊗ id)(ux))ξG = dimq(x)− 1
2 ξ ⊗ J∗

xη,

ξG is λG-cyclic and hG(x) = 〈ξG, λG(a)ξG〉 ∀a ∈ C(G). Hence, the triple (L2(G), λG, ξG)
is an explicit GNS construction for the Haar state hG on C(G).

Let Cr(G) = λG(C(G)) ⊂ B(L2(G)) be the reduced C*-algebra of G. The surjective 
unital ∗-homomorphism λG : C(G) → Cr(G) is called the canonical surjection. Recall 
that G is called co-amenable whenever λG is injective. The von Neumann algebra of 
G is denoted by L∞(G) := Cr(G)′′ ⊂ B(L2(G)). We will still denote by hG the Haar 
state of G on the C*-algebra Cr(G) as well as on the von Neumann algebra L∞(G) i.e. 
hG = 〈ξG, ·ξG〉 when viewed as a state on Cr(G) or a normal state on L∞(G). We recall 
that hG is faithful on both Cr(G) and L∞(G). With the explicit GNS construction of 
hG given above, it is not difficult to compute the modular ingredients of the normal 
faithful state hG on L∞(G) and we find that the closure SG of the antilinear operator 
xξG 	→ x∗ξG has a polar decomposition SG = JG∇

1
2
G, where ∇G is the positive operator 

on L2(G) given by ∇G :=
⊕

x∈Irr(G) Qx ⊗ Q−1
x . Hence, the Haar state of a CQG is 

always almost-periodic and its modular group (σG
t )t is the unique one-parameter group 

of L∞(G) such that (id ⊗ σG
t )(ux) = (Qit

x ⊗ 1)ux(Qit
x ⊗ 1). Let us recall that G is said 

to be of Kac type whenever hG is a trace and it happens if and only if Qx = 1 for all 
x ∈ Irr(G). Let us also recall that the scaling group (τGt )t is the one-parameter group 
of L∞(G) given by the formula (id⊗ τGt )(ux) = (Qit

x ⊗ 1)ux(Q−it
x ⊗ 1). It is well known 

that the scaling group of G is the unique one parameter group (τGt )t of L∞(G) such that 
Δ ◦ σG

t = (τGt ⊗ σG
t ) ◦Δ ∀t ∈ R. Moreover, the scaling group preserves that Haar state: 

hG ◦ τGt = hG (this means that the scaling constant of a compact quantum group is 1).
Let us also recall the definition of the T -invariant of a CQG G, introduced by S. Vaes 

in [51]:

T (G) := {t ∈ R : ∃u ∈ U(L∞(G)) : Δ(u) = u⊗ u and τGt = Ad(u)},
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where Ad(u) is the automorphism of L∞(G) given by a 	→ uau∗.
The following result is well known [25, Proposition 2.2].

Proposition 2.2. The set Mod(G) :=
⋃

x∈Irr(G) Sp(Qx) is a subgroup of R∗
+.

Proof. We already remarked in Section 2.3 that Sp(Qx) = (Sp(Qx))−1. Hence Mod(G)
is stable by inverse. The fact that Mod(G) is stable by product follows from the relation

SQz = (Qx ⊗Qy)S,

for any x, y, z ∈ Irr(G), and isometry S ∈ Mor(z, x ⊗ y). �
Remark 2.3. For convenience, we will use the following non-standard notations.

(1) Let Sd(G) := Spp(∇G). From the explicit computation of ∇G and since Sp(Qx) =
Sp(Qx)−1 one has Sd(G) = ∪x∈Irr(G)Sp(Qx)2 ⊂ Mod(G) and Sd(G)−1 = Sd(G).

(2) We denote by τ(G) the smallest topology on R such that the map (t 	→ σG
t ) is 

continuous. Hence τ(G) is smaller than the usual topology on R. It is not difficult to 
check that it is the smallest topology on R for which the maps fλ : R → S1 : (t 	→
λit) are continuous, for all λ ∈ Sd(G), where S1 has the usual topology. Note also 
that, for any topology τ on R, the set of λ > 0 for which fλ is τ -continuous is a closed 
subgroup of R∗

+ (for the usual topology on R∗
+). Hence, τ(G) is also the smallest 

topology on R for which the maps fλ are continuous, for all λ ∈ 〈Sd(G)〉, the closed 
subgroup of R∗

+ generated by Sd(G) (for the usual topology on R∗
+). Moreover, the 

following is easy to check:
• G is Kac ⇔ Sd(G) = {1} ⇔ τ(G) is the trivial topology. If Sd(G) �= {1} then 

(R, τ(G)) is a metrizable topological group so the topology τ(G) is completely 
characterized by the knowledge of which sequences are converging to zero.

• 〈Sd(G)〉 = R∗
+ if and only if τ(G) is the usual topology on R.

Recall that a von Neumann algebra is diffuse when it has no non-zero minimal pro-
jection. We will use the following simple Lemma. While the arguments for its proof are 
already present in the literature, the precise statement seems to be unknown.

Lemma 2.4. Let G be a compact quantum group. The following are equivalent.

(1) Irr(G) is infinite.
(2) L∞(G) is diffuse.
(3) C(G) is infinite-dimensional.

Proof. The implication (2) ⇒ (1) is obvious. Let us show (1) ⇒ (2). By the general 
theory, a von Neumann algebra is diffuse if and only if it has no direct summand of the 
form B(H). When H is finite dimensional, we may apply [18, Theorem 3.4] (since the 
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action of G on L∞(G) given by the comultiplication is ergodic) to deduce that B(H) is not 
a direct summand of L∞(G) whenever Irr(G) is infinite. When H is infinite-dimensional, 
we may apply [35, Theorem 6.1] to deduce that B(H) is not a direct summand of L∞(G)
whenever Irr(G) is infinite. The equivalence between (1) and (3) is clear. �

Let us now recall the notion of a dual quantum subgroup. We are grateful to Kenny 
De Commer for explaining to us the main argument of the proof of the next Proposition 
and to Makoto Yamashita for showing to us the reference [11]. Recall that C•(G) denotes 
either the reduced or the maximal C*-algebra of G.

Proposition 2.5. Let G and H be CQG. The following data are equivalent.

• ι : C(H) → C(G) is a faithful unital ∗-homomorphism intertwining the comultipli-
cations.

• ι : Pol(H) → Pol(G) is a faithful unital ∗-homomorphism intertwining the comulti-
plications.

• ι : Cr(H) → Cr(G) is a faithful unital ∗-homomorphism intertwining the comulti-
plications.

If one of the following equivalent conditions is satisfied, we view Pol(H) ⊂ Pol(G), 
C(H) ⊂ C(G) and Cr(H) ⊂ Cr(G). Then, the unique linear map E : Pol(G) → Pol(H)
such that

(id⊗ E)(ux) =
{

ux if x ∈ Irr(H),
0 if x ∈ Irr(G) \ Irr(H).

has a unique ucp extension to a map E• : C•(G) → C•(H) which is a Haar-state-
preserving conditional expectation onto the subalgebra C•(H) ⊂ C•(G). At the reduced 
level, Er is faithful and extends to a Haar-state preserving normal faithful conditional 
expectation L∞(G) → L∞(H).

Proof. If ι : C(H) → C(G) is a faithful unital ∗-homomorphism intertwining the co-
multiplications then it is clear that its restriction to Pol(H) has image in Pol(G) and 
is still faithful. If now ι : Pol(H) → Pol(G) is defined at the algebraic level then, since 
it is faithful and intertwines the comultiplications, it also intertwines the Haar states 
and so extends to a faithful unital ∗-homomorphism ι : Cr(H) → Cr(G) which is easily 
seen to intertwine the comultiplications. It is proved in [52] that E extends to a faithful 
and Haar state preserving conditional expectation at the reduced level as well as at the 
von Neumann level (which is moreover normal). Also, if ι : Cr(H) → Cr(G) is defined 
at the reduced level, its restriction to Pol(H) satisfies the second condition. Hence, it 
suffices to check that if Pol(H) ⊂ Pol(G) is a unital ∗-subalgebra with the inclusion in-
tertwining the comultiplications then, the canonical extension ι : C(H) → C(G) of the 
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inclusion, which obviously also intertwines the comultiplications, is still faithful. Note 
that it suffices to show that E extends to a ucp map E : C(G) → C(H). Indeed, if we 
have such an extension then E has norm 1 and E ◦ ι = idC(H), so for all a ∈ Pol(H)
one has ‖a‖C(H) = ‖E(ι(a))‖C(H) ≤ ‖ι(a)‖C(G) ≤ ‖a‖C(H). Then, ι is an isometry hence 
faithful. The fact that E extends to a ucp map is proved in [11, Theorem 3.1]. It is clear 
that the ucp extension preserves the Haar states since it already does at the algebraic 
level (by definition of E). Now, viewing C(H) ⊂ C(G), E is ucp and is the identity on 
C(H) hence, it is a conditional expectation onto C(H). �

If one of the above equivalent condition is satisfied, we say that H is a dual quantum 
subgroup of G and we will view Pol(H) ⊂ Pol(G), C(H) ⊂ C(G), Cr(H) ⊂ Cr(G) as 
well as L∞(H) ⊂ L∞(G). Let us note that, the ucp extension of E at the maximal level is 
not, in general, faithful and not even GNS-faithful (meaning that the GNS representation 
morphism may be non injective). We will usually denote E at the algebraic, full, reduced 
and von Neumann algebraic level by the same symbol EH .

Remark 2.6. Let C(H) ⊂ C(G) be a dual quantum subgroup and define Pol(G)◦ := {a ∈
Pol(G) : EH(a) = 0} and C•(G)◦ := {a ∈ C•(G)◦ : E•(a) = 0}. Then Pol(G)◦ is the 
linear span of coefficient of irreducible representations x ∈ Irr(G) \ Irr(H), C•(G)◦ is the 
closure in C•(G) of Pol(G)◦ and Δ(Pol(G)◦) ⊂ Pol(G)◦⊗Pol(G)◦. All these statements
easily follow from the property of EH stated in the previous proposition.

Let us recall that if L∞(H) ⊂ L∞(G) is a dual compact quantum subgroup then 
σG
t |L∞(H) = σH

t and τGt |L∞(H) = τHt for all t ∈ R.

Definition 2.7. Following Vergnioux [52], given a dual quantum subgroup C(H) ⊂ C(G), 
we introduce an equivalence relation ∼H on Irr(G) by defining x ∼H y ⇔ ∃s ∈
Irr(H), Mor(s, x⊗y) �= {0}. Note in particular that x �H y ⇔ (id⊗EH)(ux⊗uy) = 0. We 
define the index of H in G by the number of equivalence classes [G : H] := |Irr(G)/ ∼H |.

2.4. Free product quantum group

We now recall some well known results about free product quantum groups. Given 
two compact quantum groups G1 and G2 the universal property of the C*-algebra given 
by the full free product C(G) := C(G1) ∗ C(G2) allows to define the unique unital ∗-
homomorphism Δ : C(G) → C(G) ⊗ C(G) such that Δ|C(Gk) = ΔGk

for k = 1, 2. It is 
easy to check that G := (C(G), Δ) is a CQG with maximal C*-algebra C(G), reduced 
C*-algebra given by the reduced free product with respect to the Haar states Cr(G) =
(Cr(G1), h1) ∗ (Cr(G2), h2), and L∞(G) = (L∞(G1), h1) ∗ (L∞(G2), h2). Moreover the 
Haar state on Cr(G) is the free product state h = h1 ∗ h2.

We collect below some important remarks about free products. Most of them are well 
known to specialists. Since we could not find any explicit statements in the literature, 
we include a complete proof.
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Proposition 2.8. Let G1, G2 be non-trivial CQG. The scaling group of G := G1 ∗ G2 is 
the free product τGt = τG1

t ∗ τG2
t and the Vaes’ T -invariant of G1 ∗G2 is given by:

T (G1 ∗G2) = {t ∈ R : τG1
t = τG2

t = id}.

The following are equivalent.

(1) G1 ∗G2 is co-amenable.
(2) |Irr(G1)| = 2 = |Irr(G2)|.
(3) G1 � G2 � Z/2Z.
(4) L∞(G1 ∗G2) is an amenable von Neumann algebra.

Moreover, if one of the previous equivalent conditions does not hold then L∞(G1 ∗ G2)
is a full and prime factor without any Cartan subalgebras and:

• If G1 and G2 are Kac then L∞(G1 ∗G2) is a type II1 factor.
• If G1 or G2 is not Kac then L∞(G1 ∗ G2) is a type IIIλ factor with λ �= 0 and its 

Connes’ T -invariant is given by {t ∈ R : σh1
t = id = σh2

t }.
• Sd(L∞(G1 ∗G2)) = 〈Sd(G1), Sd(G2)〉 and τ(L∞(G1 ∗G2)) = 〈τ(G1), τ(G2)〉, where 
〈 · 〉 means either the group generated by or the topology generated by.

Proof. Since h = h1 ∗h2, we have σt = σG1
t ∗σG2

t , where σt denotes the modular group of 
h. Since τGk

t is hk-invariant, the free product τt := τG1
t ∗τG2

t makes sense and it defines a 
one parameter group of L∞(G1 ∗G2). To show that it is the scaling group, we only have 
to check that Δ ◦ σt = (τt⊗ σt) ◦Δ, which is clear. Let T ′ := {t ∈ R : τG1

t = τG2
t = id}. 

It is clear that T ′ ⊆ T (G1 ∗G2). Let t ∈ T (G1 ∗G2) so that there exists u ∈ L∞(G1 ∗G2)
a unitary such that Δ(u) = u ⊗ u and τt = Ad(u). It follows that u is a dimension 1
unitary representation of G1 ∗ G2, hence irreducible. If u is non-trivial, it follows from 
the classification of irreducible representations of G1 ∗ G2 [57] that u is a product of 
non-trivial dimension 1 unitary representations alternating from Irr(G1) and Irr(G2) i.e. 
u = u1u2 . . . un, where uk is a unitary in L∞(Gik) with ΔGik

(uk) = uk ⊗ uk, hk(uk) = 0
and ik �= ik+1 for all k. Let l ∈ {1, 2} \ {in} and note that, since Gl is non-trivial, there 
exists a non zero x ∈ L∞(Gl) such that hl(x) = 0. Then uxu∗ ∈ L∞(G1) ∗ L∞(G2) is a 
reduced operator so El(uxu∗) = 0, where El : L∞(G1) ∗L∞(G2) → L∞(Gl) denotes the 
canonical Haar-state-preserving normal and faithful conditional expectation. However, 
since τt(x) = τGl

t (x) ∈ L∞(Gl) one has τt(x) = El(τt(x)) = El(uxu∗) = 0 hence x = 0, 
leading to a contradiction. It follows that such a u is always trivial and T (G1 ∗G2) ⊆ T ′.

(3) ⇒ (2) ⇒ (1) ⇒ (4) are obvious. Also (2) ⇒ (3) is easy and well known. Let us repeat 
however the argument here for the convenience of the reader. Let G be a CQG satisfying 
|Irr(G)| = 2 and let u be the unique, up to unitary equivalence, non-trivial irreducible 
representation of G and write 1 for the trivial representation. Since u is non-trivial, u
also is hence u � u. It follows that dim(1, u ⊗ u) = 1. Hence, u ⊗ u = 1 ⊕ du, where 
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d = dim(u, u ⊗ u) ∈ N. Let us denote by N ∈ N∗ the dimension of u so that we have 
N2 = 1 + dN hence 1 ≡ 0 (mod N) which implies that N = 1 and then d = 0. Since u
is of dimension 1, u ∈ C(G) is a unitary such that Δ(u) = u ⊗ u, u = u∗ (hence u2 = 1) 
and C(G) is generated by u so G = Z/2Z.

Suppose that (2) does not hold so that dim(L∞(G1)) + dim(L∞(G2)) ≥ 5. It fol-
lows from [48, Theorem 4.1] that there exists a central projection z in L∞(G1 ∗ G2) =
(L∞(G1), h1) ∗ (L∞(G2), h2) such that zL∞(G1 ∗ G2) is either a full factor of type II1
or a full factor of type IIIλ, λ �= 0, with T -invariant given by {t ∈ R : σh1

t = σh2
t }

and (1 − z)L∞(G1 ∗ G2) is a direct sum of matrix algebras. Hence, zL∞(G1 ∗ G2) is 
non-amenable (since it is full and not of type I) so L∞(G1 ∗G2) is non-amenable either 
and it shows (4) ⇒ (2). Moreover, we know from [57] that the set Irr(G1 ∗ G2) is in-
finite hence, by Lemma 2.4, L∞(G1 ∗ G2) is diffuse so z = 1. Both the primeness and 
absence of Cartan follow now from [48, Corollary 4.3]. Finally, the Sd and τ invariants 
are computed in [49, Corollary 2.3] and [49, Theorem 3.2] respectively (recall that our 
von Neumann algebras are supposed to have separable preduals and that the Haar states 
on CQG are all almost periodic). �
Remark 2.9. It is known that, for G a CQG of Kac type, the co-amenability of G is 
equivalent to the injectivity of the von Neumann algebra L∞(G) (see Corollary 3.17 in 
[45] and the discussion after its proof). However, the equivalence for general CQG is 
open. Proposition 2.8 shows that in the class of CQG which are nontrivial free products 
the equivalence between co-amenability and injectivity of the von Neumann algebra is 
true.

Let us now recall the amalgamated free product construction [57,52]. Let G1, G2 be 
two CQG and C(H) ⊂ C(Gk) a dual quantum subgroup of both G1, G2. Let Ek :
Cr(Gk) → Cr(H) be the faithful CE. The amalgamated free product is introduced in 
[57] and its Haar state and reduced C*-algebra is understood in [52]. Following [57], let 
us define C(G) := C(G1) ∗

C(H)
C(G2) the full amalgamated free product. By universal 

property there exists a unique unital ∗-homomorphism Δ : C(G) → C(G) ⊗C(G) such 
that Δ|C(Gk) = ΔGk

for k = 1, 2 and it is easy to check [57] that the pair (C(G), Δ)
is a compact quantum group, denoted by G = G1 ∗

H
G2. It is shown in [52] that the 

reduced C*-algebra is the reduced amalgamated free product with respect to the CE Ek, 
Cr(G) = (Cr(G1), E1) ∗

Cr(H)
(Cr(G2), E2) and the Haar state of G is the free product 

state hG1 ∗hG2 . To study further amalgamated free products, we will need the following 
lemma. Let us introduce before some terminology. A unitary representation u of a CQG 
G is called a Haar representation if, for all k ∈ Z∗ one has Mor(1, u⊗k) = {0}, where 1
denotes the trivial representation and, for k ≥ 1, we define u⊗−k := u⊗k. Two unitary 
representation u1, u2 of G are called free if, for l ≥ 1, any (i1, . . . , il) ∈ {1, 2}l such that 
is �= is+1 for all s and any k1, . . . , kl ∈ Z∗, one has Mor(1, u⊗k1

i ⊗u⊗k2
i ⊗· · ·⊗u⊗kl

i ) = {0}.

1 2 l
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Lemma 2.10. Let G be a compact quantum group with two Haar representations which are 
free then there exists N ≥ 1 such that L(F2) ⊂MN (C) ⊗L∞(G) (with a state preserving 
inclusion). In particular, if G is Kac then L∞(G) is not amenable.

Proof. Recall that, for u ∈ B(H) ⊗ L∞(G) a finite dimensional unitary representation, 
its contragredient unitary representation u ∈ B(H) ⊗ L∞(G) satisfies the following: 
there exists an invertible operator Q ∈ B(H) and an orthonormal basis (ei)i of H
such that, writing u =

∑
ij eij ⊗ uij , where (eij)ij are the matrix units associated to 

(ei)i, then uc := (Q ⊗ 1)u(Q−1 ⊗ 1) =
∑

ij e
′
ij ⊗ u∗

ij , where e′ij are the matrix units 
associated to (ei)i. Note also that (uc)⊗k := (uc)1,k+1(uc)2,k+1 . . . (uc)k,k+1 = (Q⊗k ⊗
1)u⊗k((Q−1)⊗k ⊗ 1) ∈ B(H⊗k) ⊗ L∞(G) for all k ≥ 1. Hence, if Mor(1, u⊗k) = {0} one 

has (id ⊗ h)((uc)⊗k) = Q⊗k(id ⊗ h)(u⊗k)(Q−1)⊗k = 0, since (id ⊗ h)(u⊗k) ∈ B(H⊗k)
is the orthogonal projection onto Mor(1, u⊗k). It then follows that h(x) = 0 for any 
coefficient x of (uc)⊗k. Since the coefficients of (uc)⊗k are exactly the products of k
adjoints of coefficients of u, we deduce that h(x) = 0 for any product of k adjoints of 
coefficients of u whenever Mor(1, u⊗k) = {0}. We will use this remark in the rest of the 
proof.

Let uk ∈ B(Hk) ⊗ L∞(G), k = 1, 2, be two free Haar representations and define 
v1 := (u1)13 and v2 := (u2)23 which are both unitary in B(H1 ⊗ H2) ⊗ L∞(G) with 
respect to ω. Consider the faithful normal state ω = Tr⊗ h ∈ (B(H1 ⊗H2)⊗ L∞(G))∗. 
Let us show that v1 and v2 are two free Haar unitaries. Since (id⊗ h)(u⊗k

i ) (i = 1, 2) is 
the orthogonal projection onto Mor(1, u⊗k

i ) = {0}, for k ∈ Z∗, it follows that h(x) = 0
whenever x is a product of |k| coefficients of ui or a product of |k| adjoints of coefficients 
of ui, for all k ∈ Z∗. Let Ci be the linear span of products of coefficients of ui and of 
products of adjoints of coefficients of ui so that ω(Ci) = {0}. Since vk1 =

∑
ij eij⊗1 ⊗xij

and vk2 =
∑

ij 1 ⊗ eij ⊗ yij , where xij ∈ C1, yij ∈ C2, for all k ∈ Z∗, it follows that 
ω(vki ) = (Tr ⊗ id)(id ⊗ h)(vki ) = 0 for all k ∈ Z∗, i ∈ {1, 2}. Hence, both v1 and v2
are Haar unitaries with respect to ω. Since u1 and u2 are free representations, the same 
argument as before shows that h(C) = {0}, where C is the linear span of operators 
x ∈ L∞(G) of the form x = y1 . . . yl, l ≥ 1, ys is a product of |ks| coefficients of uis

if ks ≥ 1 or adjoints of coefficients of uis if ks ≤ −1 with ks ∈ Z∗ and is ∈ {1, 2}
such that is �= is+1 for all s. Let now l ≥ 1 and i1, . . . il ∈ {1, 2} with is �= is+1 and 
k1, . . . , kl ∈ Z∗. We can write vk1

i1
. . . vkl

il
=

∑
i,j,k,l eij ⊗ ekl ⊗ xijkl, where xijkl ∈ C. It 

follows that ω(vk1
i1

. . . vkl
il

) = (Tr ⊗ id)(id ⊗ h)(vk1
i1

. . . vkl
il

) = 0. Hence v1 and v2 are free 
with respect to ω. It follows that there exists a unique normal faithful ∗-homomorphism 
L(F2) → B(H1 ⊗ H2) ⊗ L∞(G) which maps one generator of F2 onto v1 and the other 
onto v2. Hence, if G is Kac, B(H1 ⊗H2) ⊗ L∞(G) is non amenable either and it implies 
that L∞(G) is also non amenable. �
Definition 2.11. A dual quantum subgroup C(H) ⊂ C(G) is called proper if there exists 
an irreducible representation a of G such that (id⊗EH)(a) = 0 and for any s ∈ Irr(H), 
if s ⊂ a⊗ a then s = 1.
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Note that if C(H) ⊂ C(G) is proper then [G : H] ≥ 2.

Remark 2.12. In the case of duals of discrete groups, the notion of proper dual quantum 
subgroup coincides with the usual notion of a proper subgroup. However, for quantum 
groups, there are examples of non proper dual quantum subgroup of index 2. A nice 
example is the dual quantum subgroup Aut+(MN (C)) of O+

N . Indeed, the representation 
category of O+

N is the category such that all the irreducible are self-adjoint, indexed by N, 
(un)n∈N , with u0 = ε and fusion rules un⊗um = u|n−m|⊕u|n−m|+2⊕· · ·⊕un+m. Taking 
the full subcategory of Rep(O+

N ) generated by the irreducible representations (vn = u2n), 
we get a category isomorphic to Rep(Aut+(MN (C))), with irreducible representations 
indexed by N and fusion rules vn ⊗ vm = u2n ⊗ u2m = v|n−m| ⊕ v|n−m|+1 ⊕ · · · ⊕ vn+m. 
With the fusion rules, we see that it is indeed a full subcategory and that the index of 
the corresponding subgroup is 2. However, taking any irreducible un of O+

N , with n ≥ 1, 
we have that v1 = u2 ⊂ un ⊗ un = un ⊗ un so the dual quantum subgroup cannot be 
proper because v1 ∈ Irr(Aut+(MN (C))).

Proposition 2.13. Let G = G1 ∗H G2 be an amalgamated free product with H a proper 
dual quantum subgroup of G1 and [G2 : H] ≥ 3 then there exists N such that L(F2) ⊂
MN (C) ⊗ L∞(G).

Proof. There exist an irreducible representation a of G1 satisfying the conditions of 
Definition 2.11 and two irreducible representations b1, b2 of G2 such that (id⊗EH)(bi) = 0
and (id ⊗ EH)(b1 ⊗ b2) = 0 (so we also have (id ⊗ EH)(b2 ⊗ b1) = 0). Define ui =
a ⊗bi⊗a⊗bi and let k ≥ 1. Since χ(a) ∈ L∞(G1)◦, χ(bi) ∈ L∞(G2)◦, χ(u⊗k

i ) = χ(ui)k =
(χ(a)χ(bi)χ(a)∗χ(bi)∗)k is a reduced operator in the amalgamated free product so:

dim
(
Mor(1, u⊗k

i )
)

= h(χ(u⊗k
i )) = 0.

Also, χ(u⊗k
i ) = (χ(bi)χ(a)χ(bi)∗χ(a)∗)k is reduced so dim

(
Mor(1, ui

⊗k)
)

= h(χ(ui
⊗k))

= 0. Hence, ui is a Haar representation of G for i ∈ {1, 2}. Let us show that u1 and u2
are free. It suffices to show that, for any l ≥ 1, (i1, . . . , il) ∈ {1, 2}l with is �= is+1 and 
k1, . . . , kl ∈ Z∗ the operator x := χ(u⊗ki1

i1
⊗ · · · ⊗ u⊗kl

il
) is in the linear span of reduced 

operators. The case l = 1 is clear by the first part of the proof and the general case 
can be shown by induction by using the same arguments used in the case l = 2 that we 
present below. Let x = χ(u⊗k1

i1
⊗ u⊗k2

i2
). It suffices to show that x is in the linear span of 

reduced operator. If k1 and k2 have the same sign then x is already reduced. If k1 ≥ 1
and k2 ≤ −1 then,

x = χ(ui1)k1χ(ui2)−k2

= χ(ui1)kl−1χ(a)χ(bi1)χ(a)∗χ(bi1 ⊗ bi2)χ(a)χ(bi2)∗χ(a)∗χ(ui2)−k2−1

Since (id ⊗ EH)(bi1 ⊗ bi2) = 0, we have χ(bi1 ⊗ bi2) ∈ L∞(G2)◦ hence x is reduced. If 
k1 ≤ −1 and k2 ≥ 1 then
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x = χ(ui1)−k1−1χ(bi1)χ(a)χ(bi1)∗χ(a⊗ a)χ(bi2)χ(a)∗χ(bi2)∗χ(ui2)k2−1

= χ(ui1)−k1−1χ(bi1)χ(a)χ(bi1 ⊗ bi2)χ(a)∗χ(bi2)∗χ(ui2)k2−1

+
∑

s∈Irr(G1)\Irr(H),s⊂a⊗a

χ(ui1)−k1−1χ(bi1)χ(a)χ(bi1)∗χ(s)χ(bi2)χ(a)∗χ(bi2)∗χ(ui2)k2−1,

The right hand side of this equality is in the linear span of reduced operators since 
χ(bi1 ⊗ bi2) ∈ L∞(G2)◦. �
Remark 2.14. The index condition is clearly necessary since it is already necessary in the 
discrete group case. Indeed, if Γ = Γ1 ∗

Σ
Γ2 be a non-trivial amalgamated free product 

of discrete groups (i.e. Σ �= Γk, k = 1, 2). It is well known and easy to check that Γ is 
amenable if and only if Σ is amenable and [Γk : Σ] = 2 for all k ∈ {1, 2} (actually Γ is 
an extension of Σ by D∞ = Z2 ∗ Z2).

Example 2.15. The dual quantum subgroup C(Aut+(M2(C))) ⊂ C(O+
2 ) is not proper, 

has index 2 and the quantum group G := O+
2 ∗

Aut+(M2(C))
O+

2 is co-amenable. The 

inclusion of C(Aut+(M2(C))) in C(O+
2 ) is the map which sends the fundamental repre-

sentation of Aut+(M2(C)) onto v ⊗ v, where v ∈ M2(C) ⊗ C(O+
2 ) is the fundamental 

representation of O+
2 . Hence, writing vl, l ∈ N, the representatives of the irreducible 

representations of O+
N such that v0 = 1 and v1 = v, C(Aut+(M2(C))) is viewed in 

C(O+
2 ) has the C*-subalgebra generated by the coefficients of representations vl for 

l ∈ 2N. Let ρ : C(O+
2 ) → C∗(Z2) be the unique unital ∗-homomorphism such that 

(id ⊗ ρ)(v) = 1 ⊗ g, where g is the generator of Z2. It is not difficult to check that ρ
intertwines the comultiplications and,

(id⊗ ρ)(vl) =
{

1 if l ∈ 2N,

g if l ∈ 2N + 1.

In particular, one has ρ(x) = ε(x)1 for all x ∈ C(Aut+(M2(C))).
It follows from the preceding discussion that, writing v1,l and v2,l the two copies of vl

in C(G), there exists a unique unital ∗-homomorphism π : C(G) → C∗(Z2 ∗ Z2) such 
that (id⊗π)(vi,1) = 1 ⊗ gi, for i = 1, 2 where g1, g2 are the two copies of g in Z2 ∗Z2. In 
particular π intertwines the comultiplications, π(x) = ε(x)1 for all x ∈ C(Aut+(M2(C)))
and, whenever u is a representation of the form u = vi1,l1 ⊗ · · · ⊗ vin,ln with is �= is+1
and ks ∈ 2N + 1 for all s one has (id⊗ π)(u) = 1 ⊗ gi1 . . . gin . Let us call such a repre-
sentation a reduced representation and let C be the linear span of coefficients of reduced 
representations. By the previous computation, for all x ∈ C, π(x) is a linear combination 
of reduced words in Z2 ∗ Z2 hence, τ ◦ π(C) = {0}, where τ is the canonical tracial 
state on C∗(Z2 ∗ Z2). Note also that, since any coefficient of a reduced representation 
u is a reduced word in the amalgamated free product C(G), one has E(C) = {0} where 
E : C(G) → C(Aut+(M2(C))) is the canonical conditional expectation. Since C(G)
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is the closed linear span of C and C(Aut+(M2(C))) we deduce that τ ◦ π = ε ◦ E. It 
follows that ker(λG) ⊂ ker(π). Indeed, let Er : Cr(G) → Cr(Aut+(M2(C))) be the 
canonical faithful conditional expectation such that Er ◦λG = λAut+(M2(C)) ◦E and take 
x ∈ ker(λG). Then, Er(λG(x∗x)) = λAut+(M2(C))(E(x∗x)) = 0. Since Aut+(M2(C)) is 
co-amenable [1] it follows that E(x∗x) = 0 hence ε(E(x∗x)) = τ(π(x∗x)) = 0. Since 
Z2 ∗ Z2 is amenable, τ is faithful so x ∈ ker(π). Hence π ≺ λG and the co-amenability 
follows from [34, Theorem 3.11 and 3.12].

2.5. Semi-direct product quantum group

The semi-direct product quantum group is defined and studied in [59]. Let us recall 
below the basic facts about this construction.

Let G be a compact quantum group and Λ a finite group acting on C(G) by automor-
phisms of G, meaning that we have a group homomorphism α : Λ → Aut(C(G)) such 
that ΔG◦αg = (αg⊗αg) ◦ΔG for all g ∈ Λ. Define the C*-algebra C(G �Λ) = C(G) ⊗C(Λ)
with the comultiplication Δ : C(G � Λ) → C(G � Λ) ⊗ C(G � Λ) such that:

Δ(a⊗ δr) =
∑
s∈Λ

[(id⊗ αs)(ΔG(a))]13 (1⊗ δs ⊗ 1⊗ δs−1r).

In particular, the inclusion C(Λ) ⊂ C(G �Λ) : x 	→ 1 ⊗x preserves the comultiplications. 
It is shown in [59] that the pair (C(G � Λ), Δ) is a compact quantum group in its 
maximal version, the Haar measure h is given by h = hG ⊗ tr, where hG is the Haar 
state on C(G) and tr is the integration with respect to the uniform probability on Λ i.e. 
tr(δr) = 1

|Λ| . Hence the reduced C*-algebra is Cr(G) ⊗ C(Λ), the von Neumann algebra 

is L∞(G) ⊗ C(Λ) and the modular group σt of G � Λ is σt = σG
t ⊗ id. Moreover, the 

canonical surjection λ : C(G � Λ) = C(G) ⊗ C(Λ) → Cr(G � Λ) = Cr(G) ⊗ C(V )
is λ = λG ⊗ id, where λG is the canonical surjection C(G) → Cr(G). The irreducible 
representations and the fusion rules of G � Λ are described in [59]. We could use the 
general classification of irreducible representations of G �Λ from [59] to deduce the one-
dimensional representations of G � Λ. However, since we only need to understand the 
one-dimensional representations, we prefer to include a self contained proof in the next 
Lemma.

Lemma 2.16. The one-dimensional unitary representations of G � Λ are of the form 
w ⊗ v ∈ C(G � Λ), where w ∈ C(G) and v ∈ C(Λ) are one-dimensional unitary repre-
sentations of G and Λ respectively and αr(w) = w for all r ∈ Λ.

Proof. For this proof, we will view C(G � Λ) = C(Λ, C(G)) and C(G � Λ) ⊗ C(G �
Λ) = C(Λ × Λ, C(G) ⊗ C(G)). With this identification, the comultiplication becomes 
Δ(u)(r, s) = (id ⊗ αr)(ΔG(u(rs))) for all u ∈ C(G � Λ) and all r, s ∈ Λ and it is 
then easy to check that the unitary of the form given in the Lemma are indeed one-
dimensional unitary representations of G � Λ. Conversely, if u ∈ C(G � Λ) is a unitary 
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such that Δ(u) = u ⊗ u, then u(r) ∈ C(G) is a unitary for all r ∈ Λ and, for all r, s ∈ Λ, 
(id ⊗ αr)(ΔG(u(rs)) = u(r) ⊗ u(s). It follows that w := u(1) is a unitary in C(G) such 
that Δ(w) = w ⊗ w. Moreover, since αr intertwines the comultiplication of G one has 
εG ◦ αr = εG, where εG is the counit of G, and,

(id⊗ εG ◦ αr)(ΔG(u(rs))) = (id⊗ εG)(ΔG(u(rs))) = u(rs) = u(r)εG(u(s)).

It follows that v := (r 	→ vr), where vr := εG(ur), is a one-dimensional unitary repre-
sentation of Λ and, for all s ∈ Λ, u(s) = wvs i.e. u = w⊗ v ∈ C(G) ⊗C(Λ) = C(G �Λ). 
Using that Δ(u) = u ⊗ u, one checks easily that αr(w) = w for all r ∈ Λ. �

We collect in the following Proposition some easy observations about G �Λ that are 
not contained in [59]. We use the terminology introduced in the Introduction before the 
statement of Theorem A and we denote by Λcb(G) the Cowling-Haagerup constant of 
the von Neumann algebra L∞(G).

Proposition 2.17. The following holds.

(1) G � Λ is co-amenable if and only if G is co-amenable.
(2) Ĝ� Λ has the Haagerup property if and only if Ĝ has the Haagerup property.
(3) Λcb(Ĝ� Λ) = Λcb(Ĝ).
(4) The scaling group τt of G �Λ is the one parameter group of L∞(G �Λ) = L∞(G) ⊗

C(Λ) defined by τt = τGt ⊗ id, where τGt is the scaling group of G.
(5) The Vaes’ T -invariant T (G � Λ) is:

{t ∈ R : ∃w ∈ U(C(G)), τGt = Ad(w),ΔG(w) = w ⊗ w, αr(w) = w ∀r ∈ Λ}.

(6) Sd(G � Λ) = Sd(G) and τ(G � Λ) = τ(G).

Proof. (1) directly follows from the fact that λ = λG ⊗ id and (2) and (3) follows from 
L∞(G � Λ) � L∞(G) ⊗ CK , where K = |Λ|. To prove (4), one can easily check that 
the one parameter group τt := τGt ⊗ id satisfies Δ ◦ σt = (τt ⊗ σt) ◦ Δ. To prove (6), 
we note that since h = hG ⊗ tr, the modular operator ∇ of h, is the positive operator 
on L2(G) ⊗ l2(Λ) given by ∇G ⊗ id, the equality Sd(G � Λ) = Sd(G) follows, while 
the equality τ(G � Λ) = τ(G) is a direct consequence of σt = σG

t ⊗ id. Finally, (5) is a 
consequence of (4) and Lemma 2.16. �
2.6. Quantum permutation group

For N ∈ N∗, we denote by S+
N the quantum permutation group on N points. We recall 

that C(S+
N ) is the universal unital C*-algebra generated by N2 orthogonal projections 

uij , 1 ≤ i, j ≤ N with the relations 
∑N

j=1 uij = 1 =
∑N

j=1 uji for all 1 ≤ i ≤ N . In 
particular u = (uij)ij ∈MN (C) ⊗C(S+

N ) is a unitary. The comultiplication on C(S+
N ) is 
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defined, using the universal property of C(S+
N), by the relation Δ(uij) =

∑N
k=1 uik⊗ukj

for all 1 ≤ i, j ≤ N . In particular, u is a unitary representation of S+
N , called the 

fundamental representation. For 1 ≤ i ≤ N we write Li := Span{uij : 1 ≤ j ≤ N} ⊂
Pol(S+

N ). Since the family (uij)1≤j≤N is a partition of unity, the vector subspace Li is 
actually a unital ∗-subalgebra of Pol(S+

N ) and the map CN → Li, ej 	→ uij is a unital 
∗-isomorphism of ∗-algebras. Since Li is finite dimensional, we may view Li ⊂ C(S+

N )
or Li ⊂ Cr(S+

N ) as an abelian finite dimensional C*-subalgebra and also Li ⊂ L∞(S+
N )

as an abelian finite dimensional von Neumann subalgebra. We use the same symbol h
to denote the Haar state of S+

N on C(S+
N ), Cr(S+

N ) or L∞(S+
N ). We also recall that 

h(uij) = 1
N for all 1 ≤ i, j ≤ N , where h is the Haar state on C(S+

N ).
The elementary proof of the next Proposition is left to the reader.

Proposition 2.18. Let 1 ≤ i ≤ N . The following holds

(1) The unique trace preserving conditional expectation Ei : L∞(S+
N ) → Li satisfies:

Ei(x) = N

N∑
j=1

h(xuij)uij for all x ∈ L∞(S+
N ).

(2) The map x 	→ N
∑N

j=1 h(xuij)uij is a conditional expectation from C(S+
N ) (resp. 

Cr(S+
N )) onto Li. All these maps will be denoted by Ei.

(3) The conditional expectation Ei : Cr(S+
N ) → Li is faithful.

We collect below some elementary computations concerning the conditional expecta-
tion onto Li.

Lemma 2.19. Let a ∈ C(S+
N ) and 1 ≤ i ≤ N be such that Ei(a) = 0. Then,

(1) For any 1 ≤ s, j ≤ N , we have (h ⊗ id)(Δ(a)(uis ⊗ usj)) = 0.
(2) For all 1 ≤ s ≤ N , we have (h ⊗ id) (Δ(a)(uis ⊗ 1)) = 0.

Proof. (1). We show that ∀ω ∈ C(S+
N )∗, 1 ≤ s, j ≤ N , (h ⊗ω)(Δ(a)(uis⊗usj)) = 0. Let 

ω, s, j be as above, and define μ = ω( · usj) ∈ C(S+
N )∗. Using the Sweedler notation,

Δ(auij) (1⊗ usj) =
N∑
t=1

a(1)uit ⊗ a(2)utjusj = a(1)uis ⊗ a(2)usj = Δ(a) (uis ⊗ usj) .

Applying (h ⊗ ω), we get

(h⊗ ω) (Δ(a)(uis ⊗ usj)) = (h⊗ ω) (Δ(auij)(1⊗ usj)) = (h⊗ μ)(Δ(auij))

= μ(1)h(auij) = 0,
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where we used the invariance of the Haar state h and the fact that h(auij) = 0 for all 
1 ≤ j ≤ N since Ei(a) = 0 and by definition of Ei.

(2). It suffices to sum the relation (1) for 1 ≤ j ≤ N and use 
∑N

j=1 usj = 1 ∀s. �
We will use the following Lemma, which is an easy consequence of the factoriality of 

L∞(S+
N ) when N ≥ 8 [9], but we will need the next result for all N ≥ 4.

Lemma 2.20. For all N ≥ 4 and all 1 ≤ k ≤ N one has L∞(S+
N )′ ∩ Lk = C1.

Proof. Pol(S+
N ) being weakly dense in L∞(S+

N ) one has L∞(S+
N )′ ∩Lk = Pol(S+

N )′ ∩Lk. 
By the universal property of Pol(S+

N ), for all σ ∈ SN , there exist unique unital ∗-
homomorphisms Rσ, Cσ : Pol(S+

N ) → Pol(S+
N ) such that Rσ(uij) = uσ(i)j and Cσ(uij) =

uiσ(j), for all 1 ≤ i, j ≤ N . Note that Rσ and Cσ are ∗-isomorphisms since Rσ−1Rσ =
RσRσ−1 = id and Cσ−1Cσ = CσCσ−1 = id. Denoting by (1, k) ∈ SN the transposition of 
1 and k, one has R(1,k)(Lk) = L1 hence, it suffices to show that Pol(S+

N )′ ∩ L1 = C1.
Fix a Hilbert space H with two non-commuting orthogonal projections P, Q ∈ B(H)

and let us denote by A ∈M4(B(H)) the matrix

A :=

⎛⎜⎜⎜⎝
P 1− P 0 0

1− P P 0 0
0 0 Q 1−Q

0 0 1−Q Q

⎞⎟⎟⎟⎠ ,

and by B ∈ MN (B(H)) the block matrix B =
(
A 0
0 I

)
, where I is the identity matrix. 

Note that B is a magic unitary. Hence, writing B = (bij), there exists a unique unital 
∗-homomorphism π : Pol(S+

N ) → B(H) such that π(uij) = bij for all 1 ≤ i, j ≤ N .
To show that Pol(S+

N )′∩L1 = C1, it suffices to show that the only orthogonal projec-
tions in L1 that commutes with Pol(S+

N ) are 0 and 1. A projection p ∈ L1\{0, 1} is of the 
form p =

∑
j∈I u1j for I ⊂ {1, . . . , N} with 1 ≤ |I| ≤ N−1. Let σ ∈ SN be a permutation 

such that σ(I) = {1, . . . , |I| +1} \{2} so that q := Cσ(p) = u11+u13+u14+ · · ·+u1,|I|+1. 
It suffices to show that q does not commute with u33 and this follows from π(q) = P

and π(u33) = Q. �
2.7. Free wreath products

For a compact quantum group G and an integer N , the free wreath product of G by 
S+
N , as defined by Bichon in [8], is the CQG G �∗ S+

N with

C(G �∗ S+
N ) = C(G)∗N ∗ C(S+

N )/I,

where we consider the full free product and I is the two-sided closed ideal generated by:
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{νi(a)uij − uijνi(a) : a ∈ C(G), 1 ≤ i, j ≤ N} (1)

and νi : C(G) → C(G)∗N ⊂ C(G)∗N ∗ C(S+
N ) is the unital ∗-homomorphism on the 

ith-copy of C(G) in C(G)∗N , uij ∈ C(S+
N ) are the coefficients of the fundamental rep-

resentation. If G has a dual quantum subgroup H i.e. C(H) ⊂ C(G), then we define, 
following [28], the free wreath product with amalgamation G �∗,H S+

N . This is the CQG 
with C(G �∗,H S+

N ) = C(G)∗HN ∗C(S+
N )/I, where the full free product is taken amalga-

mated over C(H) and the ideal I is the same as in (1). It is easy to check (using both 
universal properties) that C(G �∗,H S+

N ) = C(G �∗ S+
N )/J , where J is the closed two-

sided ideal generated by {νi(a) − νj(a) : a ∈ C(H), 1 ≤ i, j ≤ N}. Note that G always 
admits the trivial group {e} as a dual quantum subgroup, and we have, for H = {e}, 
C(G �∗,H S+

N ) � C(G �∗ S+
N ).

Remark 2.21. The surjective ∗-homomorphism a 	→ a +I : C(G)∗N∗C(S+
N ) → C(G �∗S+

N )
is injective when restricted to C(G)∗N as well as to C(S+

N ). By the universal property, 
there exists a unique unital ∗-homomorphism π : C(G �∗ S+

N ) → C(G)∗N ⊗C(S+
N ) such 

that π(x +I) = x ⊗1 if x ∈ C(G)∗N and π(x +I) = 1 ⊗x if x ∈ C(S+
N ). The composition 

of x 	→ x + I and π is the map sending C(G)∗N and C(S+
N ) to their respective copies 

in C(G)∗N ⊗C(S+
N ), which is injective. The same holds for C(G)∗HN and C(S+

N ) in the 
amalgamated case.

Following the previous Remark, we will always view C(G)∗HN , C(S+
N ) ⊂ C(G �∗,HS+

N ).
We endow the unital C∗-algebra C(G �∗,HS+

N ) with the unique unital ∗-homomorphism 
Δ : C(G �∗,H S+

N ) → C(G �∗,H S+
N ) ⊗ C(G �∗,H S+

N ) satisfying:

Δ(νi(a)) =
N∑
j=1

(νi ⊗ νj)(ΔG(a))(uij ⊗ 1) and Δ(uij) =
N∑

k=1

uik ⊗ ukj .

Remark 2.22.

(1) Both G∗HN and S+
N are compact quantum subgroups of G �∗,H S+

N via the maps 
(id⊗εS+

N
) ◦π : C(G �∗,HS+

N ) → C(G)∗HN and (εG∗N⊗id) ◦π : C(G �∗,HS+
N ) → C(S+

N )
(which obviously intertwine the comultiplications), where π is the map defined in 
Remark 2.21.

(2) Let ν : C(H) → C(G �∗,H S+
N ) be the common restriction of the maps νi on C(H) ⊂

C(G), 1 ≤ i ≤ N . Then, ν is faithful and, since 
∑

j uij = 1 we see that ν intertwines 
the comultiplications. Hence, H is a dual compact subgroup of G �∗,H S+

N .

Let us now describe another specific compact quantum subgroup of G �∗,H S+
N . The 

only mentions of this subgroup that we could find in the literature are in [8, Proposition 
2.6], when N = 2 and G = Γ̂ is the dual of a discrete group, and in Gromada’s recent 
work [30] where it appears under the name wreath product, in the non-amalgamated case. 
We would like to thank the referee for showing us this reference.



22 P. Fima, A. Troupel / Advances in Mathematics 441 (2024) 109546
Fix σ ∈ SN . By the universal property of C(G)∗HN , there exists a unique unital ∗-
homomorphism ασ : C(G)∗HN → C(G)∗HN such that ασ ◦ νi = νσ(i) for all 1 ≤ i ≤ N . 
Since we clearly have ασατ = αστ , for all σ, τ ∈ SN , α is an action of SN on the 
C*-algebra C(G)∗HN by unital ∗-isomorphisms. Moreover, it is easy to see that, for all 
σ ∈ Σ, (ασ⊗ασ) ◦ΔG∗N = ΔG∗N ◦ασ, where ΔG∗N is the comultiplication on C(G)∗HN . 
Note that this action by automorphisms of G∗HN is actually the restriction of the action 
of S+

N on the compact quantum group G∗HN to the compact quantum subgroup SN

which was described in [8, Proposition 2.1]. Let us now consider the semi-direct product 
quantum group G∗HN � SN associated to this action, as described in Section 2.5. We 
show below that the quantum group G∗HN�SN is actually a compact quantum subgroup 
of G �∗,H S+

N .

Proposition 2.23. Given N ∈ N∗, there exists a unique unital ∗-homomorphism

π : C(G �∗,H S+
N )→ C(G∗HN � SN ) = C(G)∗HN ⊗ C(SN ) s.t.

{
π(νi(a)) = νi(a)⊗ 1
π(uij) = 1⊗ χij

where χij ∈ C(SN ) is the characteristic function of Ai,j := {σ ∈ SN : σ(j) = i}. 
Moreover,

(1) π is surjective and intertwines the comultiplications.
(2) π is an isomorphism if and only if N ∈ {1, 2} or if N = 3 and the inclusion 

C(H) ↪→ C(G) is an isomorphism (a special case being when G is the trivial group).

Proof. The existence of π is a direct consequence of the universal property of the C*-
algebra C(G �∗,H S+

N ) and the fact that the matrix (χij)ij ∈ MN (C(SN )) is a magic 
unitary.

(1). Since C(SN ) is generated by the χij, the surjectivity of π is clear. Let us check that π
intertwines the comultiplications. Recall that the comultiplication on G �∗,HS+

N is denoted 
by Δ, the one on G by ΔG, the one on G∗HN by ΔG∗N (it satisfies ΔG∗N ◦νi = νi⊗νi◦ΔG) 
and let us denote the one on C(G∗HN � SN ) by Δs. On the one hand, ∀1 ≤ i, j ≤ N , 
a ∈ C(G),

Δs(π(uij)) = Δs(1⊗ χij) =
∑

σ∈SN , σ(j)=i

Δs(1⊗ δσ)

=
∑

σ∈SN , σ(j)=i

∑
τ∈SN

(1⊗ δτ ⊗ 1⊗ δτ−1σ),

Δs(π(νi(a))) =
∑

σ∈SN

Δs(νi(a)⊗ δσ)

=
∑

[(id⊗ ατ )(ΔG∗N (νi(a)))]13 (1⊗ δτ ⊗ 1⊗ δτ−1σ)

τ,σ∈SN
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=
∑
τ∈SN

[(id⊗ ατ )((νi ⊗ νi)(ΔG(a)))]13 (1⊗ δτ ⊗ 1⊗ 1).

On the other hand, for all 1 ≤ i, j ≤ N and all a ∈ C(G),

(π ⊗ π)(Δ(νi(a))) =
N∑
j=1

(π ⊗ π)(νi ⊗ νj)(ΔG(a))(π(uij)⊗ 1)

=
N∑
j=1

[(νi ⊗ νj)(ΔG(a))]13 (1⊗ χij ⊗ 1⊗ 1)

=
N∑
j=1

∑
τ∈SN , τ(j)=i

[(id⊗ ατ )(νi ⊗ νi)(ΔG(a))]13 (1⊗ δτ ⊗ 1⊗ 1)

=
∑
τ∈SN

[(id⊗ ατ )(νi ⊗ νi)(ΔG(a))]13 (1⊗ δτ ⊗ 1⊗ 1)

where, in the last equality, we use the partition SN = �N
j=1{τ ∈ SN : τ(j) = i}. 

Moreover,

(π ⊗ π)(Δ(uij)) =
N∑

k=1

π(uik)⊗ π(ukj) =
N∑

k=1

1⊗ χik ⊗ 1⊗ χkj

=
N∑

k=1

∑
σ,τ∈SN ,

τ(k)=i, σ(j)=k

1⊗ δτ ⊗ 1⊗ δσ =
∑

σ,τ∈SN ,
σ(j)=i

1⊗ δτ ⊗ 1⊗ δτ−1σ,

where we use, in the last equality, the following partition:

{(τ, τ−1σ) ∈ S2
N : σ(j) = i} =

N�
k=1
{(τ, σ) ∈ S2

N : τ(k) = i and σ(j) = k}.

(2). Suppose that N = 2. In that case, Bichon’s proof of [8, Proposition 2.1] can be 
directly adapted. It is well known that C(S+

2 ) is commutative: the surjection C(S+
2 ) →

C(S2), uij 	→ χij is an isomorphism. Hence, we view C(S+
2 ) = C(S2) and we have 

u =
(

δ1 δτ
δτ δ1

)
, where τ is the unique non-trivial element in S2. Now, for i ∈ {1, 2}

and a ∈ C(G), νi(a) ∈ C(G �∗,H S+
N ) is commuting with the line i of u hence, it is 

also commuting with the other line. Hence, C(G)∗H2 and C(S+
2 ) are commuting in 

C(G �∗,H S+
N ) and it follows that π is actually injective.

Suppose that N ≥ 4. In that case, it is well known that C(S+
N ) is infinite-dimensional 

(the classical argument is actually contained in the proof of Lemma 2.19). In particular, 
C(S+

N ) 	→ C(SN ), uij 	→ χij is not injective which implies that π itself is not injective.
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The non injectivity in the case N = 3 is a consequence of Theorem 3.2 (the proof of 
which does not rely on this isomorphism even in the case N = 3), using the fact that 
an isomorphism between these quantum groups would intertwine the Haar measures. 
It is then enough, when G is non-trivial to show that there is a reduced operator in 
C(G �∗,H S+

3 ), hence of Haar measure 0, which is sent to an element of C(G∗H3 � S3) �
C(G)∗H3⊗C6. Since H is a strict (not necessarily proper) dual quantum subgroup of G, 
then Rep(H) is a full subcategory of Rep(G), with a non trivial irreducible representation 
v of G which is not a representation of H, and a, b ∈ C(G) \C(H) non trivial coefficients 
of v and v respectively such that ab has non zero Haar measure (using the unique 
intertwiner between the trivial representation and v ⊗ v). Then we can consider the 
element ν1(a)u22ν1(b) ∈ C(G �∗,H S+

3 ), which is sent to ν1(a)ν1(b) ⊗u22 = ν1(ab) ⊗u22 ∈
C(G)∗H3 ⊗C6. However, the word ν1(a)u22ν1(b) is reduced in the sense of 3.2, because 
a and b are coefficients of a non trivial irreducible representation, and therefore of Haar 
measure 0 and the element u22 is such that EL1(u22) is equal to 0 if N ≥ 3 and to u22

if N ∈ {0, 1}, while the element ν1(ab) ⊗ u22 is of Haar measure hG(ab)/3 �= 0, because 
the Haar measure on C(G∗H3 � S3) � C(G)∗H3 ⊗ C6 is the tensor product of the Haar 
measures on C(G)∗H3 and on C(S3).

If G is the trivial group then the surjection is the canonical morphism C(S+
N) � C(SN )

which is an isomorphism if and only if N ≤ 3. �
Remark 2.24. The condition C(H) ↪→ C(G) not being an isomorphism is equivalent to 
the index [G : H] being greater than 2, as defined in 2.7.

Let us show that this semi-direct product agrees with the wreath product by SN

as defined in [30]. We first start by defining a well-known family of compact quantum 
subgroups of G �∗,H S+

N .

Proposition-Definition 2.25. For any compact quantum subgroup KN ≤ S+
N with μ :

C(S+
N ) � C(KN ), we have a corresponding compact quantum subgroup G �∗,H KN ≤

G �∗,H S+
N , with C(G �∗,H KN ) := C(G)∗HN ∗ C(KN )/I, where the double-sided closed 

ideal I is once again defined as in (1), replacing the elements uij by their images through 
μ in C(KN ), with the comultiplication defined in the same way as for the free wreath 
product with S+

N . In particular G �∗,H SN is a compact quantum subgroup of G �∗,H S+
N , 

where SN is seen as a compact quantum group of S+
N .

Proof. It is enough to show that the quotient map

ψ : C(G �∗,H S+
N ) → C(G �∗,H KN ) s.t.

{
ψ(νi(a)) = νi(a)
ψ(uij) = μ(uij)

,

intertwines the comultiplications but this is obvious by the definitions. �
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Remark 2.26. Note that the considered dimension of the generating matrix of the com-
pact quantum group KN matters a lot, as it changes the numbers of free copies of C(G)
in the definition of the free wreath product. Take H to be the trivial group and KN and 
KM for N �= M two presentations of the trivial group (seen as acting on CN and CM

respectively), then we have that G �∗,H KN = G∗N and G �∗,H KM = G∗M , which are 
oftentimes not isomorphic.

Proposition 2.27. The wreath product G � SN from [30] is isomorphic to the semi-direct 
product G∗N � SN .

Proof. It is enough to prove that the map π : C(G �∗ S+
N ) � C(G∗N �SN ) � C(G)∗N ⊗

C(SN ) defined in Proposition 2.23 is the composition of the maps C(G �∗ S+
N ) � C(G �∗

SN ) and C(G �∗SN ) � C(G∗N �SN ). Let v be the matrix (χij)1≤i,j≤N , with coefficients 
generating C(SN ). Then the map C(G �∗ SN ) � C(G �SN ) as defined in [30] sends νi(g)
to νi(g) ⊗ 1 and χij to 1 ⊗ χij , so the composition with the previous quotient coincides 
exactly with the map π. �
Remark 2.28. For many quantum groups G we can also use K-theory to distinguish 
between the free wreath product and the semi-direct product. Indeed, the K-theory of 
the algebra of the semi-direct product G∗3�S3 is just the K-theory of the tensor product 
C(G)∗3 ⊗C6 which is

K0(C(G)∗3 ⊗C6) � (K0(C(G))3/Z2)3, and, K1(C(G)∗3 ⊗C6) � K1(C(G))18,

which can only coincide with the K-theory of the free wreath product algebra if 
K0(C(G)) � Z and K1(C(G)) = 0, using the computations of Theorem D which are 
independent from Proposition 2.23

In [2, Section 3.4] it is mentioned that the question whether the von Neumann algebra 
of a quantum reflection group Hs+

N := Zs �∗ S+
N is diffuse is open when N ≤ 7. We add 

the following Proposition in order to provide a complete answer to this question.

Proposition 2.29. The von Neumann algebra L∞(G �∗,H S+
N ) is diffuse if and only if at 

least one of the following conditions holds:

• N ≥ 4,
• Irr(G) is infinite,
• [G : H] ≥ 2 (i.e. C(H) ↪→ C(G) is not surjective) and N ≥ 2.

Proof. If G is trivial, it directly follows from Lemma 2.4 since S+
N � SN for N ≤ 3 and 

C(S+
N ) is infinite-dimensional for N ≥ 4. Suppose that G is non-trivial and let N ≥ 3. Let 

us denote by u = (uij) and v = (vij) the fundamental representations of S+
N and S+

N−1
respectively. By the universal property, there exists a unique unital ∗-homomorphism 
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ρ : C(G �∗,HS+
N ) → C(G �∗,HS+

N−1) such that ρ(uij) = vij if 1 ≤ i, j ≤ N−1, ρ(uij) = δi,j
if i or j is equal to N and ρ(νi(a)) = νi(a) if 1 ≤ i ≤ N − 1, ρ(νN (a)) = νN−1(a) for 
all a ∈ C(G). Since ρ is clearly surjective a direct induction implies that, for all N ≥ 2, 
C(G �∗,H S+

N ) is infinite-dimensional (hence L∞(G �∗,H S+
N ) is diffuse by Lemma 2.4) 

whenever C(G �∗,H S+
2 ) is. By Proposition 2.23, C(G �∗,H S+

2 ) � C(G ∗H G) ⊗C2. Hence, 
it is infinite-dimensional as soon as C(G ∗HG) is. There is an embedding C(G) ↪→ C(G ∗H
G), so the case |Irr(G)| = ∞ is a direct consequence of Lemma 2.4. If C(H) ↪→ C(G)
is not surjective, then there is a non zero element a ∈ C(G) such that EH(G) = 0
(for example, take a coefficient of an irreducible representation of G which is not in 
the representation category of H). Then the words bk = ν1(a)ν2(a) . . . νk̄(a) taking a 
product of k elements, where k̄ is 1 if k is odd and 2 if k is even, form a family of linearly 
independent reduced elements in C(G ∗H G), which is therefore infinite dimensional. �
2.8. Graphs of operator algebras

We recall below some notions and results from [22,23]. If G is a graph in the sense of 
[44, Def 2.1], its vertex set will be denoted V (G) and its edge set will be denoted E(G). 
We will always assume that G is at most countable. For e ∈ E(G) we denote by s(e) and 
r(e) respectively the source and range of e and by e the inverse edge of e. An orientation
of G is a partition E(G) = E+(G) � E−(G) such that e ∈ E+(G) ⇔ e ∈ E−(G).

The data (G, (Aq)q∈V (G), (Be)e∈E(G), (se)e∈E(G)) will be called a graph of C*-algebras 
if:

• G is a connected graph.
• For every q ∈ V (G) and every e ∈ E(G), Aq and Be are unital C*-algebras.
• For every e ∈ E(G), Be = Be.
• For every e ∈ E(G), se : Be → As(e) is a unital faithful ∗-homomorphism.

Define re = se : Be → As(e).
Fix a maximal subtree T ⊂ G and define P = π1(G, Aq, Be, T ) to be the maximal 

fundamental C*-algebra of the graph of C*-algebras (G, Aq, Be, se) with respect to the 
maximal subtree T . This means that P is the universal unital C*-algebra generated by 
Aq, for q ∈ V (G) and unitaries ue, for e ∈ E(G) with the following relations:

• For every e ∈ E(G), ue = u∗
e.

• For every e ∈ E(G) and every b ∈ Be, uese(b)ue = re(b).
• For every e ∈ E(T ), ue = 1.

It is known that P is non-zero and that the canonical unital ∗-homomorphisms Aq → P

are all faithful [23, Remark 2.2]. Hence, we will always view Aq ⊂ P for all q ∈ V (G).
Assume now that there exists, for all e ∈ E(G) a conditional expectation Es

e : As(e) →
se(Be). For p ∈ V (G), an element a ∈ P will be called a reduced operator from p to p
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if it is of the form a = a0ue1a1 . . . uenan where n ≥ 1, (e1, . . . , en) is a path in G from 
p to p (i.e. ek ∈ E(G) are such that r(ek) = s(ek+1) and s(e1) = r(en) = p), a0 ∈ Ap, 
ak ∈ Ar(ek) and, for all 1 ≤ k ≤ n − 1, if ek+1 = ek then Es

ek+1
(ak) = 0. Then one can 

construct [23], the unital C*-algebra Pr called the vertex reduced fundamental algebra
which is the unique (up to canonical isomorphism) quotient λ : P → Pr of P satisfying 
the following:

(1) There exists, for all p ∈ V (G), a ucp map Ep : Pr → Ap such that Ep(λ(a)) = a for 
all a ∈ Ap and Ep(λ(a)) = 0 for all reduced operators a ∈ P from p to p. Moreover, 
the family {Ep :∈ V (G)} is GNS-faithful.

(2) For any unital C*-algebra C with a surjective unital ∗-homomorphism ρ : P → C

and a GNS-faithful family of ucp map ϕp : C → Ap, p ∈ V (G), such that ϕp(ρ(a)) =
a for all a ∈ Ap and ϕp(ρ(a)) = 0 for all reduced operators a ∈ P from p to p there 
exists a unique unital ∗-isomorphism ν : Pr → C such that ν ◦ λ = ρ.

We recall that, given unital C*-algebras A, Bi, i ∈ I, a family of ucp maps ϕi : A → Bi

is called GNS-faithful if 
⋂

i∈I Ker(πi) = {0}, where (Hi, πi, ξi) is the GNS-construction 
of ϕi.

Note that a ucp map satisfying (1) is necessarily unique and property (1) implies that 
λ : P → Pr is faithful on Ap, for all p ∈ V (G) so that we may and will view Ap ⊂ Pr for 
all p ∈ V (G) and the ucp maps Ep : Pr → Ap become conditional expectations under 
this identification. If all the ucp maps Es

e are supposed to be GNS-faithful then the 
vertex reduced fundamental algebra Pr is the same as the reduced fundamental algebra 
constructed in [22] and the conditional expectations Ep : Pr → Ap are all GNS-faithful.

3. Free wreath products as fundamental algebras

Let N ∈ N∗ and TN be the rooted tree with N + 1 vertices p0, . . . , pN , p0 being 
the root and 2N edges v1, . . . , vN , v1, . . . vN , source maps s(vk) = p0 and range maps 
r(vk) = pk for all 1 ≤ k ≤ N .

3.1. The full version

Consider the graph of C*-algebras over TN given by Ap0 = C(H) ⊗ C(S+
N ), Apk

:=
C(G) ⊗CN , Bvk = Bvk

= C(H) ⊗CN (1 ≤ k ≤ N) with source map svk : C(H) ⊗CN →
C(H) ⊗Lk ⊂ C(H) ⊗C(S+

N ), h ⊗ej 	→ h ⊗ukj and range map rvk : C(H) ⊗CN → C(G) ⊗
CN being the canonical inclusion. Note that our graph of C*-algebras has conditional 
expectations id⊗Ek : C(H) ⊗C(S+

N ) → C(H) ⊗Lk (Proposition 2.18) which can be non 
GNS-faithful and EH ⊗ id : C(G) ⊗ CN → C(H) ⊗ CN , coming from Proposition 2.5, 
which can also be non-GNS faithful.

Let us denote by A the maximal fundamental C*-algebra of this graph of C*-algebras 
relative to the unique maximal subtree TN itself so that A is the universal unital C*-
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algebra generated by Apk
for 0 ≤ k ≤ N with the relations svk(a) = rvk(a) for all 

a ∈ C(H) ⊗CN and all 1 ≤ k ≤ N . Recall that νi : C(G) → C(G)∗HN ⊂ C(G �∗,H S+
N )

denotes the ith-copy of C(G) in C(G)∗HN , we also denote by ν the common restriction 
of the νi’s to C(H)

Proposition 3.1. There is a unique isomorphism π : A → C(G �∗,H S+
N ) such that π(h ⊗

uij) = ν(h)uij (h ⊗ uij ∈ Ap0 = C(H) ⊗ C(S+
N )) and, π(a ⊗ ej) = νi(a)uij for a ⊗ ej ∈

Api
= C(G) ⊗CN , 1 ≤ i, j ≤ N .

Proof. Let us show the existence of π. Note first that, since νi(a) and uij commute in 
C(G �∗,H S+

N ), there exists a unique unital ∗-homomorphism πi : Api
= C(G) ⊗ CN →

C(G �∗,H S+
N ) such that πi(a ⊗ ej) = νi(a)uij , for all a ∈ C(G) and 1 ≤ j ≤ N . We also 

define π0 : Ap0 = C(H) ⊗ C(S+
N ) → C(G �∗,H S+

N ), π0(h ⊗ uij) = ν(h)uij . Next, for 
all 1 ≤ i, j ≤ N , and h ∈ C(H), one has π0(svi(h ⊗ ej)) = π0(h ⊗ uij) = ν(h)uij and 
πi(rvi(h ⊗ ej)) = πi(h ⊗ ej) = ν(h)uij . By the universal property of A, there exists a 
unique unital ∗-homomorphism π : A → C(G �∗,H S+

N ) satisfying the properties of the 
proposition. Moreover, since the image of π contains uij for all i, j and 

∑N
j=1 πi(a ⊗ej) =∑N

j=1 νi(a)uij = νi(a) for all a ∈ A and 1 ≤ i ≤ N , it follows that π is surjective.
To show that it is an isomorphism, we will give an inverse, using this time the universal 

property of C(G �∗,H S+
N ). By the universal property of the full free product, there exists 

a unique unital ∗-homomorphism μ : C(G)∗N ∗C(S+
N ) → A such that, for all 1 ≤ i ≤ N , 

a ∈ C(G), b ∈ C(S+
N ),

μ(νi(a)) = a⊗1 ∈ C(G)⊗CN = Api
⊂ A and μ(b) = 1⊗b ∈ C(H)⊗C(S+

N ) = Ap0 ⊂ A.

Recall that C(G �∗,H S+
N ) = C(G)∗HN ∗ C(S+

N )/I, where I is defined in Equation (1). 
Note that

μ(νi(a)uij) = (a⊗ 1)(1⊗ uij) = μ(νi(a))svi(1⊗ ej) = μ(νi(a))rvi(1⊗ ej)

= (a⊗ 1)(1⊗ ej) = (1⊗ ej)(a⊗ 1) = rvi(1⊗ ej)μ(νi(a))

= svi(1⊗ ej)μ(νi(a)) = (1⊗ uij)μ(νi(a)) = μ(uijνi(a)).

Moreover, we have that for every h ∈ C(H), and 1 ≤ i, j ≤ N ,

μ(νi(ι(h))) = (ι(h)⊗ 1) = svi(h⊗ 1) = rvi(h⊗ 1) = (h⊗ 1)

= rvj (h⊗ 1) = svj (h⊗ 1) = (ι(h)⊗ 1) = μ(νj(ι(h))),

Hence, the images of C(H) through μ coincide and I ⊂ ker(μ) so there exists a unique 
unital ∗-homomorphism ρ : C(G �∗,H S+

N ) → A which factorizes μ. It is clear that ρ is 
surjective and it is easy to check that ρ is the inverse of π. �
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3.2. The reduced version

Consider the graph of C*-algebras over TN given by Ap0 = Cr(H) ⊗ Cr(S+
N ), Apk

:=
Cr(G) ⊗ CN , Bvk = Bvk

= Cr(H) ⊗ CN for all 1 ≤ k ≤ N with source map svk :
Cr(H) ⊗CN → Cr(H) ⊗Lk ⊂ Cr(H) ⊗Cr(S+

N ), h ⊗ ej 	→ h ⊗ ukj and range map rvk :
Cr(H) ⊗CN → Cr(G) ⊗CN , being the canonical inclusion. Note that our graph of C*-
algebras has faithful conditional expectations id⊗Ek : Cr(H) ⊗Cr(S+

N ) → Cr(H) ⊗Lk

(Proposition 2.18) and EH⊗id : Cr(G) ⊗CN → Cr(H) ⊗CN , thanks to Proposition 2.5. 
Let A the vertex reduced fundamental C*-algebra of this graph of C*-algebras with 
faithful conditional expectations and view Apk

⊂ A for all 0 ≤ k ≤ N . By the universal 
property of A defined in Section 3.1, there exists a unique unital ∗-homomorphism (which 
is surjective) λ′ : A → A such that λ′|Ap0

= λH ⊗ λS+
N

and λ′|Apk
= λG ⊗ idCN for all 

1 ≤ k ≤ N . Let E : A → Cr(H) ⊗Cr(S+
N ) the GNS-faithful conditional expectation and 

define ω := hH ⊗ hS+
N
◦ E so that ω|Ap0

= hH ⊗ hS+
N

and ω(c) = 0 for c ∈ A a reduced 

operator. The state ω ∈ A∗ is called the fundamental state. Let λ : C(G �∗,H S+
N ) →

Cr(G �∗,H S+
N ) be the canonical surjection.

Theorem 3.2. The Haar state h ∈ C(G �∗,H S+
N )∗ is the unique state such that:

h (a0νi1(b1)a1νi2(b2) . . . νin(bn)an) = 0

whenever ak ∈ C(S+
N ) ⊂ C(G �∗,H S+

N ), and bk ∈ C(G) are such that EH(bk) = 0 for all 
k and if ik = ik+1, then Eik(ak) = 0.

There exists a unique unital ∗-isomorphism πr : A → Cr(G �∗,H S+
N ) such that λ ◦π =

πr ◦ λ′, where π : A → C(G �∗,H S+
N ) is the isomorphism of Proposition 3.1. Moreover, 

π intertwines the Haar state on Cr(G �∗,H S+
N ) and the fundamental state ω ∈ A∗.

An element of the form a0νi1(b1)a1νi2(b2) . . . νin(bn)an ∈ C(G �∗,H S+
N ) and satisfying 

the conditions of Theorem 3.2 will be called a reduced operator.

Proof. Consider the state ω̃ := ω◦λN ◦μ = hH⊗hS+
N
◦E ◦λN ◦μ ∈ C(G �∗,H S+

N )∗, where 

μ := π−1 : C(G �∗,H S+
N ) → A has been constructed in the proof of Proposition 3.1. Let 

C ⊂ A be the linear span of C(S+
N ), ν(C(H)) and all reduced operators in C(G �∗,H S+

N ). 
Note that C is dense in A. By construction, the state ω̃ satisfies ω̃|C(S+

N ) = hS+
N

, ω̃◦ν = hH

and ω̃(c) = 0 for c ∈ C(G �∗,H S+
N ) a reduced operator so ω̃ satisfies the property of the 

state h stated in the Theorem hence h = ω̃ by density of C. We will show that ω̃ is 
Δ-invariant, which will imply that it is the Haar state, and thus (since E is GNS faithful 
and hH ⊗ hS+

N
is faithful on Cr(H) ⊗ Cr(S+

N )) that A is isomorphic to the algebra 
obtained through the GNS-construction applied to the Haar state, namely the reduced 
C*-algebra C∗

r (G �∗,H S+
N ), which will complete the proof of the Theorem. It is enough 

to show that ω̃ is Δ invariant when restricted to C. An element in C is the sum of an 
element x0 ∈ C(S+

N ) ⊗C(H) and elements of the form x = a0νi1(b1)a1 . . . an−1νin(bn)an
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with n ≥ 1, ak ∈ C(S+
N ), bk ∈ C(G)◦, where C(G)◦ := {b ∈ C(G), EH(b) = 0}, for all 

0 ≤ k ≤ N , and if there is k such that ik = ik+1, then Eik(ak) = 0. It suffices to show 
Δ(x) ∈ C �C(G �∗,H S+

N ) (where � is the algebraic tensor product). Using the Sweedler 
notation,

Δ(x) =
∑

(a0)(1)νi1((b1)(1))ui1,s1(a1)(1)νi2((b2)(1))ui2,s2 . . . (an)(1)
⊗(a0)(2)νs1((b1)(2))(a1)(1)νs2((b2)(2)) . . . (an)(2).

By Remark 2.6 one has EH((bk)(1)) = 0 hence, the left part of every term of the sum 
is a reduced operator whenever there is no k such that ik = ik+1 and Eik((ak)(1)) �= 0, 
we need only to take care of the remaining cases. Assume that we have k such that 
ik = ik+1, and Eik((ak)(1)) �= 0, with k being the smallest such integer. Then we can write 
(ak)(1) = Eik((ak)(1)) + (ak)◦(1), with Eik((ak)◦(1)) = 0. Fixing s = (s1, s2, . . . , sn) ∈ Nn, 
we can write

(a0)(1)νi1((b1)(1))ui1,s1(a1)(1) . . . (an)(1) ⊗ (a0)(2)νs1((b1)(2))(a1)(1)νs2((b2)(2)) . . . (an)(2)
=(a0)(1)νi1((b1)(1))ui1,s1(a1)(1) . . . (ak)◦(1) . . . (an)(1) ⊗ (a0)(2) . . . (an)(2)

+ (a0)(1)νi1((b1)(1))ui1,s1(a1)(1) . . . Eik((ak)(1)) . . . (an)(1) ⊗ (a0)(2) . . . (an)(2),

we see that the first term of the decomposition is itself reduced up to the k-th term, and 
we can iterate the process with the next term such that ik′ = ik′+1. In the end we get a 
sum of tensor such that the first term is always reduced, and we only have to show that 
the second vanishes. The second term is always of the form

αk,s = (a0)(1)νi1((b1)(1))ui1,s1(a1)(1) . . . Eik((ak)(1)) . . . (an)(1) ⊗ (a0)(2) . . . (an)(2),

with maybe other conditional expectations appearing after rank k. The definition of the 
conditional expectations (Ei) gives Eik((ak)(1)) = N

∑N
t=1 h((ak)(1)uikt)uikt hence,

αk,s = N

N∑
t=1

h((ak)(1)uikt)(a0)(1)νi1((b1)(1))ui1,s1(a1)(1) . . . νik((bk)(1))uik,tνik((bk+1)(1))

. . . (an)(1) ⊗ (a0)(2) . . . (an)(2)

= N

N∑
t=1

h((ak)(1)uikt)(a0)(1)νi1((b1)(1))ui1,s1(a1)(1) . . . νik((bk)(1)(bk+1)(1))uik,t

. . . (an)(1) ⊗ (a0)(2) . . . (an)(2)

= N
N∑
t=1

h((ak)(1)′uikt)(a0)(1)νi1((b1)(1))ui1,s1(a1)(1) . . . νik((bk)(1)(bk+1)(1))uik,t

. . . (an)(1) ⊗ (a0)(2) . . . (ak)(1)′ . . . (an)(2)
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The symbols (1)′ and (2)′ are used to differentiate between the summation indices of 
the scalars we will now move to the right side of the tensor product and the others 
summation indices:

αk,s =N
N∑
t=1

(a0)(1)νi1((b1)(1))ui1,s1(a1)(1) . . . νik((bk)(1)(bk+1)(1))uik,t . . . (an)(1)

⊗ (a0)(2) . . . h((ak)(1)′uikt)(ak)(2)′ . . . (an)(2).

Now, by Lemma 2.19, we get 
∑

(1)′,(2)′ h((ak)(1)′uikt)(ak)(2)′ = 0. This is true for every 
value of t, hence αk vanishes whenever we considered k as before. This proves that ω̃ is 
Δ-invariant. �

The explicit computation of the Haar state can be used to show the following property 
of dual quantum subgroups in free wreath products.

Proposition 3.3. Let C(H) ⊂ C(G) be a dual quantum subgroup and consider, by the 
universal property of C(H �∗ S+

N ), the unique unital ∗-homomorphism ι : C(H �∗ S+
N ) →

C(G �∗ S+
N ) such that ι ◦ νi = νi : C(H) → C(G �∗ S+

N ) for all 1 ≤ i ≤ N and ι|C(S+
N )

is the inclusion C(S+
N ) ⊂ C(G �∗ S+

N ). Then, ι is faithful so H �∗ S+
N is a dual quantum 

subgroup of G �∗ S+
N .

Proof. It is clear that ι intertwines the comultiplications and, by Theorem 3.2, it also 
intertwines the Haar states so the restriction ι|Pol(H�∗S+

N ) : Pol(H �∗ S+
N ) → Pol(G �∗ S+

N )
is injective (by faithfulness of the Haar states) and still intertwines the comultiplica-
tion. Hence, H �∗ S+

N is a dual quantum subgroup of G �∗ S+
N and ι itself faithful by 

Proposition 2.5. �
3.3. The von Neumann version

Consider the graph of von Neumann algebras over TN given by Mp0 = L∞(H) ⊗
L∞(S+

N ), Mpk
:= L∞(G) ⊗ CN , Nek = Nek = L∞(H) ⊗ CN for all 1 ≤ k ≤ N with 

source map sek : L∞(H) ⊗CN → L∞(H) ⊗ Lk ⊂ L∞(H) ⊗ L∞(S+
N ), h ⊗ ej 	→ h ⊗ ukj

and range map rek : L∞(H) ⊗ CN → L∞(G) ⊗ CN being the canonical inclusion. We 
also consider family of faithful normal states ωp0 = hH ⊗ hS+

N
, ωpk

= hG ⊗ tr (where 

tr is the normalized uniform trace on CN i.e. tr(ej) = 1
N ) and ωek = hH ⊗ tr for 

all 1 ≤ k ≤ N . Hence, we get a graph of von Neumann algebras as defined in [22, 
Definition A.1]. Let us denote by M the fundamental von Neumann algebra at p0 and 
view Mp0 = L∞(H) ⊗ L∞(S+

N ) ⊂ M . Let ϕ the associated fundamental normal faithful 
state which is a trace if and only if G is Kac from the results of [22], as H is automatically 
Kac in that case. As a direct consequence of Proposition 3.2 and [22, Section A.5] we 
have the following. Note that, by Theorem 3.2, the unital faithful ∗-homomorphism 
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νi : C(G) → C(G �∗,H S+
N ) preserves the Haar states hence, it induces a unital normal 

faithful ∗-homomorphism νi : L∞(G) → L∞(G �∗,H S+
N ).

Proposition 3.4. There exists a unique unital normal ∗-isomorphism π′′
r : M →

L∞(G �∗,H S+
N ) extending the isomorphism πr : A → Cr(G �∗,H S+

N ) from Theorem 3.2. 
Moreover, h ◦ π′′

r = ϕ, where h also denotes the Haar state on L∞(G �∗,H S+
N ).

Recall that AutL∞(H)(L∞(G), hG) = {β ∈ Aut(L∞(G), hG), β(L∞(H)) = L∞(H)}.

Proposition 3.5. For all α ∈ AutL∞(H)(L∞(G), hG) there exists a unique h-preserving 
automorphism ψ(α) of L∞(G �∗,H S+

N ) such that

ψ(α)|L∞(S+
N ) = id and ψ(α) ◦ νi = νi ◦ α ∀1 ≤ i ≤ N. (2)

Moreover, ψ : AutL∞(H)(L∞(G), hG) → Aut(L∞(G �∗,H S+
N ), h) is a continuous group 

homomorphism.

Proof. Let α ∈ AutL∞(H)(L∞(G), hG) and write (L2(G �∗,H S+
N ), λ, ξ) the GNS of 

the Haar state. To show that ψ(α) exists, it suffices to show that there exists a 
well defined unitary Uα ∈ B(L2(G �∗,H S+

N )) such that, for all reduced operator 
a0νi1(b1) . . . νin(bn)an ∈ L∞(G �∗,H S+

N ),

Uα(a0νi1(b1) . . . νin(bn)anξ) = a0νi1(α(b1)) . . . νin(α(bn))anξ

Indeed, if such a unitary is constructed, then ψ(α)(x) := UαxU
∗
α does the job. 

To show that such a Uα exists it suffices to check that, for any reduced opera-
tor x = a0νi1(b1) . . . νin(bn)an ∈ L∞(G �∗,H S+

N ) one has h(x∗x) = h(y∗y), where 
y := a0νi1(α(b1)) . . . νin(α(bn))an. This can be shown by induction on n, by first ob-
serving that EH ◦ α = α ◦ EH , where EH : L∞(G) → L∞(H) is the canonical normal 
faithful conditional expectation. Indeed, since α−1 ◦EH ◦α is a normal h-preserving con-
ditional expectation onto L∞(H), we have, by uniqueness in Takesaki’s Theorem, that 
α−1 ◦ EH ◦ α = EH . It follows that the element y is reduced whenever x is. Then, one 
can easily use the Haar state formula in Theorem 3.2 to prove our claim by induction. 
The uniqueness of ψ(α) and the fact that it preserves the Haar state are clear.

The fact that it is a group homomorphism follows by uniqueness. To prove continuity, 
it suffices to check that the map ψx : AutL∞(H)(L∞(G), hG)) → L2(G �∗,H S+

N , h), 
(α 	→ ψ(α)(x)ξ), is continuous for all x ∈ L∞(G �∗,H S+

N ), where ξ ∈ L2(G �∗,H S+
N , h) is 

the canonical cyclic vector. Define C ⊂ L∞(G �∗ S+
N ) to be the linear span of L∞(S+

N )
and the reduced operators and observe that C is a σ-strongly dense unital ∗-subalgebra 
of L∞(G �∗,H S+

N ). Note that the subset:

{x ∈ L∞(G �∗,H S+
N ) : ψx is continuous } ⊆ L∞(G �∗,H S+

N )
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is a clearly a subspace and it is σ-strongly closed since, ψ(α) being h-preserving, we 
have,

‖ψx(α)− ψy(α)‖2 = ‖ψ(α)(x)ξ − ψ(α)(y)ξ‖2 = ‖ψ(α)(x− y)ξ‖2 = h((x− y)∗(x− y))

for all α ∈ AutL∞(H)(L∞(G), hG) and x, y ∈ L∞(G �∗,H S+
N ). Hence, it suffices to show 

that ψx is continuous for all x ∈ L∞(S+
N ) or for x a reduced operator. When x ∈ L∞(S+

N )
the map ψx is the constant map equals to xξ. When x = a0νi1(b1) . . . νin(bn)an ∈
L∞(G �∗,H S+

N ) is a reduced operator, we have, by induction on n, ψx(α) − ψx(id) =∑n
k=1 ϕk(α), where:

ϕk(α) := a0νi1(b1)a1 . . . νik−1(bk)akνik(α(bk)−bk)akνik+1(α(bk+1))ak+1 . . . νin(α(bn))anξ

with the natural conventions so that ϕ0(α) and ϕn(α) make sense. Using the formula 
for the Haar state given in Theorem 3.2 and the fact that α is hG preserving, a direct 
computation gives:

‖ϕk(α)‖2 =
(

n∏
l=0

‖al‖22,S+
N

)⎛⎝ ∏
1≤l≤n,l �=k

‖bl‖22,G

⎞⎠ ‖α(bk)− bk‖22,G

where, for a CQG G, ‖ · ‖2,G is the 2-norm given by the Haar state on L∞(G). It follows 
that if αs →s id in AutL∞(H)(L∞(G), hG) then, for all 1 ≤ k ≤ n, ϕk(αs) →s 0 in 
L2(G �∗,H S+

N ) for the norm. Hence, ψx is continuous at id so it is continuous since it is 
a group homomorphism. �
3.4. An inductive construction for free wreath products algebras

We define inductively the C*-algebra Ai (1 ≤ i ≤ N) containing C(H) ⊗C(S+
N ) with 

a state ωi ∈ A∗
i by A0 = C(H) ⊗C(S+

N ) and ω0 = hH ⊗ hS+
N

the Haar state on A0. Let 
A0 := Cr(H) ⊗Cr(S+

N ) be the GNS-construction of ω0 and M0 := L∞(H) ⊗L∞(S+
N ) = A′′

0
the von Neumann algebra generated in the GNS construction. Write λ0 : A0 → A0
the GNS morphism. We still denote by ω0 the associated faithful state on A0 (resp. 
faithful normal state on M0). Suppose that (Ai, ωi) is constructed and let Ai be the 
C*-algebra of the GNS construction of ω with GNS morphism λi : Ai → Ai and 
Mi = A′′

i the von Neumann algebra generated in the GNS construction. Define the full 
free product Ai+1 := (C(G) ⊗CN ) ∗

C(H)⊗CN
Ai, where the amalgamation is with respect 

to the faithful normal unital ∗-homomorphisms rei+1 : C(H) ⊗CN → C(G) ⊗CN and 
sei+1 : C(H) ⊗ CN 	→ C(H) ⊗ Li+1 ⊂ C(H) ⊗ C(S+

N ) ⊂ Ai. Let Ai+1 := (Cr(G) ⊗
CN , hG ⊗ tr) ∗

Cr(H)⊗CN
(Ai, ωi) be the reduced free product with amalgamation with 

respect to the same maps but at the reduced level. Let λi+1 : Ai+1 → Ai the unique 
surjective unital ∗-homomorphism such that λi+1(a ⊗ x) = λG(a) ⊗ x for all a ∈ C(G), 
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x ∈ CN and λi+1|Ai
= λi. Define ωi+1 := ((hG ⊗ tr) ∗ ωi) ◦ λi+1 and note that Ai+1 is 

the C*-algebra of the GNS construction of ωi+1 and λi+1 : Ai+1 → Ai+1 is the GNS 
morphism. It follows that Mi+1 = A′′

i+1 = (L∞(G) ⊗ CN ) ∗
L∞(H)⊗CN

Mi, where the 

amalgamated free product von Neumann algebra is with respect to the faithful normal 
unital ∗-homomorphisms rei : L∞(H) ⊗CN → L∞(G) ⊗CN and sei : L∞(H) ⊗CN 	→
L∞(H) ⊗Li+1 ⊂ L∞(H) ⊗L∞(S+

N ) ⊂Mi and with respect to the faithful normal states 
hG ⊗ tr and ωi. We still denote by ωi+1 the faithful free product state on Ai+1 and the 
faithful normal free product state on Mi+1.

Proposition 3.6. There exists unique state preserving ∗-isomorphisms

ρ : (C(G �∗,H S+
N ), h) → (AN , ωN ) and ρr : (Cr(G �∗,H S+

N ), h)→ (AN , ωN )

and a normal ∗-isomorphism ρ′′r : (L∞(G �∗,H S+
N ), h) → (MN , ωN ), where h the Haar 

state on G �∗,H S+
N , such that, writing AN = ∪↑

iAi, ρ maps C(S+
N ) onto A0 = C(H) ⊗

C(S+
N ) via x 	→ 1 ⊗ x and, for all 1 ≤ i ≤ N , ρ(νi(a)) = a ⊗ 1 ∈ C(G) ⊗ CN ⊂ Ai =

(C(G) ⊗ CN ) ∗
C(H)⊗CN=C(H)⊗Li

Ai−1 and, λ ◦ ρ = ρr ◦ λN , λ ◦ ρ′′r = ρ′′r ◦ λN , where 

λ : C(G �∗,H S+
N ) → Cr(G �∗,H S+

N ) is the canonical surjection.

Proof. Uniqueness being obvious, it suffices to show the existence and that ρ inter-
twines the states. The existence of ρr and ρ′′r follows from that. It is easy to see, by 
the universal property of C(G �∗,H S+

N ) = C(G)∗HN ∗ C(S+
N )/I that there exists a uni-

tal ∗-homomorphism ρ satisfying the conditions of the statement. To show that ρ is 
an isomorphism, we construct an inverse ρ′ : AN → C(G �∗,H S+

N ). To do so, we 
construct inductively unital ∗-homomorphisms ρ′i : Ai → C(G �∗,H S+

N ) by letting 
ρ′0 : A0 = C(H) ⊗ C(S+

N ) → C(G �∗,H S+
N ), a ⊗ b 	→ ν(a)b and, if ρ′i−1 : Ai−1 →

C(G �∗,H S+
N ) is defined, we use the universal property of the full amalgamated free 

product Ai = (C(G) ⊗CN ) ∗
C(H)⊗CN=C(H)⊗Li

Ai−1 to define ρ′i : Ai → C(G �∗,H S+
N ) to 

be the unique unital ∗-homomorphism such that ρ′i|Ai−1 = ρ′i−1 and ρ′i(a ⊗ej) = νi(a)uij

for all a ⊗ ej ∈ C(G) ⊗ CN , where (ej)1≤j≤N is the canonical orthonormal basis 
of CN . Then, since ρ′i|Ai−1 = ρ′i−1, there exists a unique unital ∗-homomorphism 
ρ′ : AN = ∪↑

iAi → C(G �∗,H S+
N ) such that ρ′|Ai

= ρ′i. It is then easy to check 
that ρ′ is the inverse of ρ. It remains to show that ρ intertwines the states. By the 
uniqueness property of the state h stated in Theorem 3.2, it suffices to show that 
ωN (ρ(c)) = 0 for c ∈ C(G �∗,H S+

N ) a reduced operator in the sense of Theorem 3.2. 
So let c = a0νi1(b1)a1 . . . νin(bn)an ∈ C(G �∗,H S+

N ) be a reduced operator and note that, 
if at least one the ik is equal to N then ρ(c) is a word with letters alternating from 
C(G) ⊗ CN  C(H) ⊗ CN , and AN−1  C(H) ⊗ LN (where, when, for C ⊂ B with 
conditional expectation, B  C denotes the kernel of the conditional expectation onto 
C) so, by definition of the free product state, ωN(ρ(c)) = 0. If for all k, ik ≤ N − 1, 
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then we can view ρ(c) ∈ AN−1 and since ωN |AN−1 = ωN−1, we can repeat the argument 
inductively and eventually deduce that ωN (ρ(c)) = 0. �

In the setting of von Neumann algebras, the inductive construction implies the fol-
lowing.

Proposition 3.7. The following holds for G �∗,H S+
N , with ψ defined in Equation (2),

(1) The modular group of the Haar state h is σt := ψ(σG
t ), for all t ∈ R, where (σG

t )t∈R
is the modular group of the Haar state of G on L∞(G).

(2) The scaling group is τt := ψ(τGt ), ∀t ∈ R, where τGt is the scaling group of G.
(3) T (G �∗ S+

N ) = {t ∈ R : τGt = id} ∀N ≥ 2 and N �= 3 and τ(G �∗,H S+
N ) = τ(G)

∀N ∈ N∗.

Proof. (1). We first note that, for all t ∈ R, σG
t ∈ AutL∞(H)(L∞(G), hG). From [47, 

Theorem 2.6], the modular group of the free product state ω1 on the amalgamated 
free product M1 = (L∞(G) ⊗ CN ) ∗

L∞(H)⊗CN=L∞(H)⊗L1
(L∞(H) ⊗ L∞(S+

N )) satisfies 

σω1
t |L∞(G) = σ

h
S
+
N

t = id and σt(x ⊗ 1) = σG
t (x) ⊗ 1 for all x ∈ L∞(G). Identifying 

(MN , ωN ) � (L∞(G �∗,H S+
N ), h) with the isomorphism of Proposition 3.6 and applying 

inductively [47, Theorem 2.6] to our finite sequence of von Neumann algebra (Mi)1≤i≤N

gives the result.

(2). Note that, for all t ∈ R, τGt ∈ AutL∞(H)(L∞(G), hG). To show that τt := ψ(τGt ) is 
the scaling group we have to show that Δσt = (τt ⊗ σt)Δ. Using the properties of σt, τt
and the definition of Δ we have, for all 1 ≤ i ≤ N and all a ∈ Pol(G),

Δ(σt(νi(a))) = Δ(νi(σG
t (a))) =

N∑
j=1

(νi ⊗ νj)(ΔG(σG
t (a)))(uij ⊗ 1)

=
N∑
j=1

(νi ⊗ νj)((τGt ⊗ σG
t )ΔG(a))(uij ⊗ 1)

=
N∑
j=1

(τt ⊗ σt)(νi ⊗ νj)(ΔG(a))(uij ⊗ 1) = (τt ⊗ σt)Δ(νi(a)),

where, in the last equality, we used that τt(uij) = uij . Since the modular group and 
scaling group act as the identity on L∞(S+

N ), the equality Δσt(uij) = (τt ⊗ σt)Δ(uij) is 
clear.

(3). Let us compute the T -invariant in the non-amalgamated case. For N ≥ 4, the 
irreducible representations of G �∗ S+

N are completely classified in [27] and it follows 
that the only dimension 1 irreducible representation is the trivial representation. Hence, 
T (G �∗S+

N ) = {t ∈ R : τt = id} and we conclude the proof using assertion (1). For N = 2, 
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we know from Proposition 2.23 that G �∗ S+
2 � G∗2 � S2 and the T -invariant of such 

quantum groups is computed in Proposition 2.17. Using also Proposition 2.8 concludes 
the computation.

To compute the τ -invariant, we may and will assume that N ≥ 2. Since ψ is contin-
uous, one has τ(G �∗,H S+

N ) ⊆ τ(G). Let us show that τ(G) ⊆ τ(G �∗,H S+
N ). Applying 

Remark 2.1 with M = L∞(G �∗,H S+
N ) =

(
L∞(G)⊗CN

)
∗

L∞(H)⊗CN=L∞(H)⊗LN

MN−1, 

ω the Haar state and A = L∞(G) ⊗ CN we see that the map R → Aut(L∞(G)), 
t 	→ σt|A = σG

t ⊗ id is τ(G �∗,H S+
N )-continuous. Hence, (t 	→ σG

t ) is τ(G �∗,H S+
N )-

continuous so τ(G) ⊆ τ(G �∗,H S+
N ). �

4. Approximation properties

Theorem A is a consequence of the following more general statement.

Theorem 4.1. For G a CQG with H a dual quantum subgroup and N ≥ 1, the following 
holds

(1) Ĝ is exact if and only if ̂G �∗,H S+
N is exact.

(2) If Irr(H) is finite, then Ĝ has the Haagerup property if and only if ̂G �∗,H S+
N has 

the Haagerup property.
(3) If G is Kac and H is co-amenable then Ĝ is hyperlinear if and only if ̂G �∗,H S+

N is 
hyperlinear.

(4) • If N ≥ 5, G �∗,H S+
N is not co-amenable for all G and all H.

• If N ∈ {3, 4} and H is a proper dual quantum subgroup of G (2.11) then G �∗,HS+
N

is not co-amenable whenever G is Kac.
• G �∗,H S+

2 is co-amenable if and only if G∗H2 is co-amenable.
(5) Ĝ is K-amenable if and only if ̂G �∗,H S+

N is K-amenable.

Proof. (1). It is known from [9] that Cr(S+
N ) is exact. Hence, the result follows from [22, 

Corollary 3.30].

(2). Note that, at N ≤ 4, S+
N is a co-amenable Kac CQG [1] so that L∞(S+

N ) has the 
Haagerup property and, at N ≥ 5, L∞(S+

N ) has the Haagerup property by [9]. We 
show the result by using the inductive construction of L∞(G �∗,H S+

N ) = MN , with 
M0 = L∞(H) ⊗ L∞(S+

N ) and Mi+1 = (L∞(G) ⊗ CN ) ∗
L∞(H)⊗CN

Mi. At i = 0, M0 =

L∞(H) ⊗ L∞(S+
N ) has the Haagerup property, because L∞(H) is finite-dimensional. 

Assume that Mi has the Haagerup property. It follows from [12, Corollary 8.2] that 
Mi+1 = (L∞(G) ⊗ CN ) ∗

L∞(H)⊗CN
Mi also has the Haagerup property whenever Ĝ has 

the Haagerup property. By induction, MN = L∞(G �∗,H S+
N ) has the Haagerup property. 

Suppose now that ̂G �∗,H S+
N has the Haagerup property. It is easy to check, using the 

definition of Haagerup property of [15] with respect to a faithful normal state (f.n.s.) 
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that if (M, ω), ω ∈M∗ a f.n.s., has the Haagerup property and P ⊂M is a von Neumann 
subalgebra with a normal and state-invariant conditional expectation E : M → P then, 
(P, ω|P ) also has the Haagerup property. Hence, since by construction of amalgamated 
free products we do have such conditional expectations on each leg of the amalgamated 
free product we first deduce from the inductive construction state-preserving isomor-
phism

(L∞(G �∗,H S+
N ), h) �

(
(L∞(G)⊗CN ) ∗

L∞(H)⊗CN
MN−1, ωN

)
that L∞(G) ⊗CN has the Haagerup property which implies that L∞(G) also has it.

(3). By Proposition [2, Corollary 3.7], Ŝ+
N is hyperlinear for all N ∈ N∗. Assuming that G

is Kac (so that G �∗,H S+
N also is), and that H is co-amenable so that L∞(H) is amenable, 

we can apply the strategy of the proof of (2) by using [4, Corollary 4.5] to deduce the 

fact that if Ĝ is hyperlinear then so is ̂G �∗,H S+
N . The converse is clear.

(4). The case N = 2 is a consequence of Propositions 2.23 and 2.17. Suppose that N ≥ 3
and G �∗,H S+

N is co-amenable. Since G∗HN and S+
N are both compact quantum subgroup 

of G �∗,H S+
N by Remark 2.22, it follows that G∗HN and S+

N are both co-amenable [43]. 
It implies that N ≤ 4, since S+

N is not co-amenable for all N ≥ 5 [1]. Moreover, since 
N ≥ 3, G∗HN is not co-amenable whenever H is proper by Proposition 2.13 since H has 
infinite index in G ∗H G.

(5). By [54] Ŝ+
N is K-amenable hence, if Ĝ is K-amenable, so is Ĥ and, a direct applica-

tion of [23, Theorem 5.1 and 5.2], implies that ̂G �∗,H S+
N is K-amenable. Let us prove 

the converse. To ease the notations we write A = C(G �∗,H S+
N ) and A = Cr(G �∗,H S+

N )
during this proof. Let λ : A → A be the canonical surjection and assume that ̂G �∗,H S+

N

is K-amenable i.e. there exists α ∈ KK(A, C) such that [λ] ⊗ α = [ε] ∈ KK(A, C), 
where ⊗ denotes here the Kasparov product and ε : A → C the counit of the free 
wreath product. Let us show that Ĝ∗HN is K-amenable (and so Ĝ also is). Consider the 
canonical inclusion π : C(G)∗HN → A. Note that π does not intertwine the comulti-
plications so that we can not deduce the K-amenability of Ĝ∗HN by using the stability 
of K-amenability by dual quantum subgroup. However, by Theorem 3.2, the canonical 
inclusion π : C(G)∗HN → A intertwines the Haar states hence, there exists a unital ∗-
homomorphism πr : Cr(G∗HN ) → A such that πr ◦λG = λ ◦π, where λG : C(G∗HN ) →
Cr(G∗HN ) is the canonical surjection. Define β := [πr] ⊗ α ∈ KK(Cr(G∗HN ), C). One 
has:

[λG]⊗ β = [λG]⊗ [πr]⊗ α = [πr ◦ λG]⊗ α = [λ ◦ π]⊗ α

= [π]⊗ [λ]⊗ α = [π]⊗ [ε] = [ε ◦ π] = [εG].

This shows that Ĝ∗HN is K-amenable. �
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Remark 4.2. To deduce Theorem A it remains to deduce the co-amenability statement 
for N = 2 which follows from Proposition 2.8.

Remark 4.3. As explained in the Introduction, except for N = 2, the stability of the 
Haagerup property under the free wreath product construction was open. In the case 
where G = Γ̂ is the dual of a discrete group, and H is a finite subgroup, then the 
stability of the Haagerup property and of the weak amenability with constant 1 has 
been proved in [28]. In the general but non-amalgamated case, only the stability of the 
central ACPAP, which is a strengthening of both the Haagerup property and the weak 
amenability with constant 1 was known. However, it follows from Proposition 2.17 that 
Λcb(Ĝ �∗ S+

2 ) = Λcb(Ĝ). For N ≥ 3, we believe that weak amenability with constant 1
is also stable under the free wreath product construction and one obvious way to do 
the proof would be by induction, using our inductive construction of the von Neumann 
algebra as well as an amalgamated version (over a finite dimensional subalgebra) of the 
result of Xu-Ricard [42]. Let us mention that for classical wreath products it has been 
proved by Ozawa [38] that for any non-trivial discrete group Λ and any non-amenable 
discrete group Γ, the classical wreath product Λ � Γ is not weakly amenable.

5. The von Neumann algebra of a free wreath product

This section contains the proofs of Theorems B and C. Recall that (σG
t )t∈R denotes 

the modular group of the Haar state on L∞(G).
Theorem B is a direct consequence of the following more general statement.

Theorem 5.1. Suppose that Irr(G) is infinite, Irr(H) is finite, L∞(G)′ ∩ L∞(H) = C1
and N ≥ 4. Then L∞(G �∗,H S+

N ) is a non-amenable full and prime factor without any 
Cartan subalgebra and the following holds.

• If G is Kac then L∞(G �∗,H S+
N ) is a type II1 factor.

• If G is not Kac then L∞(G �∗,H S+
N ) is a type IIIλ factor for some λ �= 0 and:

T (L∞(G �∗,H S+
N )) = {t ∈ R : ∃u ∈ U(L∞(H)), σG

t = Ad(u)}.

Moreover, in the non-amalgamated case, we have τ(L∞(G �∗ S+
N )) = τ(G).

Proof of Theorem B. First observe that, by Lemma 2.4, both L∞(G) and L∞(S+
N ) are 

diffuse (since N ≥ 4). Hence, L∞(G) ⊗ CN and L∞(H) ⊗ L∞(S+
N ) are also diffuse and 

the inclusions L∞(H) ⊗CN ⊂ L∞(G) ⊗CN and L∞(H) ⊗ Lk ⊂ L∞(H) ⊗ L∞(S+
N ) are 

without trivial corner for all 1 ≤ k ≤ N , in the sense of [32] (since L∞(H) ⊗CN is finite 
dimensional hence purely atomic, see [32, Lemma 5.2]).

We show the result by using the inductive construction of L∞(G �∗,H S+
N ) = MN , with 

M0 = L∞(H) ⊗L∞(S+
N ) and Mi+1 = (L∞(G) ⊗CN ) ∗

∞ N
Mi. At i = 0, we know that 
L (H)⊗C
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M0 and L∞(G) ⊗CN are diffuse so the inclusions B = L∞(H) ⊗CN ⊂ L∞(G) ⊗CN and 
B = L∞(H) ⊗L1 ⊂M0 are without trivial corner. Moreover, it follows from Lemma 2.20
that:

M ′
0 ∩ (L∞(G)⊗CN )′ ∩B ⊂ (L∞(G)′ ∩ L∞(H))⊗ (L∞(S+

N )′ ∩ L1) = C.

Hence, we may apply [32, Theorem E] to deduce that M1 is a non-amenable prime factor. 
In particular M1 is diffuse and a direct induction shows that Mk is a non-amenable prime 
factor for all 1 ≤ k ≤ N , in particular, MN = L∞(G �∗,H S+

N ) is a non-amenable prime 
factor.

Suppose that A ⊂ M := L∞(G �∗,H S+
N ) =

(
L∞(G)⊗CN

)
∗

L∞(H)⊗CN
MN−1 is a 

Cartan subalgebra. By the previous discussion, MN−1 is a non-amenable factor. Hence, 
it has no amenable direct summand and we may apply [6, Theorem B] to deduce that 
A ≺M L∞(H) ⊗CN . Since L∞(H) ⊗CN is finite dimensional, this contradicts the fact 
that A, being maximal abelian in the diffuse von Neumann algebra M , is itself diffuse.

To see that L∞(G �∗,HS+
N ) is full, we may now apply [50, Theorem 4.10] (since L∞(G) ⊗

CN is diffuse and L∞(H) ⊗ CN is finite dimensional so the inclusion L∞(H) ⊗ CN ⊂
L∞(G) ⊗CN is entirely non trivial and, as shown before, MN−1 is diffuse).

When G is Kac, G �∗,H S+
N is also Kac hence, L∞(G �∗,H S+

N ) is a II1-factor. When 
G is not Kac, L∞(G �∗,H S+

N ) is a non-amenable factor by the first part of the proof 
but not a finite factor by [24, Theorem 8]. Hence, it is a type IIIλ factor with λ �= 0
since it is a full factor [14, Proposition 3.9]. To compute the T -invariant, we view again 
M := L∞(G �∗,H S+

N ) =
(
L∞(G)⊗CN

)
∗

L∞(H)⊗CN
MN−1 and we also note that, since 

MN−1 is diffuse and the amalgam B := L∞(H) ⊗LN = L∞(H) ⊗CN is finite dimensional, 
we have MN−1 ⊀M B. We can now use [31] to deduce that T := T (L∞(G �∗,H S+

N )) =
{t ∈ R : ∃u ∈ U(B) σt = Ad(u)}, where (σt)t∈R is the modular group of the Haar state 
on L∞(G �∗,H S+

N ), which coincides with the free product state. In particular one has 
σt|L∞(G)⊗CN = σG

t ⊗ id. Let T ′ := {t ∈ R : σG
t = id}. It is clear that T ′ ⊆ T . Let t ∈ T

and u ∈ U(B) such that σt = Ad(u). Write u =
∑N

k=1 uk ⊗ ek ∈ L∞(H) ⊗ CN ; where 
uk ∈ L∞(H) is unitary for all 1 ≤ k ≤ N . For all b ∈ L∞(G) and all 1 ≤ k ≤ N we find 
σt(b ⊗ ek) = σG

t (b) ⊗ ek = u(b ⊗ ek)u∗ = ukbu
∗
k ⊗ ek. Hence, σG

t = Ad(u1) which implies 
that t ∈ T ′. Note that we could also have computed the T -invariant by using the results 
of [50]. Let us now compute Connes’ τ -invariant in the non-amalgamated case. It suffices 
to show that, for any sequence (tn)n of real numbers, one has tn → 0 for τ(G �∗S+

N ) if and 
only if tn → 0 for τ(G). Assume that tn → 0 for τ(L∞(G �∗ S+

N )). Then, viewing again 
L∞(G �∗ S+

N ) =
(
L∞(G)⊗CN

)
∗
B
MN−1, where this time B = CN = LN , we may apply 

[31, Theorem B], to deduce that there exists a sequence of unitaries vn ∈ U(B) such that 
αn := Ad(vn) ◦σtn → id. To conclude the proof, we apply the restriction argument from 
Remark 2.1 to deduce that αn|L∞(G)⊗CN → id in Aut(L∞(G) ⊗ CN ). Note that, since 
B is in the center of L∞(G) ⊗CN one has αn|L∞(G)⊗CN = σG

t ⊗ id and we deduce that 

n
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σG
tn → id i.e. tn → 0 in τ(G). The converse statement follows from the continuity of the 

group homomorphism ψ defined by Equation (2). �
Remark 5.2. The assumption N �= 2 in Theorem B is necessary. Indeed, when N = 2, 
we know from Proposition 2.23 and Section 2.5 that L∞(G �∗ S+

2 ) =
(
L∞(G∗2)

)
⊗ C2. 

In particular, L∞(G �∗ S+
2 ) is never a factor. For N = 3, our proof does not work 

(L∞(S+
3 ) � C6 is not diffuse) but we don’t know if L∞(G �∗ S+

3 ) can nonetheless be a 
factor. However, whenever |Irr(G)| ≥ 3 if N = 2 or whenever G is non-trivial if N = 3, 
Proposition 2.8 shows that L∞(G∗N ) is a full and prime factor without any Cartan 
subalgebras and of type II1 if G is Kac or of type IIIλ, λ �= 0, with T invariant given 
by {t ∈ R : σG

t = id}, if G is not Kac. Finally, let us mention that the assumption 
|Irr(G)| = ∞ in Theorem B does not seem necessary but is useful in our proof.

Theorem C is a direct consequence of the following.

Theorem 5.3. Suppose that Irr(G) is infinite, Irr(H) is finite and N ≥ 2. The following 
holds.

(1) If L∞(G) is amenable then, ∀1 ≤ i ≤ N , the von Neumann subalgebra of L∞(G �∗,H
S+
N ) generated by {νi(a)uij : a ∈ L∞(G), 1 ≤ j ≤ N} is maximal amenable with 

expectation.
(2) If G is Kac then L∞(H) ⊗ L∞(S+

4 ) �
(
ν(L∞(H)) ∪ L∞(S+

4 )
)′′ ⊂ L∞(G �∗ S+

4 ) is 
maximal amenable.

Proof. (1). We use Serre’s dévissage in the following way. Fix 1 ≤ i ≤ N and Let T ′
N be 

the graph obtained from TN by removing the edge vi as well as its inverse edge vi. This 
graph is still connected. Let us denote by M2 the fundamental von Neumann algebra 
of our graph of von Neumann algebras restricted to T ′

N so that we have L∞(H) ⊗
L∞(S+

N ) ⊂ M2. It follows from [22] that L∞(G �∗,H S+
N ) is canonically isomorphic to 

M1 ∗
B
M2, where the amalgamation is B = L∞(H) ⊗ CN ⊂ M1 := L∞(G) ⊗ CN and 

B = L∞(H) ⊗ Li ⊂ L∞(H) ⊗ L∞(S+
N ) ⊂ M2. Note that the von Neumann algebra 

generated by {νi(a)uij : a ∈ C(G), 1 ≤ j ≤ N} is then identified with M1 ⊂ M1 ∗
B
M2

and M1 � L∞(G) ⊗CN � L∞(G × Ẑ/NZ) is diffuse, by Lemma 2.4. Hence M1 ⊀M1 B

and since M1 is amenable, we may apply [5, Main Theorem] to deduce that M1 is 
maximal amenable.

(2). Consider the inductive construction L∞(H) ⊗ L∞(S+
4 ) = M0 ⊂ M1 ⊂ · · · ⊂ MN =

L∞(G �∗,H S+
4 ), where Mk+1 =

(
L∞(G)⊗CN

)
∗

L∞(H)⊗CN
Mk. Recall that L∞(S+

4 ) is 

diffuse and amenable and so is L∞(H) ⊗ L∞(S+
4 ) = M0. Let M0 ⊂ Q ⊂ MN be an 

amenable von Neumann algebra. Then M0 ⊂ Q ∩MN−1 so Q ∩MN−1 ⊀
MN−1

L∞(H) ⊗CN

since M0 is diffuse. Hence, we can apply [5, Main Theorem] to the amalgamated free 
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product MN =
(
L∞(G)⊗CN

)
∗

L∞(H)⊗CN
MN−1 and deduce that Q ⊂ MN−1. By a 

direct induction we find that Q ⊂M0. Note that the Kac assumption on G is to ensure 
that each Mk is finite so the inclusion Q ∩Mk ⊂Mk is always with expectation. We do 
not know if this result still holds in the non Kac case. �
6. Free wreath product of a fundamental quantum group

Let (G, (Gq)q∈V (G), (Ge)e∈E(G), (se)e∈E(G)) be a graph of CQG over the connected 
graph G i.e.:

• For every q ∈ V (G) and every e ∈ E(G), Gq and Ge are CQG.
• For all e ∈ E(G), Ge = Ge.
• For every e ∈ E(G), se : C(Ge) → C(Gs(e)) is a faithful unital ∗-homomorphism 

intertwining the comultiplications (so Ge is a dual quantum subgroup of Gs(e)).

Consider the graph of C∗-algebras (G, C(Gq), C(Ge), se) and fix a maximal subtree T ⊂
G. Define C(G) as the maximal fundamental C*-algebra of the graph of C*-algebras 
(G, C(Gq), C(Ge), se) relative to the maximal subtree T . By the universal property of 
C(G), there exists a unique unital ∗-homomorphism Δ : C(G) → C(G) ⊗ C(G) such 
that Δ|C(Gq) = ΔC(Gq) and Δ(ue) = ue⊗ue for all q ∈ V (G) and all e ∈ E(G). The pair 
G := (C(G), Δ) is a CQG, known as the fundamental quantum group and studied in [22]. 
We will denote this CQG by G = π1(G, Gp, Ge, T ). It is known from [22] that C(G) is 
indeed the full C*-algebra of G. Let us note that, since se identifies Ge as a dual quantum 
subgroup of Gs(e), we have conditional expectations Es

e : C(Gs(e)) → se(C(Ge)) which 
are non-necessary GNS-faithful.

Since Ge ⊂ Gs(e) is a dual quantum subgroup se factorizes to a faithful unital ∗-
homomorphism se : Cr(Ge) → Cr(Gs(e)) intertwining the comultiplications and we 
have Haar-state-preserving faithful conditional expectations Cr(Gs(e)) → se(Cr(Ge)). 
Hence we get a graph of C*-algebras (G, Cr(Gq), Cr(Ge), se) with faithful conditional 
expectations whose vertex-reduced fundamental C*-algebra is the reduced C*-algebra 
Cr(G) of G [22].

Definition 6.1. The loop subgroup of G is the group Γ ⊂ U(C(G)) generated by {ue : e ∈
E(G)}.

Note that the inclusion Γ ⊂ U(C(G)) extends to a unital ∗-homomorphism π :
C∗(Γ) → C(G).

Proposition 6.2. For G = π1(G, Gp, Ge, T ) with loop subgroup Γ the following holds.

(1) π : C∗(Γ) → C(G) is faithful and intertwines the comultiplications.
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(2) For all e ∈ E(G), N ∈ N∗, there exists a unique unital ∗-homomorphism

sNe : C
(
Ge �∗ S+

N

)
→ C

(
Gs(e) �∗ S+

N

)
such that sNe ◦νi = νi ◦se, sNe |C(S+

N ) = id, ∀i.

Moreover, sNe intertwines the comultiplications and restricts to a faithful map Pol(Ge �∗
S+
N ) ↪→ Pol(Gs(e) �∗ S+

N ) i.e. Ge �∗ S+
N is a dual quantum subgroup of Gs(e) �∗ S+

N .

Proof. (1). Let CΓ be the image of π i.e. the C*-algebra generated by {ue : e ∈ E(G)} in 
C(G). To show that that π is faithful, it suffices to check that CΓ satisfies the universal 
property of C∗(Γ). Recall that εs(e)◦se(b) = εe(b), where, for p ∈ V (G), εp is the counit on 
C(Gp) and, for e ∈ E(G), εe is the counit on C(Ge). Let now ρ : Γ → U(H) be a unitary 
representation of Γ. By the universal property of C(G) = π1(G, C(Gp), C(Ge), T ), there 
exists a unique unital ∗-homomorphism ρ̃ : C(G) → B(H) such that ρ̃(ue) = ρ(ue)
and ρ̃(a) = εp(a)idH , for all a ∈ C(Gp) and all p ∈ V (G). Hence, ρ̃|CΓ : CΓ → B(H)
is a unital ∗-homomorphism such that ρ̃(g) = ρ(g), for all g ∈ Γ. It follows that π
is faithful. The fact that π intertwines the comultiplications follows from the equality 
Δ(ue) = ue ⊗ ue for all e ∈ E(G).

(2). The existence and the properties of the morphism sNe follows from Proposi-
tion 3.3. �

By the previous Proposition, we will always view C∗(Γ) = C(Γ̂) ⊂ C(G) as the 
C*-algebra generated by {ue : e ∈ E(G)} and such that the inclusion intertwines the 
comultiplications. In particular, Γ̂ is a dual quantum subgroup of G. Moreover, the 
previous Proposition shows that (G, (Gq �∗ S+

N )q∈V (G), (Ge �∗ S+
N )e∈E(G), (sNe )e∈E(G)) is a 

graph of quantum groups. Its fundamental quantum group is determined in the following 
Theorem.

Theorem 6.3. If G = π1(G, Gp, Ge, T ) with loop subgroup Γ then

G �∗,Γ̂ S+
N � π1

(
G, Gp �∗ S+

N , Ge �∗ S+
N , T

)
.

Proof. Define A := C
(
π1

(
G, Gp �∗ S+

N , Ge �∗ S+
N , T

))
and B := C

(
G �∗,Γ̂ S+

N

)
. For all 

p ∈ V (G), we have a unital ∗-homomorphism ϕp : C(Gp �∗ S+
N ) → B coming from the 

inclusion C(Gp) ⊂ C(G). Moreover, ∀e ∈ E(G) \E(T ), there is a unitary ue ∈ B such that

u∗
eϕs(e) ◦ se(a)ue = ϕr(e) ◦ re(a) ∀a ∈ C(Ge �∗ S+

N ),

the unitary being the one in C∗(Γ), which is unique because of the amalgamation and 
works for every copy of C(Ge) in C(Ge �∗ S+

N ) by construction of G. Hence, the universal 
property of A gives a morphism π : A → B which clearly intertwines the comulti-
plications. We will give an inverse of this map, using the universal property of B. For 
1 ≤ i ≤ N , there is for any p ∈ V (G) a map νi : C(Gp) → A sending C(Gp) on its 
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i-th copy in the free product defining C(Gp �∗ S+
N ) in A. There is also for every edge 

e ∈ E(G) \E(T ) a unitary ue ∈ A, which satisfies the relations of the universal property 
of B, and is the same for every one of the N copies of C(Ge). Therefore, we get a map 
ψ0 : C(G �∗S+

N ) → A which factors through B, because the unitaries ue are independent 
of the copy of C(Ge), thus we can factor the map through the quotient amalgamating 
the algebras generated by the ui

e for 1 ≤ i ≤ N , which is exactly B. We get a morphism 
ψ : B → A for which it is easy to see that it intertwines the comultiplications. The maps 
are inverse of each other, because they send the N copies of C(G) to N corresponding 
copies of C(G) and respect the unitaries from the fundamental algebra construction. �
Example 6.4. Suppose that G has two edges e and e. We have two cases.

(1) If s(e) �= r(e) then G is a tree so T = G and the loop subgroup is trivial. We are in 
the situation of an amalgamated free product G = G1 ∗

H
G2 and, by Theorem 6.3,

G �∗ S+
N � G1 �∗ S+

N ∗
H�∗S+

N

G2 �∗ S+
N .

(2) If s(e) = r(e) then T has no edges and the loop subgroup is Γ = 〈ue〉 � Z. 
We are in the situation of an HNN extension i.e. H and Σ are CQG such that 
C(Σ) ⊂ C(H) is a dual quantum subgroup and θ : C(Σ) ↪→ C(H) is a faithful 
unital ∗-homomorphism intertwining the comultiplications then the HNN extension 
G := HNN(H, Σ, θ) is the CQG with C(G) the universal unital C*-algebra gen-
erated by C(H) and a unitary u ∈ C(G) with the relations θ(b) = ubu∗ for all 
b ∈ C(Σ) ⊂ C(H) and comultiplication given by Δ(u) = u ⊗ u and Δ|C(H) = ΔH . 
The loop subgroup Γ = Z satisfies C∗(Γ) = 〈u〉 ⊂ C(G) and, by Theorem 6.3, 
HNN(H, Σ, θ) �∗,Γ̂ S+

N � HNN(H �∗ S+
N , Σ �∗ S+

N , θ̃).

7. K-theory

In [23] is obtained a 6-term exact sequences for the KK-theory of the reduced and the 
full fundamental algebras of any graph of C∗-algebras (G, Ap, Be, se) with (non-necessary 
GNS-faithful) conditional expectations. It is shown in [23] that the canonical surjection 
from the full fundamental C*-algebra P to the vertex-reduced fundamental C*-algebra 
Pr is a KK-equivalence and, denoting by P• either P or Pr one has the following exact 
sequences, for any C*-algebra C.

⊕
e∈E+(G) KK0(C,Be)

⊕
p∈V (G) KK0(C,Ap) KK0(C,P•)

KK1(C,P•)
⊕

p∈V (G) KK1(C,Ap)
⊕

e∈E+(G) KK1(C,Be),

∑
s∗e−r∗e

∑
s∗e−r∗e

(3)



44 P. Fima, A. Troupel / Advances in Mathematics 441 (2024) 109546
⊕
e∈E+(G) KK0(Be, C)

⊕
p∈V (G) KK0(Ap, C) KK0(P•, C)

KK1(P•, C)
⊕

p∈V (G) KK1(Ap, C)
⊕

e∈E+(G) KK1(Be, C).

∑
se∗−re∗

∑
se∗−re∗

(4)
Recall that, given a CQG G, C•(G) denotes either C(G) or Cr(G).

Proof of Theorem D. We can use the exact sequence (3) with C = C and with the 
graph of C*-algebra over TN from Section 3.1 in the case of C(G) and from Section 3.2
in the case of Cr(G) since both graphs of C∗-algebras have injective connecting maps 
and conditional expectations.

⊕
v∈E+

K0(C•(H) ⊗CN )
⊕

p∈V \{p0}
K0(C•(G) ⊗CN ) ⊕K0(C•(S+

N )) K0(C•(G �∗,H S+
N ))

K1(C•(G �∗,H S+
N ))

⊕
p∈V \{p0}

K1(C•(G) ⊗CN ) ⊕K1(C•(S+
N ))

⊕
v∈E+

K1(C•(H) ⊗CN ).

∑
s∗
v−r∗

v

∑
s∗
v−r∗

v

Using the compatibility of the K-theory with direct sums, we get the following:

K0(C•(H))⊗ ZN2
(
K0(C•(G))⊗ ZN2

)
⊕K0(C•(S+

N )) K0(C•(G �∗,H S+
N ))

K1(C•(G �∗,H S+
N ))

(
K1(C•(G))⊗ ZN2

)
⊕K1(C•(S+

N )) K1(C•(H))⊗ ZN2
.

∑
s∗v−r∗v

∑
s∗v−r∗v

In what follows we restrict to the cases where H is the trivial group, so that the maps ∑
s∗v − r∗v are always injective, as shown just below. We will however come back to the 

above sequence in some special cases. Let ej ∈ CN , 1 ≤ j ≤ N the canonical basis made 
of pairwise orthogonal rank one projections so that {[ej] : 1 ≤ j ≤ N} is a basis of 
K0(CN ) � ZN . One checks easily that {[1 ⊗ ej ] : 1 ≤ j ≤ N} is linearly independent in 
K0(C•(G) ⊗CN ) hence for every 1 ≤ i ≤ N , the elements

[1⊗ ej ]− [uji] ∈ K0((C(G)⊗CN ))⊕K0(C•(S+
N )), 1 ≤ j ≤ N

are also linearly independent and the map

s∗vi − r∗vi : K0(CN ) = ZN → K0((C(G)⊗CN ))⊕K0(C•(S+
N )),

(s∗vi − r∗vi)[ej ] = [1⊗ ej ]− [uji]

is injective, for all 1 ≤ i ≤ N . Now, let us denote by [eij] ∈
(
ZN

)⊕N the element [ej ]
viewed in the ith-copy of ZN so that {[eij ] : 1 ≤ i, j ≤ N} is a basis of 

(
ZN

)⊕N and, 
similarly, we denote by [1 ⊗ eij ] ∈ K0(C•(G) ⊗ CN )⊕N the element [1 ⊗ ej ] viewed in 
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the ith copy of K0(C•(G) ⊗ CN ) so that the map ψ :=
∑

v∈E+ s∗v − r∗v :
(
ZN

)⊕N →
K0(C•(G) ⊗ CN )⊕N

⊕
K0(C•(S+

N )) is given by ψ([eij ]) = [1 ⊗ eij ] − [uji]. As before, 
since {[1 ⊗ eij ] : 1 ≤ i, j ≤ N} is linearly independent in K0(C•(G) ⊗CN )⊕N , it follows 
that {[1 ⊗ eij ] − [uji] : 1 ≤ i, j ≤ N} is also linearly independent in K0(C•(G) ⊗
CN )⊕N

⊕
K0(C•(S+

N )) so ψ is injective.
From this we get the isomorphism for K1 and, for K0, we have:

K0(C•(G �∗ S+
N )) �

(
K0(C•(G)⊗CN )⊕N ⊕K0(C•(S+

N ))
)
/Im(ψ)

The K-theory of C•(S+
N ), where the two algebras are KK-equivalent because Ŝ+

N is K-
amenable, is computed by Voigt in [54] for N ≥ 4 and, for 1 ≤ N ≤ 3 we have C•(S+

N ) =
C(SN ) = CN ! hence,

K0(C•(S+
N )) �

{
ZN2−2N+2 if N ≥ 4,
ZN ! if 1 ≤ N ≤ 3.

and K1(C•(S+
N )) �

{
Z if N ≥ 4,
0 if 1 ≤ N ≤ 3.

When N ≥ 4, a family of generators of K0(C•(S+
N )) is given by the classes of (N − 1)2

coefficients of the fundamental representation of S+
N , [uij ], 1 ≤ i, j ≤ N − 1, and the 

class [1] of the unit.

K0(C•(G �∗ S+
N ))

�
(
K0(C•(G)⊗CN ))⊕N ⊕K0(C•(S+

N ))
)
/Im(ψ)

�
(
K0(C•(G))⊗ ZN2

)⊕ ZN2−2N+2
)
/〈([1]⊗ [eij ])− [uji], 1 ≤ i, j ≤ N〉

�
(
K0(C•(G))⊗ ZN2

)
/([1]⊗ Z2N−2).

The last quotient is obtained after identifying the classes [1 ⊗eij] with [uji]. This gives the 
first part of the statement of Theorem D for N ≥ 4. For the computation of the K-theory 
of quantum reflection groups Hs+

N = Ẑs �∗ S+
N , for 1 ≤ s ≤ +∞, which have K-amenable 

duals, note that, for s < ∞, since C∗(Zs) � C(Ẑs) � Cs, we have K0(C∗(Zs)) � Zs

and K1(C∗(Zs)) � {0}. Hence,

K0(C•(Hs+
N )) �

(
K0(C∗(Zs))⊗ ZN2

)
/([1]⊗ Z2N−2) � (Zs ⊗ ZN2

)/([1]⊗ Z2N−2)

� ZsN2−2N+2.

The same computation works when s = +∞ with K0(C∗(Z)) � Z, for K0, but for K1, 
as K0(C∗(Z)) � Z. �

We are grateful to Adam Skalski for suggesting to us to use the uniqueness of the 
trace from [36] to deduce the following from Theorem D.
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Corollary 7.1. If M, N ≥ 8 and s, t ≥ 1, then Cr(Hs+
N ) � Cr(Ht+

M ) ⇔ (N, s) = (M, t).

Proof. The dimensions of the K-theory groups may happen to be equal for different 
pairs of integers, so we need to go a bit further to differentiate between them. We use 
the value of the Haar state applied to the generators of K0(Cr(Hs+

N )) � ZsN2−2N+2. 
Thanks to the computation, we know that there are, in addition to the class of the unit 
[1], N2 − 2N + 1 generators coming from the ones of K0(Cr(S+

N )), namely [1 ⊗ uij ] for 
1 ≤ i, j ≤ N − 1, they are equal to [uij ] in K0(Cr(Hs+

N )). The trace of such elements is 
the same as the trace of the corresponding element in Cr(S+

N ), thanks to 3.2, which is 
equal to 1/N . The (s −1)N2 remaining generators are the ones coming from the N copies 
of K0(C∗(Zs) ⊗ CN ) and are of the form [δk ⊗ ej ], for k ∈ Zs, k �= 0, and 1 ≤ j ≤ N . 
Such a class, in the i-th copy, is sent to [νi(δk)uij ], which is of trace 1/(sN). Thus, using 
the uniqueness of the trace of these algebras, as proved in [36], we get that the pair 
(N, s) can be retrieved from the data of the K-theory, and it allows to discriminate the 
algebras of the different quantum reflection groups. �
Corollary 7.2. For all m ≥ 1, and N ≥ 4, the dual of F̂m �∗ S+

N is K-amenable and we 
have:

K0(C•(F̂m �∗ S+
N )) � ZN2−2N+2 and K1(C•(F̂m �∗ S+

N )) � ZN2m+1.

If 1 ≤ N ≤ 3, then the dual of F̂m �∗ S+
N is also K-amenable, with

K0(C•(F̂m �∗ S+
N )) � ZN ! and K1(C•(F̂m �∗ S+

N )) � ZN2m.

In particular, for all n, m ≥ 1 and N, M ≥ 1, C•(F̂n �∗ S+
N ) � C•(F̂m �∗ S+

M ) ⇔ (n, N) =
(m, M).

Proof. K-amenability of free groups has been proved by Cuntz in [17], when he intro-
duced the notion of K-amenability for discrete groups. The K-theory for the maximal 
C*-algebra was initially computed in [16] and for the reduced C*-algebra in [40]. The 
result is K0(C∗(Fm)) � Z and K1(C∗(Fm)) � Zm. Using this and Theorem D, we get 
the first result. For the last statement, we first use equality of the K0-groups to deduce 
that N = M and then, equality of the K1-groups to deduce that n = m. �

We can use the results of Section 6 to compute the KK-theory of C∗-algebras of a free 
wreath product of a fundamental quantum group of graph of CQG. The main theorem 
is the following, using the notations of Section 6 and denoting by E+ and V the positive 
edges and vertices of the connected graph G.

Theorem 7.3. If G = π1(G, Gp, Ge, T ) for any C∗-algebra A, there is a cyclic exact 
sequences:
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⊕
e∈E+

KK0(A,C•(Ge �∗ S+
N ))

⊕
p∈V

KK0(A,C•(Gp �∗ S+
N )) KK0(A,C•(G �∗,Γ̂ S+

N ))

KK1(A,C•(G �∗,Γ̂ S+
N ))

⊕
p∈V

KK1(A,C•(Gp �∗ S+
N ))

⊕
e∈E+

KK1(A,C•(Ge �∗ S+
N ))

∑
s∗e−r∗e

∑
s∗e−r∗e⊕

e∈E+
KK0(C•(Ge �∗ S+

N ), A)
⊕
p∈V

KK0(C•(Gp �∗ S+
N ), A) KK0(C•(G �∗,Γ̂ S+

N ), A)

KK1(C•(G �∗,Γ̂ S+
N ), A)

⊕
p∈V

KK1(C•(Gp �∗ S+
N ), A)

⊕
e∈E+

KK1(C•(Ge �∗ S+
N ), A)

∑
se∗−re∗

∑
se∗−re∗

Proof. As observed in Section 6 we have, at the level of full as well as reduced C*-
algebras, a graph of C*-algebras (G, C•(Gq �∗ S+

N ), C•(Gq �∗ S+
N ), sNE ) with conditional 

expectations (which are GNS-faithful only at the reduced level). By Theorem 6.3 the 
full/reduced C*-algebra C•(G �∗,Γ̂ S+

N ) is the full/vertex-reduced fundamental algebra of 
(G, C•(Gq �∗ S+

N ), C•(Gr �∗ S+
N ), sNE ). Hence, we may apply the exact sequences (3) and

(4). �
We compute now K-theory groups of some free wreath products of an amalgamated 

free product with S+
N .

Corollary 7.4. If G = G1 ∗H G2 then there is a cyclic sequence of K-theory groups:

K0(C•(H �∗ S+
N )) K0(C•(G1 �∗ S+

N ))⊕K0(C•(G2 �∗ S+
N )) K0(C•(G �∗ S+

N ))

K1(C•(G �∗ S+
N )) K1(C•(G1 �∗ S+

N ))⊕K1(C•(G2 �∗ S+
N )) K1(C•(H �∗ S+

N )).

Proof. As observed in Example 6.4 the loop subgroup is trivial in the case of an amal-
gamated free product. The proof follows from the first exact sequence in Theorem 7.3
with A = C. �
Corollary 7.5. For the compact quantum group ŜL2(Z)�∗S+

N , which has K-amenable dual, 
we have for N ≥ 4:

K0(C•(ŜL2(Z) �∗ S+
N )) � Z8N2−2N+2 and K1(C•(ŜL2(Z) �∗ S+

N )) � Z.

For 1 ≤ N ≤ 3, we have:

K0(C•(ŜL2(Z)�∗S+
N )) �

{
Z69 if N = 3,
Z8N2−2N+2 if N ∈ {1, 2}. and K1(C•(ŜL2(Z)�∗S+

N )) � 0.

Proof. We use the well known isomorphism SL2(Z) � Z6 ∗Z2 Z4 which implies the K-
amenability of SL2(Z) hence of the dual of ŜL2(Z)�∗S+

N as well by Theorem A. Moreover, 



48 P. Fima, A. Troupel / Advances in Mathematics 441 (2024) 109546
by Example 6.4, we have ŜL2(Z) �∗ S+
N � H6+

N ∗H2+
N

H4+
N . We may use the K-theory of 

the quantum reflection groups computed in Theorem D to deduce the one for the group 
ŜL2(Z) �∗ S+

N . Applying Corollary 7.4 and K-amenability, we get the following cyclic 
exact sequence

K0(C•(H2+
N )) K0(C•(H6+

N ))⊕K0(C•(H4+
N )) K0(C•(ŜL2(Z) �∗ S+

N ))

K1(C•(ŜL2(Z) �∗ S+
N )) K1(C•(H6+

N ))⊕K1(C•(H4+
N )) K1(C•(H2+

N )).

ψ

The maps in the bottom line are the diagonal embedding and the map (x, y) 	→ x − y, 
which are respectively injective and surjective Z → Z ⊕Z → Z. Hence, the top line is a 
short exact sequence and the map ψ is injective, and we have

K0(C•(ŜL2(Z) �∗ S+
N )) � Z6N2−2N+2 ⊕ Z4N2−2N+2/Im(ψ).

The map ψ sends the generators of K0(C•(H2+
N )), coming from the classes of the form 

[v ⊗ ej ] in K0(C∗(Z2) ⊗CN ) to the corresponding classes [β∗v ⊗ ej ] − [α∗v ⊗ ej ], where 
β : Z2 → Z6 and α : Z2 → Z4 are the canonical embeddings. Hence, the quotient by 
Im(ψ) identifies free copies of Z and the group is isomorphic to Z8N2−2N+2. �
Remark 7.6. We can use Proposition 7.4 to give another proof of Corollary 7.2. It is also 
possible to compute first the K-theory of the amalgamated free products and then apply 
Theorem D to get the results of 7.4.

Let us now do a K-theory computation in the context of an HNN extension. Recall 
that the Baumslag-Solitar group BS(n, m), for n, m ∈ Z∗, is defined by generators and 
relations:

BS(n,m) := 〈a, b | abna−1 = bm〉.

Let 〈a〉 < BS(n, m) be the subgroup generated by a and view 〈̂a〉 as a dual quantum 

subgroup of the compact quantum group ̂BS(n,m).

Proposition 7.7. The dual of the compact quantum group ̂BS(n,m)�∗,〈̂a〉S
+
N is K-amenable 

for any n, m ∈ Z∗ and N ≥ 1. Its K-theory groups are given by the following, for any 
n, m ∈ Z∗: if N ≥ 4 and n = m, then

K0(C•( ̂BS(n,m)�∗,〈̂a〉S
+
N )) � Z2N2−2N+3 and K1(C•( ̂BS(n,m)�∗,〈̂a〉S

+
N )) � Z2N2−2N+3,

and if n �= m,
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K0(C•( ̂BS(n,m) �∗,〈̂a〉 S
+
N )) � ZN2−2N+3,

K1(C•( ̂BS(n,m) �∗,〈̂a〉 S
+
N )) � ZN2−2N+3 ⊕ (Z|n−m|)N

2
.

For 1 ≤ N ≤ 3, if n = m, then

K0(C•( ̂BS(n,m) �∗,〈̂a〉 S
+
N )) � ZN2+N ! and K1(C•( ̂BS(n,m) �∗,〈̂a〉 S

+
N )) � ZN2+N !

and if n �= m,

K0(C•( ̂BS(n,m) �∗,〈̂a〉 S
+
N )) � ZN ! and K1(C•( ̂BS(n,m) �∗,〈̂a〉 S

+
N )) � ZN !⊕ (Z|n−m|)N

2
.

Proof. Note that BS(n, m) is the HNN-extension BS(n, m) = HNN(Z, Z, θn, θm), where 
θl : Z → Z is the multiplication by l ∈ {n, m}. In particular, BS(n, m) is K-amenable 

and the CQG ̂BS(n,m) is also an HNN-extension. We still denote by θl : C•(Ẑ �∗S+
N ) →

C•(Ẑ �∗ S+
N ) the map defined by θl(νi(k)uij) = νi(lk)uij for all l ∈ {n, m}, k ∈ Z and 

1 ≤ i, j ≤ N . By Example 6.4, the loop subgroup is Γ = 〈a〉 and, by using Theorem 7.3
(with A = C), we get,

K0

(
C•

(
Ẑ �∗ S+

N

))
K0

(
C•

(
Ẑ �∗ S+

N

))
K0(B)

K1(B) K1

(
C•

(
Ẑ �∗ S+

N

))
K1

(
C•

(
Ẑ �∗ S+

N

))
θ∗
n−θ∗

m

θ∗
n−θ∗

m

where B := C•( ̂BS(n,m) �∗,〈̂a〉 S
+
N ). As the group K0(C•(Ẑ �∗ S+

N )) is generated by the 

image of K0(C•(S+
N )) in it, and since we have, for l ∈ {n, m}, θ∗l ([uij ]) = [θl(uij)] = [uij ]

and θ∗l ([1]) = [θl(1)] = [1], where [uij ] and [1] are the generators of the K0 group, the map 
θ∗n−θ∗m is trivial at the K0 level. It is however nontrivial at the K1 level: K1(C(Ẑ �∗S+

N ))
is generated by the images of the generator [1] of K1(C∗(Z)), the one of the generator 
of K1(C(S+

N )). The action of θn at the K-theory level is thus given by multiplication by 
n on the generators coming from K1(C∗(Z)), and acts trivially on the one coming from 
K1(C(S+

N )). Thus the sequence splits differently depending on if m and n are equal or 
not. If n = m, then the maps are trivial and the sequence splits in two short sequences 
as follows:

0 → ZN2−2N+2 → K0(B)→ ZN2+1 → 0 and

0 → ZN2+1 → K0(B)→ ZN2−2N+2 → 0,

giving the first part of the result. If m �= n then the map is still trivial at the K0-level, 
but acts as the multiplication by m −n on the N first generators of K1(C(Ẑ �∗ S+

N )) and 
as 0 on the last one. The sequence splits in two short sequences:
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0 → ZN2−2N+2 → K0(B)→ Z→ 0 and

0 → ZN2 ψ−→ ZN2+1 → K1(B)→ ZN2−2N+2 → 0,

the map ψ in the second being multiplication by (n −m) on each of the first N2 terms of 
the sum, and the sequence becomes 0 → (Z|n−m|)N

2 ⊕ Z → K1(B) → ZN2−2N+2 → 0, 
and thus the result in the remaining case because the group on the right-hand-side is 
free. The proof for the cases 1 ≤ N ≤ 3 works the same way. �
Remark 7.8. The computation of this case can also be achieved thanks to the six-term 
exact sequence for the free wreath product with amalgamation of Theorem D, written in 
the beginning of the proof in section 7. The main point in the use of this exact sequence 
is that the maps 

∑
s∗v − r∗v appearing in the sequence are injective and explicit in this 

special case, allowing an easy computation.

We can compare it to the non-amalgamated case, using the following proposition 
about the K-theory of the Baumslag-Solitar groups BS(m, n) = HNN (Z,Z, θm, θn). We 
include a proof as we couldn’t find the result stated except in the solvable case in [41].

Proposition 7.9. Let m and n be integers, then the Baumslag-Solitar group BS(m, n) is 
K-amenable and its K-theory is given, if n = m, by

K0(C∗
• (BS(m,m))) � Z2 and K1(C∗

• (BS(m,m))) = Z2,

and if n �= m, by

K0(C∗
• (BS(m,n))) � Z and K1(C∗

• (BS(m,n))) = Z⊕ Z|n−m|.

Proof. The Baumslag-Solitar groups are the fundamental group of the graph with only 
one vertex and one edge, with Z on each and with Z being sent to the subgroups nZ and 
mZ by multiplication by m and n. Thus, the corresponding C*-algebras are the full and 
vertex-reduced fundamental C*-algebra of this graph with C∗(Z) and the maps induced 
from the multiplications, which are K-equivalent. The exact sequence of K-theory is then

K0 (C∗(Z)) K0 (C∗(Z)) K0(C∗
• (BS(m,n)))

K1(C∗
• (BS(m,n))) K1 (C∗(Z)) K1 (C∗(Z)) ,

θ∗
m−θ∗

n

θ∗
m−θ∗

n

which becomes
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Z Z K0(C∗
• (BS(m,n)))

K1(C∗
• (BS(m,n))) Z Z,

0

(m−n)

giving the result as the map (m − n) is injective if m �= n and 0 if m = n. �
From this we can compute the K-theory of the free wreath products using Theorem D.

Proposition 7.10. Let m and n be integers and N ≥ 4, then the dual of the compact 
quantum group ̂BS(n,m) �∗ S+

N is K-amenable and if n = m, then

K0(C•( ̂BS(m,n) �∗ S+
N )) � Z2N2−2N+2 and K1(C•( ̂BS(m,n) �∗ S+

N )) = Z2N2+1.

If n �= m,

K0(C•( ̂BS(m,n) �∗ S+
N )) � ZN2−2N+2 and

K1(C•( ̂BS(m,n) �∗ S+
N )) = ZN2+1 ⊕ (Z|n−m|)N

2
.

For 1 ≤ N ≤ 3, if n = m, then

K0(C•( ̂BS(m,n) �∗ S+
N )) � ZN2+N ! and K1(C•( ̂BS(m,n) �∗ S+

N )) = Z2N2
.

If n �= m,

K0(C•( ̂BS(m,n) �∗ S+
N )) � ZN ! and K1(C•( ̂BS(m,n) �∗ S+

N )) = ZN2 ⊕ (Z|n−m|)N
2
.
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