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Abstract

Purpose: many engineering structures are subjected to variable amplitude load-
ing. A number of studies investigate the effects of post overload, even-though it
is crucial to describe what occurs during the overloading. The aim of this paper
is to provide effective independent descriptors based on a purely kinematic mea-
surements for the analysis of overloading.
Methods: fatigue tests were conducted on a SENT specimen. Investigating crack
propagation was through direct measurements using Digital Image Correlation
(DIC) and Linear Elastic Fracture Mechanics (LEFM) via Williams’ series expan-
sion. The higher terms in Williams’ series expansion, referred to as crack features
were analyzed in cycles with and without overload.
Results: in a case without overload, all features exhibit a proportional regime.
Singular Value Decomposition (SVD) analysis confirms that a single feature is
adequate to characterize the mechanism. In a cycle with overload, the regime
changes during the overloading phase, making it a signature of this phase. In this
case, the SVD analysis reveals that two descriptors are needed for these cycles. A
subsequent analysis allows the definition of two physically interpretable features.
Conclusion: this work presents a robust method to identify, based on kinematic
measurements and SVD analysis, independent descriptors for the processes that
occur during a cycle with overload. ∗
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1 Introduction

In engineering, the prediction of the service life of components and structures is neces-
sary to ensure safety. Enhancing the capacity to withstand diverse loading conditions
can be regarded as a primary focus of engineering research. Reflecting real-world and
complex conditions, cyclic loading can be considered one of the most studied loading
types. Such repeated cyclic loading can cause fatigue cracking within structural com-
ponents. This phenomenon can be particularly challenging to predict and manage,
making it a central concern in engineering disciplines [15, 20]. For most of these com-
ponents, real loading cycles involve variable amplitude rather than constant amplitude
loading. Hence the study of overloads is important to understand their signature.
The effects of single peak tensile overloads have already been widely investigated
[14, 16, 19] as this form of loading may result in significant load interaction effects.
Several mechanisms have been proposed, based on Linear Elastic Fracture Mechanics
(LEFM), to explain crack growth retardation post overload. This include models
based on residual stresses [13], crack closure [6], strain hardening [5], crack branching
[18] and reversed yielding [12].
Fatigue life prediction in this case is complex because most of the studies used the
empirical Paris’ law [7]. This law establishes a direct correlation between the stress
intensity factor (∆K) as single crack feature and the crack growth rate per cycle
(da/dN), and has been widely applied to model fatigue crack growth during constant
amplitude loading. However, the Paris’ law exhibits several limitations, specifically
it only models the stable crack propagation, and does not consider the stress ratio
effects [17]. Many other fatigue crack propagation laws have been proposed to over-
come the limitations of the Paris law and also to deal with variable amplitude loading
[1]. The proposed fatigue models differ on the number of features involved and the
number of parameters required to be identified through curve fitting.

This work aims to provide independent kinematic descriptors for the mechanisms
that occurs during the overload. For this purpose, local and direct optical measure-
ments of the displacement fields obtained through digital image correlation (DIC)
during overload are analysed through LEFM via Williams’ series expansion. The Series
coefficients provide a first set of kinematic crack features. These are then further
reduced to two interpretable features using data analysis and dimensionality reductions
tools. This paper is structured as follows: in section 2 we presented the experimen-
tal set-up, including material, loading condition and specimen geometry. The DIC for
measuring kinematic fields and Williams’ series expansion are recalled. Crack features
are presented in section 3 and then analyzed qualitatively in section 4. In section 5
a quantitative, Singular Value Decomposition (SVD)-based, analysis was carried out.
The last section is a summary of the presented study.
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2 Raw data

2.1 Fatigue test on a SENT specimen

The specimen is made of Al-7%Si cast alloy with an average grain size of 150 µm.
Eutectic Si particles are dispersed in a globular shape obtained by coalescence fol-
lowing heat treatment (the material is provided by Centre Technique des Industries
Mécaniques CETIM). The elastic material properties are the Young’s modulus (E) of
74 GPa and the Poisson’s ratio (ν) of 0.3. Experiments are done on a Single Edge
Notched Tension (SENT) specimen. The geometry is defined in Figure 1.
The fatigue test was conducted in mode I, the specimen contains an initial notch at the
border perpendicular to the tensile axis. The initial length of the notch is a0 = 3 mm,
then the crack propagates through the whole specimen, until complete failure. All
experiments were performed using an electro magnetic machine (Instron ElectroPuls
E10000) with a load cell of 10 kN maximum loading capacity and a frequency of f=20
Hz.
Preliminary experiments have been conducted, leading to the choice of a cycling range
between Fmin=1kN and Fmax=7kN. The choice of the overloading load was a com-
promise between the maximum capacity of the machine and a significant overloading
load, thus Fovl=1.25Fmax.

Fig. 1: SENT specimen geometry (dimensions in mm).
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Fig. 2: Experimental setup

Table 1 Optical system and patterning technique

Camera 47 Megapixel Vieworks
Image resolution 7920×6004
Lens TOKINA 100 mm
Aperture f/2.8
Field of view 38.7×23.3 mm
Image scale 1 pix = 4.8µm
Patterning technique Spray paint (can + airbrush)

The experiment was divided into two stages:

• Initiation. The sample was subjected to cyclic tensile loading, the aim was to
achieve a crack length of 3 mm which was reached after 60000 cycles. This crack
length is sufficient to mitigate the influence of the notch during the initiation of the
crack.

• Propagation plus overload stage. After the pre-cracking stage, when crack prop-
agation was deemed sufficient, an overload was applied to the sample. Once the
crack has resumed growing, after 1000 cycles, the process of applying an overload
and letting the crack grow again afterwards is repeated until the sample breaks
(Figure 3).
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Fig. 3: Overload positions in the sample

During the experiment, pictures were taken for future DIC analyses. The images were
captured using a 47 Megapixels Vieworks camera equipped with a 100 mm lens (Tok-
ina). The lighting of the sample was ensured by a LED ring light (FPR-136BL2 by
CCS Inc). A black and white speckle pattern is painted on the specimen using cans
and an airbrush. The experimental setup can be seen in Figure 2, camera specifica-
tions are presented in Table 1.
An image of the unloaded and uncracked specimen is first taken. Then, during the pre-
cracking stage, images were captured each 5000 cycles at Fmax. During propagation
and overloading, images were taken each 0.5 kN from Fmin to Fmax and each 0.25 kN
from Fmax to Fovl (Figure 4).

Fig. 4: Image acquisition strategy. Each image is taken at a constant force.

All the images taken during experiments were used for DIC processing. DIC is a
full-field method that involves analysing a series of images to extract displacement
fields. The displacement field uDIC is computed between an undeformed image I0
and a deformed one I1. This displacement field is estimated following the optical flow
equation 1:

I0(X) = I1(X + uDIC(X)). (1)

The measurement of the displacement is an ill-posed problem. It is solved iteratively
in the least squares sense using a Finite Element (FE) discretization [2] implemented
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in UFreckles software [11]. The displacement field is decomposed over a regular mesh
of 4-node bilinear quadrangular elements. A median filter with the 1st neighbours
was used to reduce the impact of noise while keeping discontinuities (Table 2).

Table 2 DIC software parameters

Software UFreckles [11]
Shape function Bi-linear quadrilateral

Lagrange element (Q4P1)
Element size [20 20] px2 / [0.097 0.097] mm2

Post-filtering Median filter using 1st neighbours

2.2 Pre-overload and overload analysis

For all this study, cycles were analysed independently. For each cycle we computed
the variation of the load related to Fmin as follows:

δtF = F t − Fmin,

and the variation of the displacement field also related to the displacement at Fmin as
follows:

δtU = U t − UFmin ,

with U t and F t is the tth displacement vector and load respectively in the loading
range (Fmin ≤ F t ≤ Fovl in both loading and unloading phase) and UFmin the dis-
placement field at Fmin.
The variation of the vertical component of the displacement vector field is depicted
for 4 cycles with overload at Fovl and the cycle right before each overload at Fmax

(Table 3). Note that the displacement amplitudes shown in this Table exceed the
typical measurement error in DIC that is re-known to be around 0.01 px. For every
overload, the displacement magnitude increases in comparison to the precedent cycle,
this increase is expected because the load is proportional to displacement magni-
tude. A projection onto Williams’ series expansion was then performed using these
displacement fields, leading to the extraction of crack features.

2.3 Asymptotic displacement using Williams’ series

Williams [21] provides the asymptotic representation of the displacement field near a
crack tip in linear elastic isotropic materials. The power of Williams series expansion
is the preeminent asymptotic description of the displacement fields near a crack tip in
the conventional LEFM.
The 2D displacement field is expressed in the polar coordinate system crack tip
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Table 3 Vertical component of the displacement field in [px] at δFovl (right) and δFmax

(left) for cycles with overload and their precedent respectively. Here 1 px=4.8µm.

Ovl n◦ δFmax δFovl

1

2

3

4

centered as follows (Figure 5):

δtUW (r, θ) =

+∞∑
n=−∞

δta
n
I ϕ

n

I
(θ)r

n
2 , (2)
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with δta
n
I Williams’ coefficients and ϕ a base function. ϕn

I
(θ) is expressed in a complex

basis with i the complex number as follows:

ϕn

I
=

1

µ
√
8π

[
κeinθ/2 − n

2
ei(4−n)θ/2 +

(n
2
+ (−1)n

)
e−i(4−n)θ/2

]
, (3)

with µ = E
2(1+ν) =28.46 GPa, ν=0.3 and κ = 3−ν

1+ν=2.07, representing the shear

modulus, Poisson’s ratio, and Kolossov’s constant under plane stress assumption,
respectively.

Negative values of n are typically disregarded because they would lead to an infinite
strain energy density at the crack tip. However, the crack tip position being unknown,
the first supersingular term (n = −1) is used to estimate the position to the equivalent
elastic crack tip along a pre-defined crack path [3]. In the vicinity of the crack tip,
n = 0 refers to the rigid body translations, n = 1 (δKI) to singular stress, n = 2 (δT )
to the uniform stress and n = 3 (δB) to the third term in the Williams series.

Ω

e⃗x

e⃗y

Crack

r

θ

e⃗r

e⃗θ

Fig. 5: Cartesian and cylindrical coordinate system around the crack tip in a solid Ω.

2.4 Crack features extraction

In order to convert the DIC displacement fields in the dictionary of LEFM defined by
the Williams’ series, a projection (in the least square sense) of δU onto the analytical
expression was performed and different fracture mechanics features was derived (e.g.
δtKI, δtT, δtB and crack tip position)[8–10]. The following objective function (eq. 4)
was minimized:

δta
n
I = argmin

δtan
I

{∥δUDIC − δUW(δta
n
I )∥2} (4)

where ∥δUDIC − δUW∥2 refers to the norm over all the nodes.
The projection domain, as illustrated in Figure 6, is an annulus characterized by its
external and internal radii, denoted as rext=2.4 mm and rint=0.29 mm. A region
above and below the crack faces of rint width is also excluded as the FE DIC does
not describe explicitly the displacement discontinuity. The internal radius rint was
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considered to exclude the close vicinity of the crack tip where DIC may be less reliable
and because the use of supersingular terms would lead to an ill-conditioned projection
matrix. The external radius rext has to be small enough to avoid influences of the
free boundaries, but large enough to include sufficient mesh points in the domain.
The right size of the projection domain, i.e. defining rext and rint, has been identified
through a parametric study ensuring that the values of crack features are not sensitive
to the size of the projection domain. One would consider a criterion based on the size
of the K-dominance zone. However, the size of this zone is difficult to estimate and in
practice it may change in size and shape as the crack propagates. A more pragmatic
approach based on a parametric study was thus preferred.
Equation 2 affirms, that displacements can be computed for an infinite sum of modes.
However, limiting the solution from nmin = −3 to nmax = 7 is sufficient to retain the
relevant crack parameters [4].
Thus, the displacement field in mode I around the crack tip can be written as follows:

δtUW =

−1∑
nmin

δta
n
I ϕ

n

I
(θ)r

n
2︸ ︷︷ ︸

supersingular terms

+ δta
0
Iϕ

0

I
(θ)︸ ︷︷ ︸

translation

+ δta
1
Iϕ

1

I
(θ)

√
r︸ ︷︷ ︸

singular term

+

nmax∑
2

δta
n
I ϕ

n

I
(θ)r

n
2︸ ︷︷ ︸

subsingular terms

=

−1∑
nmin

δta
n
I ϕ

n
I (θ)r

n
2︸ ︷︷ ︸

supersingular terms

+ δta
0
Iϕ

0

I
(θ)︸ ︷︷ ︸

translation

+ δtKIϕ
1

I
(θ)

√
r︸ ︷︷ ︸

singular term

+ δtTϕ
2

I
(θ)r + δtBϕ3

I
(θ)/

√
r +

nmax∑
4

δta
n
I ϕ

n

I
(θ)r

n
2︸ ︷︷ ︸

subsingular terms

(5)
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Fig. 6: Projection domain defined by rext the external radius and rint the internal
radius.

3 Results

3.1 Residual displacement analysis

An examination of the projection quality is necessary to validate the features
extraction. Thus we propose the following indicator:

α =
∥δUDIC − δUW∥2

Nnodes
× ∆F

δtF
,

with ∆F = Fmax − Fmin.
α is a measure of the normalized average nodal residual displacement amplitude. It is
scaled by ∆F

δtF
to account for the increase of the displacement magnitude with the load

δtF . It is therefore, a good candidate to quantify the quality of features extraction
and displacement field reconstruction.
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Fig. 7: Normalized average nodal residual displacement amplitude α in [px] as a
function of the number of cycles. Here 1 px=4.8µm.

Figure 7 shows α as a function of the number of cycles during the loading phase, 4
peaks corresponding to 4 overloads are seen. The figure depicts an upward tendency.
Due to the crack propagation, the displacement magnitude increases and thus α
also. However the values are below 0.01 pixel which, in view of displacement values
observed in Table 3, means that the reconstruction of the displacement fields from
Williams’ series was very accurate.

0 2 4 /Fmax 8

/F [kN]
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Phase 1 Phase 2 Phase 3
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Fig. 8: Example of a normalized average nodal displacement error amplitude α in [px]
as a function of the load for the second overload in the loading phase. Here 1 px=4.8µm.

Figure 8 depicts α as a function of the load during the loading phase of a cycle with
overload. Here, three phases are seen. Phase 1 shows a significant decrease in α, which
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can be explained by the fact that δF grows from zero while the measured displacement
grows from a small but finite value. In Phase 2, we observe a plateau, indicating
that the average extraction residual is proportional to the displacement magnitude
(or equivalently the applied load). Finally, in Phase 3, which is the overloading phase,
we notice an increase in α and it is probably due to the significant displacement
magnitudes or partly because Williams’ series could be less appropriate to reconstruct
the displacement during overload. However, all values remain below 0.01 pixel which
means that the features are successfully extracted even in the overloading phase. This
analysis thus proves that, even if Williams’ series are based on linear elasticity, they
can capture the effects of non-linear phenomena, in the vicinity of the crack tip, on
the kinematic field inside the projection domain that is expected to cover a region
where the material remains elastic.

3.2 Crack features

Here, we choose to present 3 crack features (δKI, δT and δB), the 4 others are
presented in the Appendix section in Figure A1. These features are presented in the
following plots (Figure 9 and Figure 10) depicting their evolution upon δF for 4 cycles
with overload and the cycle just before each overload. For these plots, continuous
lines are used for the loading phase while dashed lines denotes the unloading phase.
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Fig. 9: Crack features (δKI, δT and δB) as a function of the δF for the cycle right
before each overload

Figure 9 shows the features as a function of the load. The same behavior can be
seen for all features, they exhibit a single regime where they are all proportional to δF
both during loading and unloading phase. The slope value of these features increase
from an overload to the other, reflecting the growing displacement magnitude caused
by crack propagation. δB is less smooth than δKI and δT . These observations are
consistent with LEFM assumptions.
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Fig. 10: Crack features (δKI, δT and δB) as a function of δF for cycles with overload

Figure 10 shows crack features as a function of the load δF during cycles with
overload. The same behavior is observed for the three features. The loading phase
(from Fmin to Fmax) shows a proportional regime to δF . This regime changes during
the overloading phase (from Fmax to Fovl), here crack features increase faster than δF
making this growth an overload signature. The unloading phase is linear with δF , it
apparently maintains the same slope as observed during the loading phase. However,
at the end of the cycle, while the load is relaxed, persistent crack features values are
obtained. This is to be related to the effect of the accumulated plastic strain in the
vicinity of the crack tip.
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Fig. 11: (δKI, δT ) , (δKI, δB) and (δB, δT ) plots for cycles with overload

(a) (b)

Fig. 12: 3D representation of δKI , δT and δB for cycles before overload (a) and
during overload (b)
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Figure 11 shows δT as a function of δKI and δB as a function of δKI, during the
loading phase δT and δB depicts respectively a proportional regime to δKI, then this
regime changes during the overloading phase where δT and δB grows faster than δKI.
The unloading phase maintains almost the same slope as observed during the loading
phase. The two hysteresis shows that in a case of a cycle with overload δT and δB are
not proportional to δKI.
The third plot shows δT against δB, a strong correlation is observed between the two
features. These three plots suggests that δKI is an independent feature, while δT and
δB are dependent on each other.
To better understand the link, Figure 12 shows the crack features state representation
in the (δKI, δT, δB) space during a cycle without overload (a) and with overload (b).
In a case without overload a clear line is observed, signifying, as observed previously,
that all the crack features are proportional to each other. In a case with overload the
crack features coordinates seem to lie in a plane. In these two distinct cases, quali-
tatively different structures are observed. In the next section, we will analyze these
geometries and propose an appropriate basis to describe each of them.
All the data presented above are available on zenodo website (doi: 10.5281/zen-
odo.10795209).

4 Analysis

4.1 Singular Value Decomposition

As strong correlations are observed among the previously identified features, we pro-
pose an analysis based on the Singular Value Decomposition (SVD) to further reduce
the number of relevant features. The SVD is carried out on a rectangular matrix Aft

that gathers for a single cycle all the features at all time steps. The line index f corre-
sponds to the singular and subsingular coefficients in Williams’ series expansion δta

f
I

with f ranging from f = 1 to f = 7. The column index t corresponds to the loading
steps with t ranging from t = 1 to t = 26 in a case without overload and and t = 39
otherwise. The rank of the matrix Aft is therefore at most 7. Additionally, each line
of Aft is rescaled to make it dimensionless:

Aft = δta
f
I · r

f
2 −1
c

E
, (6)

where rc = rmax is a characteristic length and E is the Young’s modulus.
The SVD of Aft can be written as follows:

Aft =

rank(Aft)∑
i=1

U
(i)
f σ(i)V

(i)
t , (7)

with

•
∑
f

U
(i)
f · U (j)

f = δij and U
(i)
f is the ith left singular vector,

16



• σ(i) ≥ σ(j) for i < j and σ(i) is the ith singular value,
•
∑
t
V

(i)
t · V (j)

t = δij and V
(i)
t is the ith right singular vector.

Before analyzing the decomposition, the reconstruction error is computed. From
the SVD it is indeed possible to compute Ãk

ft, the best rank-k approximation of Aft

as:

Ãk
ft =

k∑
i=1

U
(i)
f σ(i)V

(i)
t , (8)

with k ≤ rank(Aft). The relative approximation error in Fröbenius norm, ranging
from 0 (k=rank(Aft)) to 1 (k = 0), writes:

e(k) =
||Aft − Ãk

ft||F
||Aft||F

=

√∑rank(Aft)
i=k+1 σ(i)2√∑rank(Aft)
i=1 σ(i)2

. (9)
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(a) Cycles before overload

(b) Cycles with overload

Fig. 13: Relative approximation error versus the number of terms k

Figure 13 shows the relative approximation error as a function of k. For cycles without
overload, the relative error drops below 1% with just a single term. Adding more terms
has a limited effect as illustrated by the slope reduction beyond k = 1. This suggests
that a single term is adequate for accurately describing the matrix Aft in a cycle
without overload. This was expected because the crack features are proportional to
each other as seen in Figure 12 (a). For cycles with overload, two terms are needed to
reach approximately a relative error of 1%. This corresponds also to a slope change in
the reconstruction error which means that an additional descriptor is needed compared
to the previous case. This confirms and generalizes the observation made in Figure 12
(b): all the points which co-ordinates in the space of the δta

f
I Williams’ coefficients
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are defined in Aft approximately lie on a plane generated by the orthogonal basis(
U

(1)
f , U

(2)
f

)
. To validate this approximation, we defined, in Equations (10, 11, 12),

δtK̃I, δtT̃ and δtB̃ the SVD reconstruction of the crack features as follows:

δtK̃I = Ã
(2)
1t · E

r
−1
2

c

, (10)

δtT̃ = Ã
(2)
2t · E, (11)

δtB̃ = Ã
(2)
3t · E

r
1
2
c

. (12)

A comparison with the original crack features is shown in Figure 14. Other crack
features (from n = 4 to n = 7) are shown in the appendix section in Figure A1.

Fig. 14: Crack features (δKI, δT and δB) and their SVD reconstruction ( δK̃I, δT̃
and δB̃) as a function of δF for cycles with overload

We can clearly see that the SVD reconstruction of the crack features is accurate.
For δKI, it is difficult to distinguish between the reconstructed data and the original
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data. Tiny differences exist for δT . Finally, the rank 2 reconstruction smoothes δB
for δF ≤ δFmax. For the cycles without overload, the evolution of the crack tip state

is obviously dominated by δKI. Its contribution U
(1)
1 to the single mode required

for a robust reconstruction of the crack feature evolution is around 99%. Analyzing
the results of the SVD for the cycles with overload allows to obtain the two linear
combinations of the original crack features describing the evolution of the crack tip
state in the most condensed but robust way (as shown by the low reconstruction

errors). As illustrated in Figure 15, the first mode defined by U
(1)
f is similar for all the

overload cycles and is dominated by the contribution of δKI (f = 1) but still contains
some contribution of δT (f = 2) and δB (f = 3). Concerning the second left singular

vector U
(2)
f , the main contribution comes from the second and third crack features,

namely δT and δB. This change in the number of required left singular vectors when
analyzing cycles without overload and cycles with overload and their coordinates in
the crack features space, unquestionably suggests that δKI cannot be considered as
the unique descriptor of the kinematic field around the crack tip when an overload
is applied. This also suggests that additional sub-singular terms must be included to
properly describe the crack tip kinematic field.

Fig. 15: U
(k)2

f for k = 1 and k = 2 for all cycles with overload

4.2 Evolution of the crack tip state

An other interesting point is that, from Figure 16, the amplitude of the second singular
value σ(2) grows faster, between overloads, than the amplitude of the first singular
value σ(1). This suggests that the increase in crack length induces an increase in the
contribution of the second singular value compared to the first one.
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Fig. 16: σ(2) as a function σ(1) for all cycles with overload

Let us remind that the two vectors
(
U

(1)
f , U

(2)
f

)
actually define a basis of the

best approximating plane, in the 7 dimensional space of the crack features, to the
data contained in Aft. Figure 12 clearly illustrates the existence of this plane in
the (δKI, δT, δB) space. The strong, but not perfect correlation between δT and δB
observed in Figure 11 suggested that the normal to this plane is not in the (δT, δB)
plane. This is confirmed by the analysis of the two dominant left singular vectors of the

SVD U
(1)
f and U

(2)
f which both contain a non-vanishing contribution of δKI (f = 1).

The evolution of the crack tip state in terms of the two dominant left singular vectors

is now analysed in this plane. For this purpose, the trajectories in the
(
U

(1)
f , U

(2)
f

)
plane, defined by

(
σ(1)V

(1)
t , σ(2)V

(2)
t

)
are plotted in Figure 17. It is clearly observed

that the trajectories are similar up to a scaling respectively defined by σ(1) and σ(2)

along the two directions. As the crack propagates from the first overload to the fourth
one, we observe that σ(1) and σ(2) increase at different rates (see Figure 16) making

this change in the trajectories different along U
(1)
f and U

(2)
f . To further confirm that

the crack tip loading paths, once represented in the plane defined by the two dominant

left singular vectors U
(1)
f and U

(2)
f , is of the same nature, the trajectories defined by(

V
(1)
t , V

(2)
t

)
are plotted in Figure 18. With this representation of the data, it is clear

that the crack tip loading path (the evolution of the crack features with respect to
δF ) is the same irrespective of the crack length. Indeed, as a master curve emerges

from
(
V

(1)
t , V

(2)
t

)
, we confirm the unique nature of the crack features evolution when

it is presented in the appropriate space. The crack tip loading path is defined by two
parallel linear branches for δF ≤ δFmax and a third smooth branch joining the first
two ones during the overloading phase.
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Fig. 17: σ(2)V
(2)
t as a function σ(1)V

(1)
t for all cycles with overload expressed in the(

U
(1)
f , U

(2)
f

)
basis

Fig. 18: V
(2)
t as a function V

(1)
t for all cycles with overload

5 Discussion: towards a constitutive description of
crack tip states

From the crack features evolution during cycles with and without overload presented
in Section 3, the use of a SVD allows us to extract the main characteristics of the
evolution of the kinematic field around the crack tip. For the cycles without overload,
it is confirmed that considering a single descriptor, that can be considered to be δKI,
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is enough. Conversely, non-singular terms must be considered when an overload is

applied. Two linear combinations
(
U

(1)
f , U

(2)
f

)
of crack features (vectors in the crack

features space) must actually be considered in this case. If the crack tip loading path
is considered in the plane defined by these two vectors a non-proportional loading

(trajectories in
(
V

(1)
t , V

(2)
t

)
plotted in Figure 18) is obtained. The intensities of the

loading along these two elementary path descriptors are however different when their
evolution with the crack length is considered (see Figure 16).

In the proposed analysis, the SVD is performed independently for each loading

cycle. As observed in Figure 15, the coordinates of
(
U

(1)
f , U

(2)
f

)
in the crack features

space are slightly changed from one overload to the next one. Thus, while the interpre-
tation in terms of loading paths defined by the two dominant modes (see trajectories in(
V

(1)
t , V

(2)
t

)
is unquestionable, the contribution of these 2 modes once translated into

a displacement basis (thanks to the original Williams’ functions) is not that straight-

forward. Part of these changes in
(
U

(1)
f , U

(2)
f

)
can be attributed to the increase of the

crack length, the dependency of δKI/δF , δT/δF and δB/δF and all the other crack
features per unit load with respect to the crack length being different and dependent
on the specimen geometry. Also, as illustrated in Figure 19, the evolution of the con-

tribution of the two right singular vectors
(
V

(1)
t , V

(2)
t

)
with the applied load δF is

non-linear. This means that the non-linear evolution of the crack features with δF , see

Figure 11, is reported on the two dominant left singular vectors
(
U

(1)
f , U

(2)
f

)
. With

this respect, the interpretation of the respective contribution of U
(1)
f and U

(2)
f is diffi-

cult. In particular it is not possible at that point to separate the displacement around
the crack in a mode evolving linearly with δF (expected to be the same as for the
case without overload and to be dependent only on the crack length) and another
one holding the non-linear dependence on δF . It also makes difficult to interpret the
different evolution of the singular values σ(1) and σ(2) illustrated in Figure 16.
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Fig. 19: V
(k)
t as a function of δF for all cycles with overload

Fig. 20: C(2) as a function δF for all cycles with overload
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Fig. 21: C(1) as a function δF for all cycles with overload

As a first attempt to improve the level of comprehension, we propose to recombine

the two modes
(
U

(1)
f , U

(2)
f

)
into

(
Ũ

(1)
f , Ũ

(2)
f

)
so that when δF ≤ δFmax the contri-

bution of Ũ
(2)
f remains constant. In other words, the sought recombination of the two

modes should allow to align the linear branches of the trajectories in Figure 17 and
Figure 18 with the horizontal axis. This recombination simply consists in a rotation

of the initial orthogonal basis
(
U

(1)
f , U

(2)
f

)
within the plane where the data lies on

in the crack features space. This rotation is obtained by computing a new SVD on

a rectangular matrix containing σ(1)V
(1)
t , σ(2)V

(2)
t during the unloading phase (the

linear branch corresponding to the unloading phase from δFmax to 0) as two lines
of a rectangular matrix. The two left singular vectors (having two components) are
then combined in a 2× 2 matrix allowing for rotating from the initial singular vector

basis
(
U

(1)
f , U

(2)
f

)
into a new basis

(
Ũ

(1)
f , Ũ

(2)
f

)
. The evolution of the contribution

of these two modified modes is contained into two vectors C
(1)
t , C

(2)
t resulting from

the rotation of σ(1)V
(1)
t , σ(2)V

(2)
t . Figure 20 shows C

(2)
t as a function of δF . It is

clearly observed that when δF ≤ δFmax, C
(2)
t remains constant and that a non-linear

increases of its amplitude is obtained during the overloading phase of the cycles. This
behaviour is as expected and can be interpreted more clearly. This second mode is
now only activated in the overloading part of the cycles when δF ≥ δFmax. However,
Figure 21 shows that the first mode that was expected to depends linearly on δF
still evolves non-linearly with respect to δF . Graphically, this can be explained by
examining Figure 18. As mentioned earlier, the loading paths in this graph consist in
two linear branches for δF ≤ δFmax connected by a curved branch corresponding to
the overload phase of the cycle. Roughly speaking, the main orientation of this curved
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branch is not orthogonal to the two parallel linear branches. However, the decompo-
sitions used so far lead orthonormal basis vectors. This means that the projection of
the curved branch onto a vector oriented along the linear branches does not vanish.

As a consequence the contribution of the first modified mode Ũ
(1)
f exhibits the non-

linear evolution observed in Figure 21. To further improve the analysis and to try and
providing a decomposition of the crack features into two composites features encoding
the linear and non-linear evolution of the kinematic field around the crack tip as a
function of the applied load, an alternative decomposition is suggested. Following the
above described graphical interpretation, the linear / non-linear decomposition should
be performed onto a non-orthogonal basis, the first basis vector being aligned with the
linear branches and the second one with the main orientation of the curved branch.

For this purpose, the left singular vector U l
f further referred to as linear is defined

as Ũ
(1)
f . Then, a linear prediction of Aft′ for t

′ the steps during the unloading phase
from δFmax to 0 is built. This linear prediction is obtained through an amplitude
vector C l

t′ ∝ δF such that at δF = δFmax

U l
fC

l
t′ ≈ Aft′ . (13)

At this stage, C l
t′ is not aimed at reconstructing Aft′ accurately but only at giving

a linear prediction aligned with U l
f . Then an other SVD is carried out on a residual

rectangular matrix Ares
ft defined as follows:

Ares
ft = Aft − U l

fC
l
t. (14)

The rank of Ares
ft can be expected to be the same as that of Aft. However, because of

the particular shape of the
(
V

(1)
t , V

(2)
t

)
trajectories with two parallel linear branches

and one curved (but almost linear) branch, and because a linear prediction U l
fC

l
t along

the orientation U l
f of the parallel branches is subtracted from Aft, only one mode is

required to accurately reconstruct Ares
ft as confirmed in Figure 22. The corresponding

left singular vector is set as Unl
f . Processing the data as detailed above, one obtains

a non-orthogonal basis
(
U l
f , U

nl
f

)
of the plane previously defined by

(
U

(1)
f , U

(2)
f

)
or

alternatively
(
Ũ

(1)
f , Ũ

(2)
f

)
.
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Fig. 22: Relative approximation error for Ares
ft reconstruction versus the number of

terms k

Fig. 23: C l
t as a function of δF for all cycles with overload
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Fig. 24: Cnl
t as a function of δF for all cycles with overload

Fig. 25: Cnl
t as a function of C l

t for all cycles with overload

Eventually, for any t, Aft is projected onto (U l
f , U

nl
f ) leading to the definition

of C l
t and Cnl

t . Defined as such, U l
fC

l
t, respectively Unl

f Cnl
t , encodes the linear (with

respect to δF ), respectively non-linear, evolution of Aft. As illustrated in Figure 24,

Cnl
t exhibits the same behavior as C

(2)
t in Figure 20 but as shown in Figure 23, the

complementary part encoded in U l
f evolves linearly with respect to δF .
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For a deeper understanding, Figure 26 shows the squared coordinates of(
U l
f and Unl

f

)
in the normalized crack features basis. Compared to previously obtained

basis (see Figure 15), U l
f appears as almost perfectly aligned with the first crack fea-

ture (i.e δKI) while for the second vector Unl
f the second and third features contribute

significantly. Note the contrary to what was presented in Figure 15, the first feature
has the highest amplitude for the second vector. Using these two vectors, Table 4,
respectively Table 5, shows the field reconstructed from Williams’ basis functions and
U l
f , U

nl
f after rescaling (see Equation 6). As expected from Figure 26, the kinematic

fields corresponding to U l
f are similar to that of the Williams’ function for n = 1.

Those of Unl
f behave differently, the main contribution comes from the three crack

features represented in the section 3.
Conceptually, U l

f is sough to vary with the crack length and also to depend on

the specimen geometry. The amplitude C l
t of its contribution of the kinematic field

is linear with respect to δF , this can be interpreted as the effect at the crack tip of
remote loading if the material behaves linearly.

Conversely, Unl
f that is activated through Cnl

t encompasses the effect of the non-
linear constitutive behaviour of the material , activated only during the overload and
leading to a residual opening displacement at the end of the cycle. It is expected that
the constitutive relation of the material affects not only the evolution of Cnl

t with
respect to C l

t which can be interpreted as a flow rule (see Figure 25) but also the link
between Unl

f and U l
f which one would be more prone to interpret as a yield criterion

describing the evolution of the yield surface upon the loading direction (here U l
f ). One

important remark is also that even if the ratio between Fovl and Fmin is kept constant
all along the experiment, the amplitude of Cnl

t is increasing from one overload cycle
to the next one, meaning that the main parameter to be considered for characterizing
the effect of the overload is rather δovlKI or δovlKI −δmaxKI than Fovl/Fmin. Another
important remark is that the expected crack closure effect is not observed as such
on the kinematic fields. However, the remaining displacement amplitude at the end
of the cycle, encoded in the value of Cnl

t , is a consequence of the accumulated plas-
tic deformation at the crack tip and that also leads to compressive residual stresses
assumed to close the crack. While it is out of the scope of the analysis proposed herein,
these residual compressive stresses play a major role in crack retardation during the
cycles after the overload. The quantification of the amplitude of non-linear phenom-
ena through the proposed interpretable description can thus be at the basis of a new
modeling framework for fatigue overloads and the subsequent retardation effects.
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Fig. 26: U l
f and Unl

f for all cycles with overload

Table 4 Displacement field corresponding to the linear
(
U l
f

)
and the non-linear

(
U l
f

)
modes of the SVD at δFovl for the third overload.

Displacement field reconstruction

mode Horizontal component Vertical component

U l
f

Unl
f
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Table 5 Strain field corresponding to the linear and the non-linear modes of the SVD
at δFovl for the third overload.

Strain field reconstruction

mode ϵxx ϵyy

U l
f

Unl
f

6 Conclusion

In this paper, fatigue tests were conducted on a SENT specimen. Pictures were taken
for DIC processing, thus displacement fields were computed. These displacement fields
were projected on Williams’ series expansion and crack features were extracted. Crack
features were analyzed qualitatively in cycle with and without overload, then a quan-
titative analysis based on SVD analysis provides the most interpretable descriptors for
what occurs during overloading. The main observations can be summarized as follows:

• cycle without overload. in a case of a cycle without overload all features are pro-
portional thus a single descriptor is required to depict the evolution of the crack
tip state. In this case we consider δKI. This observation is consistent with a linear
behavior of the specimen.

• cycle with overload. In the loading phase (from δFmin to δFmax) crack features are
proportional to the load, then they depict a faster increase than load during the
overloading phase (from δFmax to δFovl) making this increase an overload signature.
The unloading phase is linear with δF and it maintains almost the same slope as dur-
ing the loading phase. In the (δKI, δT , δB) space, these crack features are grouped
around a plane. We suggested then an SVD analysis to propose an appropriate basis
of the crack tip state data structure. The first result of this analysis came with the
fact that δKI cannot be considered as the unique descriptor of the kinematic field.

We came out with a non-orthogonal basis of composite features
(
U l
f , U

nl
f

)
that

describes the “linear part” through C l
t which vary linearly with respect to δF and

the “non-linear” part through Cnl
t which is activated only in the overloading phase.
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These interpretable composite features can be considered as descriptors of the constitu-
tive behaviour of the crack tip. A clear separation is obtained between the contribution
to the kinematic fields around the crack tip having linear elastic response with respect
to the applied load and its counterpart with a non-linear and non-elastic behaviour.
There is thus all the ingredients to build an effective constitutive model of the crack tip
based on the minimum number of interpretable composite features (linear combination
of Williams’ coefficients).
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Appendix A Crack features from n = 4 to n = 7

Fig. A1: Crack features from n = 4 to n = 7 and their SVD reconstruction ( δK̃I, δT̃
and δB̃) as a function of δF for cycles with overload
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and S. Roux. DIC identification and X-FEM simulation of fatigue crack growth
based on the Williams’ series. International Journal of Solids and Structures,
53:38–47, January 2015.
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