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ABSTRACT
Body posture and movements play a key role in the expression and
recognition of emotions during social interactions. Such signals
have been used for the prediction of emotions, both when consider-
ing discrete affective labels and affective dimensions. In this work
we explore how posture and movements information of the human
arm can be obtained from the robot onboard sensing in order to
discriminate the affective states of the human in physical Human-
Robot-Interaction scenarios. Specifically we focus on the Potency
dimension of the affective state, that provides information about
the sense of control in situated interaction contexts. Our envisaged
application scenario is assistive robotics for eldercare.

CCS CONCEPTS
• General and reference → Evaluation; Measurement; Exper-
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1 INTRODUCTION
The world population of is increasing in age both in absolute term
and as a share of the total [22], raising the need for more reliable
and long-term healthcare solutions. On the one hand, there is an
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increased interest in "ageing in place" (at home) [33], while on the
other hand there is a growing shortage of caregivers that could
potentially provide for such needs [21]. These factors highlight the
need for new technologies that could tackle such challenges, target-
ing not only the physical but also the cognitive well being of people
trough the development of Cognitive Assistants and Personal Robot
Assistants [19]. Such setups should adapt to the user to provide
comfortable and personalized care. Initially, Assistive Robots have
been designed either for rehabilitation applications, such as smart
wheelchairs, artificial limbs and exoskeletons, or as social compan-
ions that can enhance the psychological well being of the user, but
more recently there is increased interest on more general purpose
robots that are able to provide both types of assistance [32] [34]
[2].

Although very promising reports show that such robots and
other technologies were positively received [4], assistive robots
might not be readily accepted [35]. Early studies have highlighted
how designers of such systems must be careful in balancing the
need for both independence and engagement during activities of
daily life. Additionally, they must account for social, emotional and
environmental factors, which play key roles in the acceptance of
such technologies [14]. Importantly, among these various aspects
affecting such acceptance, the sense of being in control over the
technology is crucial [3] [35]. Thus, such sense of independence and
control by the elderly (and other users) might conflict with a fully
autonomous system and would require a system that can be adapted
by the the user to her preferences and needs. At the same time,
in the context of unstructured environments, the robot must face
the challenging task of adapting autonomously to its surroundings
but also allowing the user to adapt its behavior in order to retain
a sense of control [13]. These preliminary findings suggest that
any general purpose architecture should ideally be able to perceive
how much and if the user feels in control. This is precisely the
question we address in this paper. We present a model about how
this information could be inferred by perceiving the way the person
interacts with the robot, particularly regarding the level of control
with respect to one of the main dimensions of affective state. We
address this issue by taking an Affective Computing approach,
which is novel in the context of physical Human-Robot-Interaction.
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2 RELATEDWORK
Emotions have been traditionally studied by focusing on facial
expression [8] but more recently there has been a surging inter-
est for the role of other modalities, such as physiological signals,
speech and posture [15]. In the Affective Computing field two main
theories of emotions are considered, the discrete and the dimen-
sional [1]. Although discrete emotion categories can inform us
about a few prototypical affective states (happiness, sadness etc.),
the specific emotion encountered in the real world is usually more
nuanced, more ambiguous and less pronounced [17]. An alternative
approach is to consider affective states as points in a multidimen-
sional space which is more appropriate when considering scenarios
were a single label might be not informative and difficult to assess
[29]. Among the various multidimensional formulations used to de-
scribe affective states, one of themost popular is a three dimensional
Pleasure-Arousal-Dominance model [20]. Pleasure, sometimes re-
ferred as Valence, provides information about positive or negative
quality. Arousal indicates the level of intensity of an emotion and
Dominance (also called Potency) is used to indicate how much a
user believes to be in control of a situation [20] [29][11].

Posture and kinematic features of the full body have been used
to recognize both discrete emotion categories and emotion dimen-
sions [16]. Different works on the other hand have focused on
specific body parts and their capacity to convey some aspects of
the expressed emotion. The role of kinematic features in the recog-
nition of emotion arousal dimension has been investigate using
point-light animations of arm movement in emotion perception in
the seminal work by Pollick et al. [23]. The focus of the authors
in this work was on perceived features during acted drinking and
knocking scenarios. The main result highlighted a linear relation-
ship between Arousal and velocity and acceleration of the arm. On
the same line of research, [6] focused on dynamic arm gestures
during acted speech interactions. They obtained similar results as
for the Arousal dimension but additionally they also found a strong
correlations between Potency and the perceived gestural dynam-
ics, in particular with the spatial extent of the arm movement and
the perceived physical effort put into the arm during the emotion
expression. Interestingly they did not find pronounced differences
between emotion with different Valence levels. In [24] a user sub-
jective study was carried together with a quantitative extraction of
features using state of the art pose estimation techniques from a
stream of images. Among their main findings they reported that
postural rather than kinematic features discriminated between emo-
tional categories, both for computational and subjective ratings.
Some postural features such as symmetry, limb angles and shoulder
ratio played a significant role in the emotion category classification.
Furthermore they observed that the wrists were the most relevant
body parts in the prediction of discrete emotion labels.
Together, these all the findings reported above highlighted and
reinforced the already established idea in the literature that specific
body features of the arm and hand movement play a significant
role in the emotion expression [27] [6] [23] [7] [25] [26].

3 RESEARCH QUESTION
In this work we focus on physical Human Robot Interaction (pHRI)
and inquire on relevant signals that can be used by the robot to

assess the affective state of the user. Such signals can play a sig-
nificant role in physical interaction scenarios in assistive robotics.
For example if the user behaves hesitant and fearful or determined
and in control by assessing the motion of her arm, as she interacts
physically with the robot. The recognition of the user intent is
also a core component of such applications [18]. Emotions have
been directly linked to action selection and intent [12]. Thus these
signals can be extremely useful in designing appropriate strategies
for the control of the robot during the interaction.

Building on the studies reported above we specifically focus our
analysis on the postural and kinematic features of the arm but with
an additional emphases on an often neglected property of the emo-
tions, the Dominance dimension, sometimes referred to as Potency
[20]. In a high (low) Potency state "the person believes that he/she
can (cannot) influence the situation to maintain or improve it (if de-
sired)" [30]. As reported above, the perceived Potency was linked to
forcefulness and movement expansiveness in [6] in speech-based
interaction. We postulate that a robot could exploit force torque
sensing or estimation techniques in order to differentiate physical
interactions designed to span different Potency values. Specifically,
we hypothesise that the Potency dimension of the human affect
during physical Human-Robot-Interaction can be positively cor-
related with the force applied by the human interacting with the
robot, and the amplitude of motion. We summarize the hypothesis
in Table 1.

In particular, we use state-of-the-art pose landmark detection
techniques1 to extract relevant wrist features and assess their re-
lationship with the different dominance levels. We exploit infor-
mation coming only from a depth camera and the on-board force-
torque sensing available in most commercial cobots. To summarize,
we investigate the following research question: what features of
physical interaction can be used by a robot to measure the Potency of
the affective state of the human, computed by using a minimal set of
sensors comprised of a depth camera and a force-torque sensor of the
arm of the robot?

4 MODEL
In this section we propose a simple linear classifier model that
takes into account arm movement characteristics and robot sensed
forces to differentiate between different levels of Potency. In par-
ticular, we postulate that the external (human) force sensed by
the robot and the amplitude of the gesture during the physical
interaction are the two relevant features that affect the classifica-
tion. While most of the recognition techniques have focused on
instantaneous features, it has been recently shown that consider-
ing time information is very relevant [24]. Therefore, we compute
the features in a time window, defined as T𝑒𝑚𝑜 ∈ R. Additionally,
we consider fext (t) ∈ R3 to be the vector of linear components of
the six dimensional external wrench vector applied at the robot
end-effector at time 𝑡 (either sensed by a Force sensor or eventually
estimated using the robot model [9]) and A ∈ R the amplitude
of the motion during the emotion expression window T𝑒𝑚𝑜 . We
compute the maximum of the Euclidean norm of the force at time
𝑡 as fmax (𝑡) = 𝑚𝑎𝑥 ( | |fext (t) | |2),∀𝑡 ∈ [𝑡 − T𝑒𝑚𝑜 , . . . , 𝑡]. Similarly
the maximum amplitude of motion at time 𝑡 can be defined as

1https://nuitrack.com/



Assessing the sense of control during affective physical Human Robot Interaction SS4HRI, March 11, 2024, Boulder, Colorado

Table 1: Expected features

Expressed emotion dimension Computed gestural dynamics Level of force exerted on the robot

High (low) Potency High (low) expansive motion High (low) force

Amax (𝑡) = 𝑚𝑎𝑥 ( |Aext (t) |),∀𝑡 ∈ [𝑡 − T𝑒𝑚𝑜 , . . . , 𝑡]. Then, the Po-
tency 𝑝 (𝑡) at time 𝑡 can be described by the following function:

𝑝 (𝑡) =
{
1, if (fmax (𝑡) ≥ fnext ∧ Amax (𝑡) ≥ An)
−1, if (fmax (𝑡) < fnext ∧ Amax (𝑡) < An)

(1)

This model discriminates between two levels of Potency, high
Potencywhen 𝑝 (𝑡) = 1 and low Potencywhen 𝑝 (𝑡) = −1. In equa-
tion (1), fnext and An are a constant force and a constant amplitude
values.

5 APPARATUS
To assess the Potency levels during affective pHRI we have tested
the model in the interaction with a Franka robot arm. This platform
has been widely used for collaborative robotics applications and
has been designed for safe interactions. Additionally we record
the posture of the user using a depth camera (Intelsense 4402) and
the off the shelf human skeleton detector Nuitrack3. We defined
scripted scenarios where we interacted with two clearly defined
behaviors, hesitant and determined, for a duration of one minute
each. The hesitant behavior was acted as a state of hesitance or
worry (for example caused by the closeness to the robot) while the
determined state was acted as a state of determined, cold anger
toward the robot. To ground our analysis in the literature, we used
as a reference the same descriptions reported in the GEMP, a corpus
of acted emotion portrayals [5]. The hesitant/worried behavior is
considered to be a low Potency emotion while the determined/(cold)
anger behavior is a high Potency state [6]. Additionally we chose
these emotion categories because they both fall in the group of low
Arousal affective states, allowing to control for interaction effects
that might results with high and low emotion intensity levels [6].
The scenarios have been selected for their relevance both in the
context of physical and physiological care of the elderly. We focused
specifically on activities that require both physical interaction and
body movements. The first scenario (S1) is a physical exercise with
the arm where the user is required to move back and forth the
robot arm. This exercise falls mainly under the category of tasks
designed for physical rehabilitation [4]. The second scenario (S2)
is a Pong game on screen where the user moves a striker by push-
ing and pulling the robot arm. Such interaction has been inspired
by the games designed in [10] for elderly people and have high
relevance in the context of social interaction. Indeed trough the
guidance from experts of game design, rehabilitation, and physical
and occupational therapy and a thorough human study, it has been
shown how a social-physical exercise with a robot is more pleas-
ant, enjoyable, engaging, cognitively challenging, and energetic
than similar interactions that lack physical touch [10]. Affective
signal detection in real-time could then further improve the user

2https://www.intelrealsense.com
3https://nuitrack.com/

experience by informing a more human-aware architecture that
personalizes the robot behavior to the human state. We thus com-
pute features using only non-invasive sensors, namely the output
of the force-torque sensor providing the external wrench exerted
on the robot end-effector and the depth images coming from the
camera, see Figure 1 for a picture of the setup during S2. The latter
are then processed by a skeleton detector algorithm, that represents
the human body as 33 landmarks. We focus in this work only on
the landmarks describing the dominant arm of the user. Specifically
the human pose feature refer to the motion of the wrist.

Figure 1: A user playing the Pong game by physically inter-
acting with the robot while a depth camera is used to detect
his skeleton (S2).

6 RESULTS
We computed the maximum norm of the exerted force on the robot
end-effector and the maximum absolute value of the amplitude
of the wrist motion during the interaction, for each user, for each
condition and for both the scenarios. Then we averaged the features
among the users. The results are reported in Table 2 and we can
observe that the the exerted force follows the prediction of Table 1
confirming its role in assessing the Potency level. Furthermore we
observe also that the amplitude of the motion during the affective
interaction is positively correlated with the high Potency condition,
in line with other results in affect recognition from postures [16].

7 CONCLUSION
We focused in this work on affective physical Human Robot Inter-
action scenarios. We showed how different levels of the Potency
dimension of the affective state can be distinguished using onboard
cheap sensing by a robot during different acted interaction contexts.
Specifically by exploiting state-of-the-art pose landmark detection
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Table 2: Experimental results, showing the mean values for the three users (N stands for Newtons, to measure the force, and
mm stands for millimeters, to measure the amplitude)

Scenarios Hesitant condition Determined condition

S1 fmax = 30[𝑁 ], Amax = 111[𝑚𝑚] fmax = 56[𝑁 ], Amax = 163[𝑚𝑚],
S2 fmax = 19[𝑁 ], Amax = 53[𝑚𝑚] fmax = 55[𝑁 ], Amax = 272[𝑚𝑚]

algorithms and force sensing on the robot end-effector it is pos-
sible to obtain a minimal description of the affective state of the
user. The linear classifier that we present in Section 4 serves the
purpose of highlighting some key aspects of emotion expression in
the form of constants in the model. Their value must be adapted to
the particular scenario and eventually also to the user, for example
by gathering a larger dataset to train the model. These preliminary
findings suggest how even with very limited sensing it might be
possible to discern two levels of Potency and use it in real-time
robot control architectures to modulate personalized behaviors. Ex-
amples of such applications are the emerging assistive technologies
that target eldercare and require non-invasive procedures where
user comfort and safety is of primary concern. Overall, we showed
in this preliminary work how the sense of control during Human-
Robot-Interactions, an important factor in eldercare technologies,
could be assessed by taking an Affective Computing approach. Ad-
ditionally we showed how this perspective could benefit from the
use of touch sensors in the context of physical interactions between
humans and robots.
However, the current work presents several limitations that should
be tackled in future works. First, real-world emotion expression
might be more ambiguous, the features described in this workmight
manifest with less intensity, and might not be sufficient to design
accurate affect recognition algorithms [17]. Experiments (acted and
non-acted) with a significant number of users should be carried out,
and to improve performance, multiple body parts and other expres-
sive channels (e.g. facial expressions) could be considered together.
Second, affective states are context-dependent and features relevant
in one scenario might be attenuated in others [17]. It is then neces-
sary to design more diverse experiments that could cover a broader
range of applications. Third, the relevant features used to differen-
tiate levels of a particular affective dimension have been shown to
have interaction effects in the recognition of other dimensions. For
example, it has been found that the effects of arousal are indepen-
dent of Potency but that the effects of Potency are dependent on
the level of arousal [6]. Furthermore, the Potency dimension was
shown to be correlated with valence [28] [31]. Experiments should
then be designed by keeping these factors in mind. Additionally,
to be able to use the model in real world application scenarios we
need to conduct a user study, with a significant number of users
with a variety of profiles.
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