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Abstract— Assistive robots promise to be of great help to
wheelchair users with motor impairments, for example for
activities of daily living. Using shared control to provide task-
specific assistance – for instance with the Shared Control
Templates (SCT) framework – facilitates user control, even
with low-dimensional input signals. However, designing SCTs
is a laborious task requiring robotic expertise. To facilitate
their design, we propose a method to learn one of their core
components – active constraints – from demonstrated end-
effector trajectories. We use a probabilistic model, Kernelized
Movement Primitives, which additionally allows adaptation
from user commands to improve the shared control skills,
during both design and execution. We demonstrate that the
SCTs so acquired can be successfully used to pick up an object,
as well as adjusted for new environmental constraints, with our
assistive robot EDAN.

I. INTRODUCTION

Assistive robots promise to re-enable users with motor
impairments to perform activities of daily living. Shared con-
trol, combining human input commands with an autonomous
control system to achieve a common goal, empowers users
with the ability to interact with their environment in a
convenient manner, see [1], Ch. 43, for an overview. Shared
control alleviates the many difficulties that arise from the
direct control of a high degree-of-freedom (DoF) system –
like our assistive robot EDAN [2], [3], see Fig. 1, left – such
as cumbersome mode switches between position, orientation,
gripper and wheelchair control [2].

In previous work we introduced Shared Control Tem-
plates (SCT) [4] with the aim to provide robust and legible
assistance to users for successful task execution. Notably,
SCTs were recently used at the Cybathlon Challenge1 to
successfully assist a motor-impaired pilot on EDAN to pick
and place objects and pick and bite into an apple within 5
minutes. SCTs are represented as finite state machines, with
each state having a number of components (see Section III-
A), including active constraints [5], which restrict the robot
task space to assist the user in completing a task.

Currently, designing SCTs requires robotics expertise.
However, to fully exploit their potential, SCTs should be
easy to both design and modify. In this work, we turn to
probabilistic learning from demonstration to facilitate the
design and adaptation of SCTs. Namely, we propose that
the required constraints to manipulate objects are identified
from demonstrated robot trajectories and modified via user

1https://www.youtube.com/watch?v=EoER 5vYZsU

commands when new task conditions arise. Leveraging user
commands from external devices to correct assistive mod-
els locally is an interesting alternative to providing new
kinesthetic demonstrations or haptic feedback, particularly
in settings where motor-impaired users are involved. We
thus follow a non-parametric approach using Kernelized
Movement Primitives (KMP) [6] (Section III-B) to realize
the learning and adaptation of SCT constraints with the
human in the loop, aiming to make it intuitive and easy to
use. We leverage the fact that KMPs encode the variance
and correlations in the data, which we exploit to define
active constraints in the form of generalized cylinders [7].
In addition, we build on recent results in uncertainty-aware,
computationally-efficient motion primitive modulation [8] to
adapt the learned constraints smoothly and locally, directly
from user commands. The result is an interactive imita-
tion learning approach [9] that does not require physical
interactions with the robot for adaptation. In summary, the
contribution of this paper is an approach to:

1) derive active constraints from a KMP model fitted on
demonstrated end-effector trajectories (IV-A),

2) allow users to modify those learned constraints directly
from user commands, adapting the assistance provided
by the framework to new environmental constraints and
requirements at runtime (IV-B).

Our approach is experimentally validated on EDAN by
performing a picking task (Section V). We show that, using
our approach, multiple able-bodied users are able not only
to complete the task but to adapt the assistance provided
by the robot to new situations. We further show that the
required modulations are done in sensible time frames and
with deformations of the original model to an expert user.

II. RELATED WORK

The topic of designing adaptive assistive behaviors has
received attention in recent years. Mehr et al. [10] inferred
end-effector constraints online while the user was performing
a task. Broad et al. [11] propose corrections via natural
language for planned motions. In Selvaggio et al. [12], users
in a surgery setting can online generate active constraints
and switch between them, with stiffness adaptation. While
those works can be intuitive or modular, they lack the
expressiveness and ease of design that learning approaches
can provide.



Fig. 1. Schema of the proposed approach to design Shared Control Templates (SCTs) with a probabilistic model: Kernelized Motion Primitives (KMP).
A KMP is fitted to a set of demonstrated trajectories for the desired task. Active constraints are then derived from this model, and an SCT is built. Finally,
the robot is constrained to successfully complete the task from user commands.

Learning from demonstration has been investigated as a
promising way to intuitively encode assistance. SCT con-
straints were designed from a pre-defined set of geometric
constraints extracted from demonstrations in [13]. Learning
position-dependent input mappings with a conditional auto-
encoder was proposed in [14]. Perez et al. [15] learned ge-
ometric constraints for a state machine but target supervised
autonomy. Havoutis et al. [16] proposed a task-parameterized
formulation taking an object-centered approach to assist
teleoperators in handling ambiguities between local and
remote workspaces. In Iregui et al. [17], a reconfigurable
and adaptable approach is learned from demonstrations using
Probabilistic Principal Component Analysis [18]. Unlike our
approach, those works do not propose external modulation
from human inputs.

In [19], Gaussian mixture models (GMMs) are used to
encode constraints from demonstrations by using precision
matrices as a proxy for control stiffness. Being based on
GMMs, [16], [19] are not easily adaptable to new task
conditions from human inputs at run-time, requiring new
data when adaptation is needed. The non-parametric nature
of KMPs facilitates the modulation of learned trajectories by
external signals, particularly via approaches that take into
account the uncertainty in the data when applying modula-
tions [8]. Similar strategies can, in principle, be implemented
using Gaussian processes (GPs) [20]. However, due to not
modeling aleatoric uncertainties, GPs are less attractive to
model constraints.

Behavior adaptation has also been studied without con-
sidering assistance: Losey et al. proposed in [21] to de-
form a trajectory during execution with haptic feedback
and constrained optimization. Ahmadzadeh and Chernova
[7] proposed to use generalized cylinders – surfaces with
smoothly-varying cross-sections – to generate autonomous
behavior from trajectories. Although they address adapta-
tion, it is done in a similar fashion to [19], requiring new
kinesthetic demonstrations or physical interactions with the
robot. Instead of haptic feedback, due to our target users, we
propose adaptation from user commands.

III. BACKGROUND

A. Shared Control Templates (SCTs)

An SCT [4] is a finite-state machine tailored to shared
control, where each state defines input mappings, transition
conditions and active constraints.

Input mappings map user commands, typically low-
dimensional, to manipulator end-effector velocities, aiming
to let the user be in control of relevant task DoFs. They range
from standard translational or rotational control, to, e.g.,
more complex rotation control around the tip of a grasped
bottle when pouring. At present, EDAN mainly expects 3D
commands u ∈ [−1, 1]3, generated by joystick or surface
electromyography [2].

Transition conditions specify conditions that need to be
fulfilled in each state of an SCT (e.g. end-effector poses with
respect to objects, contact forces, user trigger) such that its
states are executed sequentially.

Finally, SCTs use active constraints as regional constraints
as defined by Bowyer et al. [5], which keep a desired end-
effector pose within a restricted region of the task space.
With SCTs, this is achieved by projecting at every time-step
the target end-effector pose, computed from input commands,
back into the allowed region, if constraints are violated.
Examples of active constraints include limit tilting angles in
a pour task, planar or volumetric primitive constraints (e.g.
cones or funnel [13]) that restrict the end-effector position,
helping the user control the robot to approach an object.

Through the definition of states and their components,
SCTs define shared control skills that permit robots to
complete tasks by leveraging user commands in principled
ways. As an example, a pick skill can be defined by an
SCT through states for approaching an object, and lifting this
object, each one constrained with a generalized cylinder, as
seen in Fig. 1, right. A pour skill would have states for
approaching a cup with a grasped bottle, then tilting the
bottle, thus pouring its contents into the cup. SCTs are time-
independent, object-centric and assume a static world model
during task execution.

B. Kernelized Movement Primitives (KMPs)

KMPs [6] are function approximators used in imitation
learning to predict the value of an output variable ξ ∈
RD given observations of an input s ∈ RI from a set
of end-effector trajectories. A KMP assumes that a ref-
erence trajectory distribution {µn,Σn}Nn=1, encoding the
means, variations and correlations of ξ, is available to model
P (ξ|sn), where sn=1,...,N are N given inputs. In [6], µn,
Σn are computed from a GMM. The expectation of the
output variable is computed, for a test input s∗, using:

E [ξ(s∗)]= k∗ (K + λ1Σ)
−1

µ, (1)



where k∗, K are evaluations of s∗ and sn=1,...,N using
a kernel function k(si, sj) (see [6] for details), λ1 > 0

is a regularization factor and µ =
[
µ⊤

1 , . . . ,µ
⊤
N

]⊤
, Σ =

blockdiag (Σ1, . . . ,ΣN ), a block-diagonal matrix. More-
over, the covariance of the output is given by:

D [ξ(s∗)]= α
(
k∗∗ − k∗ (K + λ2Σ)

−1
k∗⊤

)
, (2)

where α is a scaling factor, λ2 is a regularization factor and
k∗∗ denotes the evaluation of the kernel function at s∗, see
[6] for details.

1) Model adaptation using via-points: As shown in [6],
KMPs provide a principled way for trajectory modulation
when new task conditions arise. Particularly, for a new input
s̄, adding the pair {µ̄, Σ̄} to the reference trajectory distribu-
tion will ensure that the expected trajectory passes through a
desired via-point µ̄, provided that Σ̄ is small enough. While
this ensures adaptation, it modifies the covariance profile
through Σ̄ which can have undesirable effects if the variance
(2) is used to represent task space constraints, leading to
excessively constrained motions. Additionally it requires to
invert the term K + λΣ every time a via-point is added,
which has O(n3) complexity.

2) Model adaptation using null space actions: In recent
work [8], the original KMP formulation was extended with
a term that locally modulates the trajectory distribution,
enabling a more efficient adaptation with O(n2) complexity,
with no impact on the covariance profile. By defining a
desired modulation ξ̂ at an input ŝ the resulting expectation
is computed as:

E[ξ(s∗)] = k∗Ψµ+
[
k̂∗ − k∗ΨK̂

]
ξ̂, (3)

where Ψ = (K + λ1Σ)
−1 and k̂∗, K̂ are evaluations of

the kernel function at ŝ, see [8] for details. Note that the
first term in (3) corresponds to (1) and Ψ only needs to
be computed once. The second term includes a projector[
k̂∗ − k∗ΨK̂

]
that modulates the original expectation only

locally. This projector is referred in [8] as a soft null space
projector, since, on the one hand, it is the solution to a least
squares problem with null space and, on the other hand, it is a
‘soft’ projector, allowing ξ̂ to modify the original expectation
in proportion to the data variance in the neighborhood of ŝ.

IV. PROPOSED APPROACH

In this section we introduce an approach to extract active
constraints from a KMP and adapt them with external
user commands when new task conditions arise. The KMP
expectation (1) is used to define a reference path, which, in
combination with the covariance (2) at each point, allows
the derivation of a generalized cylinder [7] that constrains
the end-effector only along the directions orthogonal to the
reference path (Section IV-A), see Fig. 1 for an overview.
Subsequently, we use the approach from [8] to modulate the
learned active constraints from user commands u ∈ RD by
computing the term ξ̂ directly from u. Thus, we act on the
KMP expectation through the projector (3) and consequently
on the reference path (Section IV-B). Figure 2 illustrates this

Fig. 2. If an SCT requires adaptation due to environmental changes or
user preferences, a correction mode is entered, where the user can directly
adapt the SCT with their commands. The adapted SCT is then executed.

concept. In order to mitigate undesired correlations between
actions and modulate multiple points simultaneously we
introduce extensions of [8] (Sections IV-C and IV-D).

A. Deriving active constraints from a KMP

Let us assume a set of H demonstrations with M dat-
apoints each {{sm,h, ξm,h}Mm=1}Hh=1 where ξ is the end-
effector position and s is a normalized time variable aligned
across all demonstrations using Dynamical Time Warping
[22]. Querying a KMP model fit on such dataset with equally
spaced inputs s∗i=1,...,N ∈ [0, 1] provides a trajectory dis-
tribution over end-effector positions with associated means
and covariance matrices {µ∗

i ,Σ
∗
i }

N
i=1. We propose to use the

KMP expectation (1), given by the means {µ∗
i }Ni=1, as the

directrix Γ of a generalized cylinder [7]. Additionally, for ev-
ery point i along Γ, the covariance matrix Σ∗

i at a pre-defined
variance threshold is treated as an ellipsoid. Its intersection
with a plane passing through its center and perpendicular
to the directrix – following the approach described in [23] –
creates an ellipse ρ, see also Fig. 1, center. The set of ellipses
computed at every point of Γ, {ρi}Ni=1, forms a surface with
smoothly-varying cross-sections – a generalized cylinder [7].

The generalized cylinder computed from the KMP is used
as an active constraint acting in Cartesian space, by con-
straining the desired end-effector position within its volume.
In practice, the closest µ∗

i is identified, and the end-effector
is projected into the cylinder spanned by ρi. A high variance
at a specific section of the demonstrated trajectories provides
motion freedom to the user, while a low variance constrains
the user, e. g. at a specific grasp pose. Note that using a
generalized cylinder representation guarantees unconstrained
motion along the direction of Γ, unlike projecting on a full
covariance ellipsoid which may have low variance along the
direction of motion.

Given generalized cylinders extracted from demonstra-
tions, we propose to adapt them with the user in the loop by
acting directly on the underlying KMP representation.

B. KMP adaptation with user in the loop

Given the limitations of via-point-based KMP adaptation
discussed in III-B (which are common to other kernel-based
methods, e.g. GPs), we propose to act on the null space of the
KMP (3) and adapt generalized cylinders directly from user
commands u. Since u is generally used to drive the robot
end-effector we propose that, when wanting to modulate



the active constraints, the user triggers, at any instant t0, a
correction mode, where the shared control deactivates and
commands are interpreted as desired modulations of the
underlying KMP expectation (1) instead of control actions
to the robot. In correction mode, the modulation term ξ̂ in
(3) is computed directly from u. For a given location ŝ in
the input space, where the modulation is to be applied, we
thus define a desired correction starting at t0 and lasting until
t1 as an accumulation of user commands:

ξ̂(ŝ) =

∫ t1

t0

u(t) dt. (4)

Equation (4) can be used generically to define modulations
to be applied on a KMP through (3), from external user
commands. This effect is shown in Fig. 2.

In our experiments (Section V) a 3D user command u is
used, and is decoupled into two orthogonal components: the
component tangent to the directrix, u∥, and the component
perpendicular to it, u⊥. We propose to use u|| to select
where the modulation is taking place, ŝ, by moving along
the directrix. At the same time, u⊥ is used to modulate
the underlying KMP by acting on the directions orthogonal
to the directrix. Note that, despite the decoupling, we have
u⊥,u∥ ∈ R3 as they are represented in the robot base. For
simplicity, we keep the remaining of the discussion generic
by using u.

C. Decorrelating adaptations

Being constructed from full covariance matrices, the pro-
jector derived in (3) behaves in a way that takes into account
the correlations in the training data. In such a case, a desired
modulation on a subset of the task space DoFs, e.g. ξ̂ =
[ξ̂1 0 0]⊤ in our 3D case, may affect other DoFs. While this
may be a desirable feature in exploration [8], it may lead to
unintended effects in shared control scenarios. We therefore
propose to decorrelate the result of applying (4). To this end,
u is decomposed along its D components {uj}Dj=1 and (4)
is computed for each component as ξ̂j , with zero entries
except at index j. The removal of correlations into the final
modulation is then performed by computing

E[ξ(s∗)] = k∗Ψµ+

D∑
j=1

S̄j

[
k̂∗ − k∗ΨK̂

]
ξ̂j , (5)

where S̄j = blockdiag(Sj,1, . . . ,Sj,N ) is a block-diagonal
selection matrix formed of D−dimensional matrices Sj,i,
with zero entries except at (j, j) which is 1. In this manner,
the uncertainty-aware modulation properties of the original
projector (3) are kept (regions of low/high variance require
more/less modulation commands to be modified) while en-
suring that actions along one DoF do not affect other DoFs.
This effect is shown in Fig 5. Alternatively, correlations
could be removed directly from {Σn}Nn=1 by removing off-
diagonal terms. However, this would also remove correlations
from the active constraints, making the overall framework
less expressive.

D. Adaptation with multiple actions

The ability to modulate the trajectory at multiple points
from the same user command helps guarantee smoothness
of the resulting generalized cylinder as well as a lower
burden for the user. We thus further modify (3) to allow the
application of P corrections. In practice, from the original ξ̂
computed with (4) a set of P desired modulations {ξ̂i}Pi=1 is
computed, with the magnitude of each action decaying ex-
ponentially from the center ξ̂P−1

2
and applied on ŝ1, . . . , ŝP .

Note that applying multiple actions does not invalidate the
decorelation strategy. Their effect on the original KMP can
be computed cumulatively as2

E[ξ(s∗)] = k∗Ψµ+

P∑
i=1

[
k̂∗
i − k∗

iΨK̂i

]
ξ̂i. (6)

Removing the correlations between different DoFs (IV-C) is
achieved by combining (5) and (6), yielding

E[ξ(s∗)] = k∗Ψµ+
P∑
i=1

D∑
j=1

S̄j

[
k̂∗
i − k∗

iΨK̂i

]
ξ̂i,j . (7)

Equation (7) implements the modulations of a KMP at
multiple points simultaneously while removing undesired
effects between task space DoFs resulting from correlations
in the training data. Note that the computational complexity3

of (7) is O(pn2). As a consequence, as P → N , the
complexity approaches that of the original via-point-based
adaptation approach, O(n3). This, however, is unlikely to
occur in practice, as increasing P removes the locality of
the modulation, which is rarely desirable.

V. RESULTS

We conduct three experiments to validate our contribution,
with 3D user commands: we first learn an SCT from demon-
strated data, then adapt it to new environmental conditions
(new target pose then new target object), and finally let users
familiar with EDAN adapt an SCT on their own. Successful
tasks executions on EDAN are shown for each experiment.
Further results are shown in the accompanying video4.

A. Learning active constraints for a picking skill

The goal of the first experiment was to pick up a cup from
a table. To this end, we designed an SCT with two states:
approach and lift. The transition from approach to lift was
triggered by the user. For each state, five demonstrations were
recorded by kinesthetic teaching. Dynamical Time Warping
was then used to temporally align the demonstrated data.
A KMP was fitted to the data using a GMM with two
components to compute {µn,Σn}Nn=1, with N = 100,
λ1 = 0.25, λ2 = 0.25, α = 0.75, and a Matérn kernel [20]
with p = 2 and length scale l = 0.2, chosen empirically.

2A term K−1 multiplies ξ̂ on the left in the original formulation, when
multiple actions are applied. However, it correlates modulations at the action
level and increases the complexity, with limited benefits for our current use
case. We thus choose to treat here the individual actions independently.

3We neglect the effect of D as the projector does not depend on j.
4https://sites.google.com/view/learning-shared-control/



Fig. 3. Depiction of various SCTs executions on EDAN, with trajectories going from blue to red. Left: Pick SCT obtained by fitting a KMP to
demonstrations. Center: Pick SCT adapted with the proposed method (in the approach state) such that the end-effector fingers do not hit the table. Right:
A second adapted SCT, to pick up a taller object. The SCT implementation ensures that the end-effector is smoothly pulled to stay inside the active
constraints.

A D

B E

C F
Fig. 4. Photo series of the iterative modulation of a learned approach
constraint, to ensure the fingers of the end-effector will not collide with
the table with the new cup placement. User commands are depicted with a
black arrow.

Finally, for each state a generalized cylinder was derived
from the KMP and used as active constraint, with a standard
deviation of 5 to select the covariance ellipsoids. The end-
effector orientation was extracted from the closest point of
the mean trajectory. Five successful task executions by the
first author with the learned SCT are shown in Fig. 3, left.

B. Adapting learned active constraints to new conditions

For the second experiment, the cup was placed closer to
the center of the table. The (object-centric) trajectory had
to be adapted, to not let the fingers collide with the table
when using a approach trajectory with low height. Deforming
the approach model in correction mode is shown in Fig. 4.
In this simple scenario with a precise input device, P = 1
was chosen. The effect of increasing P can be visualized
in the accompanying video. The red sphere indicates where
the modulation is taking place, i. e. ŝ, selected with u||. To
make it easier to select ŝ, if ∥u||∥ > ∥u⊥∥, u⊥ is nullified,
so that no modulation is applied if the user predominantly
intend to move along the directrix. On exit of the correction
mode, the model is updated, the SCT reloaded, then five
pick tasks were performed successfully, see Fig 3, center.
We then used a thermos as target object, which changed the
terminal state as it required to be grasped higher, therefore
requiring a second adaptation. Following the same procedure,
five executions are shown in Fig. 3, right.

TABLE I
SKILL MODULATION BY DIFFERENT USERS.

KPI Participant

Author A B C D E

Modulation time (s) 30 71 87 79 40 62
Deformation % 5 10 34 18 10 20

C. Action decorrelation and computational complexity

Figure 5 shows the trajectories recorded for the approach
state, and the resulting mean and variance from a fitted KMP
model. Additionally, the impact of a null space action is
shown, both on the original NS-KMP formulation [8] and
our proposed approach. Figure 6 shows the computation
time resulting from using null space actions or via-points to
modulate the main trajectory. Two approaches of adding via-
points are evaluated: either by increasing the set of points of
the reference trajectory distribution, or by replacing points,
keeping the set size constant.

D. Evaluating performance of new users

Finally, we evaluated how other team members would
modulate the trajectory in the same setting as the first part
of V-B: pick a cup placed closer to the center of the table.
They had no experience with the proposed method, but
are familiar with SCTs and joystick control. After being
explained the SCT behavior, they tried the original SCT a few
times (less than five), as in the first experiment. Then they
practiced modulating the KMP model. At their convenience
(in practice, within four minutes) they signaled they were
ready to start to adjust the SCT to the new environment
situation, and entered correction mode to do so. Finally they
executed the adapted SCT on the robot, which was successful
on first try for each user. The time it took each person to
modulate the trajectory as well as the deformation applied on
each trajectory, measured as the deformed trajectory length
divided by the original trajectory length, are shown in Table I.

VI. DISCUSSION

A. Results

The results obtained in V-A and V-B show that SCTs –
particularly their active constraints – can be learned using
our proposed approach, and adapted using the same input
device as for task completion. These results are particularly
relevant for motor-impaired users who may not always have
the ability to make physical corrections. In V-D multiple



Fig. 5. Null space action and decorrelation adaptation. On the left are recorded trajectories to approach a cup, together with a fitted KMP model
represented by its mean and variance. The variance decreases when getting closer to the target item A , which constrains the end-effector. In each subsequent
column a null space action is applied along a single dimension. The impact of modulations, i. e. its amplitude scaled by the variance, can be seen at B .
The effect of the proposed decorrelation adaptation can be seen at C , where a null space action in a single dimension has no effect in other dimensions.
Notice the correlation effect occurring in the original NS-KMP formulation [8] (dashed black line) with actions on one DoF deforming other DoFs.

Fig. 6. Comparison of the computation time between null space action and
via-points (mean computation time over 1000 runs). Via-points are specified
to match the result of the applied null space action.

able-bodied users were able not only to complete the task but
also to adapt the assistance provided by the robot to a new
situation by modulating the demonstrated constraints. Table I
shows that, even with no prior experience with the method,
this adaptation could be done in realistic time frames and
with applied deformations which are comparable to those of
an expert user, here the leading author. These results suggest
that the approach is intuitive and easy to use. In addition,
Fig. 5 validates our action decorrelation strategy, showing
that individual actions on one DoF do not affect other DoFs.

The results obtained in Fig. 6 with a non-optimized Python
implementation confirm the trend discussed in IV-D with P
increasing the computational time in our approach. Due to
using a non-optimized implementation the complexity of our
approach matches that of via-points replaced at P = 0.5N .
Note, however, that this corresponds to modulating half of
the constraint simultaneously. We observed empirically that
P < 0.2N was a sensible choice, ensuring a good trade-
off between the locality of modulations and the number
of commands applied by the user. We thus leveraged the
benefits of the efficient modulation offered by (3). As shown
in the accompanying video, this simple implementation gave
us a low enough latency for model updates allowing intuitive
modulations for a simple SCT. Additionally, both via-point
adaptations entail the decrease in the predicted covariance
profile which we deem undesirable in our setting.

B. Outlook and limitations

Regardless of how the adaptation is done – null space
or via-point-based – we argue that KMP-based represen-
tations allow to learn and adapt constraints in SCTs, as
they are object-centric and time independent, leading to
identical shared control behaviors between trials, and provide
local adaptation. The modular nature of SCTs also allow
hybrid approaches where some states contain KMP-based
constraints while others are hand-coded. Note that by design,
in our experiments we discarded the possibility to modulate
the KMP along the directrix, although the formulation allows
to modulate in this direction as well if necessary.

Finally, the impact of Σ on the modulations, a conse-
quence of the projector used in (3), provides more precise
control of the more critical sections of the demonstrations.
However, a set of trajectories with Σ varying too much (or
with unintended too high/low variance) may also be unin-
tuitive for the user. A formulation with an hyperparameter
providing continuous adjustment between scaling due to Σ
and no scaling on the null space action would be of interest.
Also note that our approach modulates the active constraints
via modulating the expectation of the KMP through (3). Our
results show that this is sufficient to successfully adapt a
picking skill in our scenario but a similar mechanism to
modulate the covariance could also be investigated.

VII. CONCLUSION

We proposed an approach using probabilistic skill rep-
resentations to learn and adapt shared control skills. We
showed that using a skill representation with soft null space
projectors [8] permits a computationally-efficient modulation
of SCTs without decreasing motion freedom for users. Suc-
cessful executions of a learned picking task, as well as the
skill adaptation to new environment conditions, were shown
on the assistive robot EDAN. The success achieved by new
users in completing the task and adapting the skill suggests
that the proposed approach is intuitive and easy to use.

In future work we will further investigate the intuitiveness
and usability of the approach by considering new tasks and
more participants with no robotics background.
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[8] J. Silvério and Y. Huang, “A non-parametric skill representation with
soft null space projectors for fast generalization,” in Proc. IEEE Intl
Conf. on Robotics and Automation (ICRA), 2023, pp. 2988–2994.
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[15] C. Pérez-D’Arpino and J. Shah, “C-learn: Learning geometric con-
straints from demonstrations for multi-step manipulation in shared
autonomy,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 4058–4065.

[16] I. Havoutis and S. Calinon, “Learning from demonstration for semi-
autonomous teleoperation,” Autonomous Robots, vol. 43, no. 3, pp.
713–726, March 2019.

[17] S. Iregui, J. De Schutter, and E. Aertbelien, “Reconfigurable
constraint-based reactive framework for assistive robotics with adapt-
able levels of autonomy,” IEEE Robotics and Automation Letters,
vol. 6, no. 4, pp. 7397–7405, 2021.

[18] M. E. Tipping and C. M. Bishop, “Probabilistic principal component
analysis,” Journal of the Royal Statistical Society Series B: Statistical
Methodology, vol. 61, no. 3, pp. 611–622, 1999.

[19] G. Raiola, S. Sanchez Restrepo, P. Chevalier, P. Rodriguez-Ayerbe,
X. Lamy, S. Tliba, and F. Stulp, “Co-manipulation with a Library of
Virtual Guiding Fixtures,” Autonomous Robots, pp. 1573–7527, 2018.

[20] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for
machine learning. Cambridge, MA, USA: MIT Press, 2006.

[21] D. P. Losey and M. K. O’Malley, “Trajectory deformations from
physical human–robot interaction,” IEEE Trans. on Robotics, vol. 34,
no. 1, pp. 126–138, 2018.

[22] S. Salvador and P. Chan, “Toward accurate dynamic time warping in
linear time and space,” Intelligent Data Analysis, vol. 11, 2007.

[23] P. P. Klein, “On the ellipsoid and plane intersection equation,” Applied
Mathematics, vol. 3, no. 11, pp. 1634–1640, 2012.


