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Abstract. Detecting objects and estimating their viewpoint in images
are key tasks of 3D scene understanding. Recent approaches have achieved
excellent results on very large benchmarks for object detection and view-
point estimation. However, performances are still lagging behind for
novel object categories with few samples. In this paper, we tackle the
problems of few-shot object detection and few-shot viewpoint estima-
tion. We propose a meta-learning framework that can be applied to
both tasks, possibly including 3D data. Our models improve the re-
sults on objects of novel classes by leveraging on rich feature informa-
tion originating from base classes with many samples. A simple joint
feature embedding module is proposed to make the most of this fea-
ture sharing. Despite its simplicity, our method outperforms state-of-
the-art methods by a large margin on a range of datasets, including
PASCAL VOC and MS COCO for few-shot object detection, and Pas-
cal3D+ and ObjectNet3D for few-shot viewpoint estimation. And for the
first time, we tackle the combination of both few-shot tasks, on Object-
Net3D, showing promising results. Our code and data are available at
http://imagine.enpc.fr/~xiaoy/FSDetView/.

Keywords: Few-shot learning, Meta learning, Object detection, View-
point estimation.

1 Introduction

Detecting objects in 2D images and estimate their 3D pose, as shown in Fig. 1,
is extremely useful for tasks such as 3D scene understanding, augmented real-
ity and robot manipulation. With the emergence of large databases annotated
with object bounding boxes and viewpoints, deep-learning-based methods have
achieved very good results on both tasks. However these methods, that rely on
rich labeled data, usually fail to generalize to novel object categories when only
a few annotated samples are available. Transferring the knowledge learned from
large base categories with abundant annotated images to novel categories with
scarce annotated samples is a few-shot learning problem.

To address few-shot detection, some approaches simultaneously tackle few-
shot classification and few-shot localization by disentangling the learning of
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Fig. 1. Few-shot object detection and viewpoint estimation. Starting with im-
ages labeled with bounding boxes and viewpoints of objects from base classes, and
given only a few similarly labeled images for new categories (top), we predict in a
query image the 2D location of objects of new categories, as well as their 3D poses,
leveraging on just a few arbitrary 3D class models (bottom).

category-agnostic and category-specific network parameters [59]. Others attach a
reweighting module to existing object detection networks [23, 64]. Though these
methods have made significant progress, current few-shot detection evaluation
protocols suffer from statistical unreliability and the prediction depends heavily
on the choice of support data, which makes direct comparison difficult [57].

In parallel to the endeavours made in few-shot object detection, recent work
proposes to perform category-agnostic viewpoint estimation that can be di-
rectly applied to novel object categories without retraining [65, 63]. However,
these methods either require the testing categories to be similar to the training
ones [65], or assume the exact CAD model to be provided for each object during
inference [63]. Differently, the meta-learning-based method MetaView [53] intro-
duces the category-level few-shot viewpoint estimation problem and addresses
it by learning to estimate category-specific keypoints, requiring extra annota-
tions. In any case, precisely annotating the 3D pose of objects in images is far
more tedious than annotating their 2D bounding boxes, which makes few-shot
viewpoint estimation a non-trivial yet largely under-explored problem.

In this work, we propose a consistent framework to tackle both problems
of few-shot object detection and few-shot viewpoint estimation. For this, we
exploit, in a meta-learning setting, task-specific class information present in ex-
isting datasets, i.e., images with bounding boxes for object detection and, for
viewpoint estimation, 3D poses in images as well as a few 3D models for the
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different classes. Considering that these few 3D shapes are available is a realistic
assumption in most scenarios. Using this information, we obtain an embedding
for each class and condition the network prediction on both the class-informative
embeddings and instance-wise query image embeddings through a feature ag-
gregation module. Despite its simplicity, this approach leads to a significant
performance improvement on novel classes under the few-shot learning regime.
Additionally, by combining our few-shot object detection with our few-shot
viewpoint estimation, we address the realistic joint problem of learning to de-
tect objects in images and to estimate their viewpoints from only a few shots.
Indeed, compared to other viewpoint estimation methods, that only evaluate in
the ideal case with ground-truth (GT) classes and ground-truth bounding boxes,
we demonstrate that our few-shot viewpoint estimation method can achieve very
good results even based on the predicted classes and bounding boxes.
To summarize, our contributions are:
— We define a simple yet effective unifying framework that tackles both few-
shot object detection and few-shot viewpoint estimation.
— We show how to leverage just a few arbitrary 3D models of novel classes to
guide and boost few-shot viewpoint estimation.
— Our approach achieves state-of-the-art performance on various benchmarks.
— We propose a few-shot learning evaluation of the new joint task of object
detection and view-point estimation, and provide promising results.

2 Related work

Since there is a vast amount of literature on both object detection and viewpoint
estimation, we focus here on recent works that target these tasks in the case of
limited annotated samples.

Few-shot Learning. Few-shot learning refers to learning from a few labeled
training samples per class, which is an important yet unsolved problem in com-
puter vision [28, 16, 56]. One popular solution to this problem is meta-learning [25,
4,2, 58, 56,48, 21, 41, 14, 27, 22], where a meta-learner is designed to parameter-
ize the optimization algorithm or predict the network parameters by ”learning
to learn”. Instead of just focusing on the performance improvement on novel
classes, some other work has been proposed for providing good results on both
base and novel classes [16, 10, 38]. While most existing methods tackle the prob-
lem of few-shot image classification, we find that other few-shot learning tasks
such as object detection and viewpoint estimation are under-explored.

Object Detection. The general deep-learning models for object detection can
be divided into two groups: proposal-based methods and direct methods with-
out proposals. While the R-CNN series [12, 18, 11, 45, 17] and FPN [29] fall
into the former line of work, the YOLO series [42, 43, 44] and SSD [31] belong
to the latter. All these methods mainly focus on learning from abundant data
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to improve detection regarding accuracy and speed. Yet, there are also some
attempts to solve the problem with limited labeled data. Chen et al. [15] pro-
poses to transfer a pre-trained detector to the few-shot task, while Karlinsky et
al. [46] exploits distance metric learning to model a multi-modal distribution of
each object class.

More recently, Wang et al. [59] propose specialized meta-strategies to disen-
tangle the learning of category-agnostic and category-specific components in a
detection model. Other approaches based on meta-learning learn a class-attentive
vector for each class and use these vectors to reweight full-image features [23]
or region-of-interest (Rol) features [64]. Object detection with limited labeled
samples is also addressed by approaches targeting weak supervision [49, 5, 6, 47|
and zero-shot learning [3, 40, 66], but these settings are different from ours.

Viewpoint Estimation. Deep-learning methods for viewpoint estimation fol-
low roughly three different paths: direct estimation of Euler angles [55, 50, 33,
24, 62, 63], template-based matching [20, 32, 51], and keypoint detection relying
on 3D bounding box corners [39, 52, 13, 34, 36] or semantic keypoints [35, 65].

Most of the existing viewpoint estimation methods are designed for known
object categories or instances; very little work reports performance on unseen
classes [54, 65, 36, 53, 63]. Zhou et al. [65] propose a category-agnostic method
to learn general keypoints for both seen and unseen objects, while Xiao et al. [63]
show that better results can be obtained when exact 3D models of the objects are
additionally provided. In contrast to these category-agnostic methods, Tseng et
al. [53] specifically address the few-shot scenario by training a category-specific
viewpoint estimation network for novel classes with limited samples.

Instead of using exact 3D object models as [63], we propose a meta-learning
approach to extract a class-informative canonical shape feature vector for each
novel class from a few labeled samples, with random object models. Besides,
our network can be applied to both base and novel classes without changing the
network architecture, while [53] requires a separate meta-training procedure for
each class and needs keypoint annotations in addition to the viewpoint.

3 Approach

In this section, we first introduce the setup for few-shot object detection and
few-shot viewpoint estimation (Sect. 3.1). Then we describe our common network
architecture for these two tasks (Sect. 3.2) and the learning procedure (Sect. 3.3).

3.1 Few-shot Learning Setup

We have training samples (x,y) € (X, ) for our two tasks, and a few 3D shapes.

— For object detection, x is an image, y = {(cls;, box;) | € Obj, } indicates the
class label cls; and bounding box box; of each object ¢ in the image.
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Fig. 2. Example of class data for object detection (left) & viewpoint estimation (right).

— For viewpoint estimation, z = (cls,box,img) represents an object of class
cls(z) pictured in bounding box box(z) of an image img(x), y = ang =
(azi, ele,inp) is the 3D pose (viewpoint) of the object, given by Euler angles.

For each class ce C'={cls; |z € X,i € Obj, }, we consider a set Z. of class data
(see Fig. 2) to learn from using meta-learning:

— For object detection, Z. = {(x, mask;) |x € X, i€ Obj,} is made of images =
plus an extra channel with a binary mask for bounding box box; of i € Obj,.

— For viewpoint estimation, Z, is an additional set of 3D models of class c.

At each training iteration, class data z. is randomly sampled in Z, for each c € C.

In the few-shot setting, we have a partition of the classes C = Chase U Chovel
with many samples for base classes in Chase and only a few samples (including
shapes) for novel classes in Cyovel. The goal is to transfer the knowledge learned
on base classes with abundant samples to little-represented novel classes.

3.2 Network Description

Our general approach has three steps that are visualized in Fig 3. First, query
data x and class-informative data z. pass respectively through the query encoder
F9Y and the class encoder F°* to generate corresponding feature vectors. Next,
a feature aggregation module A combines the query features with the class fea-
tures. Finally, the output of the network is obtained by passing the aggregated
features through a task-specific predictor P:
— For object detection, the predictor estimates a classification score and an
object location for each region of interest (Rol) and each class.
— For viewpoint estimation, the predictor selects quantized angles by classifi-
cation, that are refined using regressed angular offsets.

Few-shot object detection. We adopt the widely-used Faster R-CNN [45]
approach in our few-shot object detection network (see Fig.3(a)). The query
encoder F9Y includes the backbone, the region proposal network (RPN) and
the proposal-level feature alignment module. In parallel, the class encoder F°!
is here simply the backbone sharing the same weights as F97Y, that extracts the
class features from RGB images sampled in each class, with an extra channel
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(a) Few-shot object detection.
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(b) Few-shot viewpoint estimation.

Fig.3. Method overview.

(a) For object detection, we sample for each class ¢ one image z in the training set
containing an object j of class ¢, to which we add an extra channel for the binary mask
mask; of the ground-truth bounding box box; of object j. Each corresponding vector of
class features f$" (red) is then combined with each vector of query features £ (blue)
associated to one of the region of interest ¢ in the query image, via an aggregation
module. Finally, the aggregated features f; 8 pass through a predictor that estimates
a class probability cls; . and regresses a bounding box box; ..

(b) For few-shot viewpoint estimation, class information is extracted from a few point
clouds with coordinates in normalized object canonical space, and the output of the
network is the 3D pose represented by three Euler angles.

for a binary mask of the object bounding box [23, 64]. Each extracted vector of
query features is aggregated with each extracted vector of class features before
being processed for class classification and bounding box regression:

(cls;,c, box; c) = 7D<.A(f§1ry7 fé:ls))

1

for 'Y e F®(z), 5 = F°5(2.), ¢ € Chrain W
where Clrain is the set of all training classes, and where cls; . and box; . are the
predicted classification scores and object locations for the i*" Rol in query image
x and for class ¢. The prediction branch in Faster R-CNN is class-specific: the
network outputs Nirain = |Cirain| classification scores and Nipain box regressions
for each Rol. The final predictions are obtained by concatenating all the class-
wise network outputs.

Few-shot viewpoint estimation. For few-shot viewpoint estimation, we rely
on the recently proposed PoseFromShape [63] architecture to implement our
network. To create class data z., we transform the 3D models in the dataset into
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point clouds by uniformly sampling points on the surface, with coordinates in the
normalized object canonical space. The query encoder FY and class encoder
Fels (cf. Fig. 3(b)) correspond respectively to the image encoder ResNet-18 [19]
and shape encoder PointNet [37] in PoseFromShape. By aggregating the query
features and class features, we estimate the three Euler angles using a three-layer
fully-connected (FC) sub-network as the predictor:

(azi, ele, inp) = ’P(A(fql"y7 fcls))
with {9 = F9 (crop(img(x), box(z))), fs = FB(2,), ¢ = cls(z)

where crop(img(z), box(z)) indicates that the query features are extracted from
the image patch after cropping the object. Unlike the object detection making
a prediction for each class and aggregating them together to obtain the final
outputs, here we only make the viewpoint prediction for the object class cls(x) by
passing the corresponding class data through the network. We also use the mixed
classification-and-regression viewpoint estimator of [63]: the output consists of
angular bin classification scores and within-bin offsets for three Euler angles:
azimuth (azi), elevation (ele), and in-plane rotation (inp).

Feature aggregation. In recent few-shot object detection methods such as
MetaYOLO [23] and Meta R-CNN [64], feature are aggregated by reweighting
the query features f9 according to the output f!* of the class encoder F¢s:

A(fqry, fcls) = fay fcls (3)

where ® represents channel-wise multiplication and f4Y has the same number of
channels as f°'*. By jointly training the query encoder 79 and the class encoder
F with this reweighting module, it is possible to learn to generate meaningful
reweighting vectors 5. (F9¥ and F°¥ actually share their weights, except the
first layer [64].)

We choose to rely on a slightly more complex aggregation scheme. The fact
is that feature subtraction is a different but also effective way to measure simi-
larity between image features [1, 26]. The image embedding {4 itself, without
any reweighting, contains relevant information too. Our aggregation thus con-
catenates the three forms of the query feature:

V4(fqry7 fcls) — [fqry ® fcls’ fary _ fcls7 fqry] (4)

where [-, -, ] represents channel-wise concatenation. The last part of the aggre-
gated features in Eq. (4) is independent of the class data. As observed experi-
mentally (Sect. 4.1), this partial disentanglement does not only improve few-shot
detection performance, it also reduces the variation introduced by the random-
ness of support samples.

3.3 Learning Procedure

The learning consists of two phases: base-class training on many samples from
base classes (Cirain = Chase), followed by few-shot fine-tuning on a balanced
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small set of samples from both base and novel classes (Cirain = Chase U Chovel)-
In both phases, we optimize the network using the same loss function.

Detection loss function. Following Meta R-CNN [64], we optimize our few-
shot object detection network using the same loss function:

L= Erpn + £cls + Eloc + £meta (5)

where L,pn is applied to the output of the RPN to distinguish foreground from
background and refine the proposals, L5 is a cross-entropy loss for box classifier,
Lioc is a smoothed-L1 loss for box regression, and Lets 1S a cross-entropy loss
encouraging class features to be diverse for different classes [64].

Viewpoint loss function. For the task of viewpoint estimation, we discretize
each Euler angle with a bin size of 15 degrees and use the same loss function as
PoseFromShape [63] to train the network:

L= Z ‘Cgls + ‘Cfeg (6)

0¢c{azi,ele,inp}

where ﬁgls is a cross-entropy loss for angle bin classification of Euler angle 6, and
ﬁfeg is a smoothed-L1 loss for the regression of offsets relatively to bin centers.
Here we remove the meta loss Lyeta used in object detection since we want the
network to learn useful inter-class similarities for viewpoint estimation, instead

of the inter-class differences for box classification in object detection.

Class data construction. For viewpoint estimation, we make use of all the
3D models available for each class (typically less than 10) during both training
stages. By contrast, the class data used in object detection requires the label of
object class and location, which is limited by the number of annotated samples
for novel classes. Therefore, we use large number of class data for base classes in
the base training stage (typically |Z.| = 200, as in Meta R-CNN [64]) and limit
its size to the number of shots for both base and novel classes in the K-shot
fine-tuning stage (|Z.| = K).

For inference, after learning is finished, we construct once and for all class
features, instead of randomly sampling class data from the dataset, as done
during training. For each class ¢, we average all corresponding class features
used in the few-shot fine-tuning stage:

1
fels — 7 D FN(z). (7)

2c€Z,

This corresponds to the offline computation of all red feature vectors in Fig. 3(a).
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Table 1. Few-shot object detection evaluation on PASCAL VOC. We report
the mAP with IoU threshold 0.5 (AP50) under 3 different splits for 5 novel classes with
a small number of shots. *Results averaged over multiple random runs.

Novel Set 1 Novel Set 2 Novel Set 3

Method \ Shots 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

LSTD [15] 8.2 1.0 124 291 385 | 11.4 3.8 5.0 15.7 310 | 12.6 8.5 15.0 273 36.3
MetaYOLO (23] 14.8 155 26.7 339 472 | 157 152 227 30.1 405 | 21.3 25.6 284 428 459
MetaDet* [59] 189 206 302 36.8 49.6 |21.8 231 27.8 31.7 43.0 | 206 239 294 439 44.1
Meta R-CNN* [64] | 19.9 25,5 350 457 515 | 104 194 29.6 348 454 | 143 182 275 41.2 481
TFA* w/fc [57] 229 345 404 46.7 520 | 16.9 264 30.5 346 39.7 | 15,7 272 347 408 446
TFA* w/cos [57] 25.3 36.4 421 479 528 | 183 27.5 309 341 395 | 179 272 343 408 45.6
Ours* 242 353 42.2 49.1 57.4 | 216 246 31.9 37.0 45.7 | 21.2 30.0 37.2 43.8 49.6

Table 2. Few-shot object detection evaluation on MS-COCO. We report the
mean Averaged Precision and mean Averaged Recall on the 20 novel classes of COCO.
*Results averaged over multiple random runs.

Average Precision Average Recall
Shots ~ Method 0.5:0.95 0.5 0.75 S M L 1 10 100 S M L
LSTD [15] 3.2 8.1 2.1 0.9 2.0 6.5 7.8 10.4 10.4 1.1 5.6 19.6
MetaYOLO [23] 5.6 12.3 4.6 0.9 3.5 10.5 10.1 14.3 14.4 1.5 8.4 28.2
MetaDet* [59] 7.1 14.6 6.1 1.0 4.1 12.2 11.9 15.1 15.5 1.7 9.7 30.1
10 Meta R-CNN* [64] 8.7 19.1 6.6 2.3 77 14.0 12.6 17.8 179 7.8 156 27.2
TFA* w/fc [57] 9.1 7.3 85 - - - - - - - - -
TFA* w/cos [57] 9.1 171 88 - - - - - - - - -
Ours* 12.5 27.3 9.8 2.5 13.8 19.9 20.0 25.5 25.7 7.5 27.6 38.9
LSTD [15] 6.7 15.8 5.1 0.4 2.9 12.3 10.9 14.3 14.3 0.9 7.1 27.0
MetaYOLO [23] 9.1 19.0 7.6 0.8 4.9 16.8 13.2 17.7 17.8 1.5 10.4 33.5
MetaDet* [59] 11.3 21.7 8.1 1.1 6.2 17.3 14.5 18.9 19.2 1.8 11.1 34.4
30 Meta R-CNN* [64] 12.4 25.3 10.8 2.8 11.6 19.0 15.0 21.4 21.7 8.6 20.0 32.1
: TFA* w/fc [57] 12.0 222 118 - - - - - - - - -
TFA* w/cos [57] 12.1 220 120 - - - - - - - - -
Ours* 14.7 30.6 12.2 3.2 15.2 23.8 22.0 28.2 28.4 8.3 30.3 42.1

4 Experiments

In this section, we evaluate our approach and compare it with state-of-the-art
methods on various benchmarks for few-shot object detection and few-shot view-
point estimation. For a fair comparison, we use the same splits between base
and novel classes [23, 53]. For all the experiments, we run 10 trials with random
support data and report the average performance.

4.1 Few-Shot Object Detection

We adopt a well-established evaluation protocol for few-shot object detection
[23, 59, 64] and report performance on PASCAL VOC [8, 7] and MS-COCO [30].

Experimental setup. PASCAL VOC 2007 and 2012 consist of 16.5k train-val
images and 5k test images covering 20 categories. Consistent with the few-shot
learning setup in [23, 59, 64], we use VOC 07 and 12 train-val sets for training
and VOC 07 test set for testing. 15 classes are considered as base classes, and the
remaining 5 classes as novel classes. For a fair comparison, we consider the same
3 splits as in [23, 59, 64, 57], and for each run we only draw K random shots
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Table 3. Ablation study on the feature aggregation scheme. Using the same
class splits of PASCAL VOC as in Table 1, we measure the performance of few-shot
object detection on the novel classes. We report the average and standard deviation of
the AP50 metric over 10 runs. % is the query features and £ is the class features.

Novel Set 1 Novel Set 2 Novel Set 3
Method \ Shots 3 10 3 10 3 10
Y ® fd“] 35.0%£ 3.6 51.5£5.8 29.6 £3.5 454+5.5 27.5+5.2 48.1£5.9
[fay @fds,fqry] 36.6+7.1 49.6 £4.3 27.5+£5.7 41.6 £3.7 28.7+5.9 44.0 £2.7
Y ® fels gary fd’] 37.6£7.2 542+49 30.0x£2.9 41.0£5.3 33.6£5.0 47.5£2.3
™Y @ fels, fary fds] 39.24+4.5 55.5+3.9 31.7+£6.2 45.2+3.3 35.6+£5.6 48.9+£3.3
[fary ® fels, fary 7fd"‘4,fq”] 42.2+2.1 57.4+2.7 31.9£2.7 45.7+1.8 37.2+3.5 49.6 + 2.2

from each novel class where K € {1,2,3,5,10}. We report the mean Average
Precision (mAP) with intersection over union (IoU) threshold at 0.5 (AP50).
For MS-COCO, we set the 20 PASCAL VOC categories as novel classes and the
remaining 60 categories as base classes. Following [31, 45], we report standard
COCO evaluation metrics on this dataset with K € {10, 30}.

Training details. We use the same learning scheme as [64], which uses the
SGD optimizer with an initial learning rate of 1073 and a batch size of 4. In
the first training stage, we train for 20 epochs and divide the learning rate by
10 after each 5 epochs. In the second stage, we train for 5 epochs with learning
rate of 1073 and another 4 epochs with a learning rate of 1074,

Quantitative results. The results are summarized in Table 1 and 2. Our
method outperforms state-of-the-art methods in most cases for the 3 different
dataset splits of PASCAL VOC, and it achieves the best results on the 20 novel
classes of MS-COCO, which validates the efficacy and generality of our approach.
Moreover, our improvements on the difficult COCO dataset (around 3 points in
mAP) is much larger than the gap among previous methods. This demonstrates
that our approach can generalize well to novel classes even in complex scenarios
with ambiguities and occluded objects. By comparing results on objects of differ-
ent sizes contained in COCO, we find that our approach obtains a much better
improvement on medium and large objects while it struggles on small objects.

Different feature aggregations. We analyze the impact of different feature
aggregation schemes. For this purpose, we evaluate K-shot object detection on
PASCAL VOC with K € {3,10}. The results are reported in Table 3. We can
see that our feature aggregation scheme [f4%Y @ ¢ fary —fels £ary] yields the best
precision. In particular, although the difference [f4*¥ — <] could in theory be
learned from the individual feature vectors [f4Y, %], the network performs bet-
ter when explicitly provided with their subtraction. Moreover, our aggregation
scheme significantly reduces the variance introduced by the random sampling of
few-shot support data, which is one of the main issues in few-shot learning.
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Table 4. Intra-dataset 10-shot viewpoint estimation evaluation. We report
Acc30(T) / MedErr({) on the same 20 novel classes of ObjectNet3D for each method,
while 80 are used as base classes. All models are trained and evaluated on ObjectNet3D.

Method bed bookshelf calculator cellphone computer door f_cabinet
StarMap+F [65] 032 /472  0.61/21.0  0.26/50.6  0.56 /268  0.59 /244 - /- 0.76 / 17.1
StarMap+M [65] 0.32 / 42.2 0.76 / 15.7 0.58 / 26.8 0.59 / 22.2 0.69 / 19.2 -/- 0.76 / 15.5
MetaView [53] 0.36 / 37.5 0.76 / 17.2 0.92 /123 0.58 / 25.1 0.70 / 22.2 -/- 0.66 / 22.9
Ours 0.64 /147 0.89/83  090/83 0.63/127 0.84/10.5 0.90/0.9 0.84/10.5
Method guitar iron knife microwave pen pot rifle
StarMap+F [65] 0.54 / 27.9 0.00 / 128 0.05 / 120 0.82 / 19.0 - /- 0.51 /29.9 0.02 / 100
StarMap-+M [65] 0.59 / 21.5 0.00 / 136 0.08 / 117 0.82 /173 -/- 0.51 / 28.2 0.01 / 100
MetaView [53] 0.63 / 24.0 0.20 / 76.9 0.05 / 97.9 0.77 / 17.9 -/- 0.49 / 31.6 0.21 / 80.9
Ours 0.72 /17.1 0.37 / 57.7 0.26 / 139 094 /73 0.45 / 44.0 0.74 / 12.3 0.29 / 884
Method shoe slipper stove toilet tub wheelchair TOTAL
StarMap+F [65] -/- 0.08 / 128 0.80 / 16.1 0.38 / 36.8 0.35 / 39.8 0.18 / 80.4 0.41 / 41.0
StarMap-+M [65] -/- 0.15 / 128 0.83 / 15.6 0.39 / 35.5 0.41 / 38.5 0.24 / 71.5 0.46 / 33.9
MetaView [53] -/- 0.07 / 115 0.74 / 21.7 0.50 / 32.0 0.29 / 46.5 0.27 / 55.8 0.48 / 31.5
Ours 0.51 /29.4 0.25/96.4 0.92 /9.4 0.69 /17.4 0.66 /15.1 0.36 /64.3 0.64 /15.6

4.2 Few-Shot Viewpoint Estimation

Following the few-shot viewpoint estimation protocol proposed in [53], we evalu-
ate our method under two settings: intra-dataset on ObjectNet3D [60] (reported
in Tab. 4) and inter-dataset between ObjectNet3D and Pascal3D+ [61] (reported
in Tab.5). In both datasets, the number of available 3D models for each class
vary from 2 to 16. We use the most common metrics for evaluation: Acc30,
which is the percentage of estimations with a rotational error smaller than 30°,
and MedErr, which computes the median rotational error measured in degrees.
Complying with previous work [65, 53], we only use the non-occluded and non-
truncated objects for evaluation and assume in this subsection that the ground
truth classes and bounding boxes are provided at test time.

Training details. The model is trained using the Adam optimizer with a batch
size of 16. During the base-class training stage, we train for 150 epochs with a
learning rate of 10~%. For few-shot fine-tuning, we train for 50 epochs with
learning rate of 10~* and another 50 epochs with a learning rate of 107°.

Compared methods. For few-shot viewpoint estimation, we compare our
method to MetaView [53] and to two adaptations of StarMap [65]. More pre-
cisely, the authors of MetaView [53] re-implemented StarMap with one stage of
ResNet-18 as the backbone, and trained the network with MAML [9] for a fair
comparison in the few-shot regime (entries StarMap+M in Tab. 4-5). They also
provided StarMap results by just fine-tuning it on the novel classes using the
scarce labeled data (entries StarMap+F in Tab. 4-5).

Intra-dataset evaluation. We follow the protocol of [53, 63] and split the
100 categories of ObjectNet3D into 80 base classes and 20 novel classes. As
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Table 5. Inter-dataset 10-shot viewpoint estimation evaluation. We report
Acc30(T) / MedErr(]) on the 12 novel classes of Pascal3D+, while the 88 base classes
are in ObjectNet3D. All models are trained on ObjectNet3D and tested on Pascal3D+.

Method aero bike boat bottle bus car chair
StarMap-+F [65] 0.03 / 102 0.05 / 98.8 0.07 / 98.9 0.48 / 31.9 0.46 / 33.0 0.18 / 80.8 0.22 / 74.6
StarMap+M [65] 0.03 / 99.2 0.08 / 88.4 0.11 / 92.2 0.55 / 28.0 0.49 / 31.0 0.21 / 81.4 0.21 / 80.2
MetaView [53] 0.12 / 104 0.08 / 91.3 0.09 / 108 0.71 / 24.0 0.64 / 22.8 0.22 / 73.3 0.20 / 89.1
Ours 0.24 /65.0 0.34/524 0.27/77.3 0.88/12.6 0.78 /8.2 0.49/34.0 0.33/77.4
Method table mbike sofa, train tv TOTAL
StarMap-+F [65] 0.46 / 31.4 0.09 / 91.6 0.32 / 44.7 0.36 / 41.7 0.52 /29.1 0.25 / 64.7
StarMap-+M [65] 0.29 / 36.8 0.11 / 83.5 0.44 / 42.9 0.42 / 33.9 0.64 / 25.3 0.28 / 60.5
MetaView [53] 0.39 / 36.0 0.14 / 74.7 0.29 / 46.2 0.61 / 23.8 0.58 / 26.3 0.33 / 51.3

Ours 0.60 / 21.2 0.41 / 45.2 0.58 / 21.3 0.71 / 12.6 0.78 / 19.1 0.52 / 28.3

shown in Table 4, our model outperforms the recently proposed meta-learning-
based method MetaView [53] by a very large margin in overall performance:
+16 points in Acc30 and half MedErr (from 31.5° down to 15.6°). Besides, key-
point annotations are not available for some object categories such as door, pen
and shoe in ObjectNet3D. This limits the generalization of keypoint-based ap-
proaches [65, 53] as they require a set of manually labeled keypoints for network
training. By contrast, our model can be trained and evaluated on all object
classes of ObjectNet3D as we only rely on the shape pose. More importantly,
our model can be directly deployed on different classes using the same architec-
ture, while MetaView learns a set of separate category-specific semantic keypoint
detectors for each class. This flexibility suggests that our approach is likely to
exploit the similarities between different categories (e.g., bicycle and motorbike)
and has more potentials for applications to robotics and augmented reality.

Inter-dataset evaluation. To further evaluate our method in a more practi-
cal scenario, we use a source dataset for base classes and another target dataset
for novel (disjoint) classes. Using the same split as MetaView [53], we use all
12 categories of Pascal3D+ as novel categories and the remaining 88 categories
of ObjectNet3D as base categories. Distinct from the previous intra-dataset ex-
periment that focuses more on the cross-category generalization capacity, this
inter-dataset setup also reveals the cross-domain generalization ability.

As shown in Tab. 5, our approach again significantly outperforms StarMap
and MetaView. Our overall improvement in inter-dataset evaluation is even
larger than in intra-dataset evaluation: we gain +19 points in Acc30 and again
divide MedErr by about 2 (from 51.3° down to 28.3°). This indicates that our
approach, by leveraging viewpoint-relevant 3D information, not only helps the
network generalize to novel classes from the same domain, but also addresses
the domain shift issues when trained and evaluated on different datasets.

Visual results. We provide in Fig. 4 visualizations of viewpoint estimation for
novel objects on ObjectNet3D and Pascal3D+. We show both success (green
boxes) and failure cases (red boxes) to help analyze possible error types. We
visualize four categories giving the largest median errors: iron, knife, rifle and
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Fig. 4. Qualitative results of few-shot viewpoint estimation. We visualize re-
sults on ObjectNet3D and Pascal3D+. For each category, we show three success cases
(the first six columns) and one failure case (the last two columns). CAD models are
shown here only for the purpose of illustrating the estimated viewpoint.

slipper for ObjectNet3D, and aeroplane, bicycle, boat and chair for Pascal3D+.
The most common failure cases come from objects with similar appearances in
ambiguous poses, e.g., iron and knife in ObjectNet3D, aeroplane and boat in
Pascal3D+. Other failure cases include the heavy clutter cases (bicycle) and
large shape variations between training objects and testing objects (chair).

4.3 Evaluation of Joint Detection and Viewpoint Estimation

To further show the generality of our approach in real-world scenarios, we con-
sider the joint problem of detecting objects from novel classes in images and
estimating their viewpoints. The fact is that evaluating a viewpoint estimator
on ground-truth classes and bounding boxes is a toy setting, not representa-
tive of actual needs. On the contrary, estimating viewpoints based on predicted
detections is much more realistic and challenging.

To experiment with this scenario, we split ObjectNet3D into 80 base classes
and 20 novel classes as in Sect. 4.2, and train the object detector and viewpoint
estimator based on the abundant annotated samples for base classes and scarce
labeled samples for novel classes. Unfortunately, the codes of StarMap+F /M
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Table 6. Evaluation of joint few-shot detection and viewpoint estimation.
We report correct prediction percentages on novel classes of ObjectNet3D, first using
the ground-truth classes and bounding boxes, then the estimated classes and boxes
given by our object detector. Predicted bounding boxes are considered correct with a
ToU threshold at 0.5 and estimated viewpoints are considered correct with a rotation
error less than 30°. Ours (all-shot) is learned on all training data of the novel classes.

v % = & & 5 £ 5 =2 € 8§ . c g 8 ¢ 3 o5 F =
Method g = = 8 Z S8 2 g £ 3 O =2 = = £
ethod 2 3z g Aé_ g 3 g &% = E F§ & & E 4 § 2 B E g g
Evaluated using ground-truth classes and bounding boxes (viewpoint estimation)
StarMap+M[65] 32 76 58 59 69 - 76 59 0 8 8 - 51 1 - 15 8 39 41 24 46
MetaView[53] 36 76 92 58 70 - 66 63 20 5 77 - 49 21 - 7 T4 50 29 27 48

Ours (10-shot) 64 8 90 63 84 90 84 72 37 26 94 45 74 29 51 25 92 69 66 36 64
Ours (all-shot) 81 92 9 65 91 93 8 8 58 28 95 51 81 48 63 53 94 8 77 70 75

Evaluated using predicted classes and bounding boxes (detection + viewpoint estimation)

Ours (10-shot) 5 76 T4 52 57 69 63 70 44 8 57 22 55 12 6 19 80 65 56 21 48
Ours (all-shot) 65 8 8 56 62 70 66 75 48 9 60 27 61 20 8 32 83 71 67 38 54

and MetaView are not available. The only available information is the results on
perfect, ground-truth classes and bounding boxes available in publications. We
thus have to reason relatively in terms of baselines. Concretely, we compare these
results obtained on ideal input to the case where we use predicted classes and
bounding boxes, in the 10-shot scenario. As an upper bound, we also consider
the “all-shot” case where all training data of the novel classes are used.

As recalled in Tab. 6, our few-shot viewpoint estimation outperforms other
methods by a large margin when evaluated using ground-truth classes and bound-
ing boxes in the 10-shot setting. When using predicted classes and bounding
boxes, accuracy drops for most categories. One explanation is that viewpoint es-
timation becomes difficult when the objects are truncated by imperfect predicted
bounding boxes, especially for tiny objects (e.g., shoes) and ambiguous objects
with similar appearances in different poses (e.g., knifes, rifles). Yet, by comparing
the performance gap between our method when tested using predicted classes
and boxes and MetaView when tested using ground-truth classes and boxes, we
find that our approach is able to reach the same viewpoint accuracy of 48%,
which is a considerable achievement.

5 Conclusion

In this work, we presented an approach to few-shot object detection and view-
point estimation that can tackle both tasks in a coherent and efficient framework.
We demonstrated the benefits of this approach in terms of accuracy, and signifi-
cantly improved the state of the art on several standard benchmarks for few-shot
object detection and few-shot viewpoint estimation. Moreover, we showed that
our few-shot viewpoint estimation model can achieve promising results on the
novel objects detected by our few-shot detection model, compared to the existing
methods tested with ground-truth bounding boxes.

Acknowledgements. We thank Vincent Lepetit and Yuming Du for helpful
discussions.
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