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Abstract11

Background: many engineering structures are subjected to variable amplitude12

loading. A number of studies investigate the effects of post overload, even-though13

it is crucial to describe what occurs during the overloading. To the authors knowl-14

edge the number of studies that describe the overloading effects are few to none.15

Purpose: the aim of this paper is to provide effective independent descriptors16

based on a purely kinematic measurements.17

Methods: fatigue tests were conducted on a SENT specimen. Investigating crack18

propagation was through direct measurements using Digital Image Correlation19

(DIC) and Linear Elastic Fracture Mechanics (LEFM) via Williams’ series expan-20

sion. The higher terms in Williams’ series expansion, referred to as crack features21

were analyzed in cycles with and without overload.22

Results: in a case without overload, all features exhibit a proportional regime.23

Singular Value Decomposition (SVD) analysis confirms that a single feature is24

adequate to characterize the mechanism. In a cycle with overload, the regime25

changes during the overloading phase, making it a signature of this phase. In this26

case, the SVD analysis reveals that two descriptors are needed for these cycles. A27

subsequent analysis allows the definition of two physically interpretable features.28

Conclusion: this work presents a robust method to identify, based on kinematic29

measurements and SVD analysis, independent descriptors for the processes that30

occur during a cycle with overload. ∗
31

∗License: CC-BY @TheAuthors
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1 Introduction33

In engineering, the prediction of the service life of components and structures is neces-34

sary to ensure safety. Enhancing the capacity to withstand diverse loading conditions35

can be regarded as a primary focus of engineering research. Reflecting real-world and36

complex conditions, cyclic loading can be considered one of the most studied loading37

types. Such repeated cyclic loading can cause fatigue cracking within structural com-38

ponents. This phenomenon can be particularly challenging to predict and manage,39

making it a central concern in engineering disciplines [20, 15]. For most of these com-40

ponents, real loading cycles involve variable amplitude rather than constant amplitude41

loading. Hence the study of overloads is important to understand their signature.42

The effects of single peak tensile overloads have already been widely investigated43

[19, 16, 14] as this form of loading may result in significant load interaction effects.44

Several mechanisms have been proposed, based on Linear Elastic Fracture Mechanics45

(LEFM), to explain crack growth retardation post overload. This include models46

based on residual stresses [13], crack closure [6], strain hardening [5], crack branching47

[18] and reversed yielding [12].48

Fatigue life prediction in this case is complex because most of the studies used the49

empirical Paris’ law [7]. This law establishes a direct correlation between the stress50

intensity factor (∆K) as single crack feature and the crack growth rate per cycle51

(da/dN), and has been widely applied to model fatigue crack growth during constant52

amplitude loading. However, the Paris’ law exhibits several limitations, specifically53

it only models the stable crack propagation, and does not consider the stress ratio54

effects [17]. Many other fatigue crack propagation laws have been proposed to over-55

come the limitations of the Paris law and also to deal with variable amplitude loading56

[1]. The proposed fatigue models differ on the number of features involved and the57

number of parameters required to be identified through curve fitting.58

59

This work aims to provide independent kinematic descriptors for the mechanisms60

that occurs during the overload. For this purpose, local and direct optical measure-61

ments of the displacement fields obtained through digital image correlation (DIC)62

during overload are analysed through LEFM via Williams’ series expansion. The Series63

coefficients provide a first set of kinematic crack features. These are then further64

reduced to two interpretable features using data analysis and dimensionality reductions65

tools. This paper is structured as follows: in section 2 we presented the experimen-66

tal set-up, including material, loading condition and specimen geometry. The DIC for67

measuring kinematic fields and Williams’ series expansion are recalled. Crack features68

are presented in section 3 and then analyzed qualitatively in section 4. In section 569

a quantitative, Singular Value Decomposition (SVD)-based, analysis was carried out.70

The last section is a summary of the presented study.71

2



2 Raw data72

2.1 Fatigue test on a SENT specimen73

The specimen is made of Al-7%Si cast alloy with an average grain size of 150 µm.74

Eutectic Si particles are dispersed in a globular shape obtained by coalescence fol-75

lowing heat treatment (the material is provided by Centre Technique des Industries76

Mécaniques CETiM). The elastic material properties are the Young’s modulus (E) of77

74 GPa and the Poisson’s ratio (ν) of 0.3. Experiments are done on a Single Edge78

Notched Tension (SENT) specimen. The geometry is defined in Figure 1.79

The fatigue test was conducted in mode I, the specimen contains an initial notch at the80

border perpendicular to the tensile axis. The initial length of the notch is a0 = 3 mm,81

then the crack propagates through the whole specimen, until complete failure. All82

experiments were performed using an electro magnetic machine (Instron ElectroPuls83

E10000) with a load cell of 10 kN maximum loading capacity and a frequency of f=2084

Hz.85

Preliminary experiments have been conducted leading to the choice of a cycling range86

between Fmin=1kN and Fmax=7kN. The choice of the overloading load was a com-87

promise between the maximum capacity of the machine and a significant overloading88

load, thus Fovl=1.25Fmax.89

Fig. 1: SENT specimen geometry (dimensions in mm).
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Fig. 2: Experimental setup

Table 1 Optical system and patterning technique

Camera 47 Megapixel Vieworks
Image resolution 7920×6004
Lens TOKINA 100 mm
Aperture f/2.8
Field of view 38.7×23.3 mm
Image scale 1 pix = 4.8µm
Patterning technique Spray paint (can + airbrush)

The experiment was divided into two stages:90

• Initiation. The sample was subjected to cyclic tensile loading, the aim was to91

achieve a crack length of 3 mm which was reached after 60000 cycles. This crack92

length is sufficient to mitigate the influence of the notch during the initiation of the93

crack.94

• Propagation plus overload stage. After the pre-cracking stage, when crack prop-95

agation was deemed sufficient, an overload was applied to the sample. Once the96

crack has resumed growing, after 1000 cycles, the process of applying an overload97

and letting the crack grow again afterwards is repeated until the sample breaks98

(Figure 3).99
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Fig. 3: Overload positions in the sample

During the experiment, pictures were taken for future DIC analyses. The images were100

captured using a 47 Megapixels Vieworks camera equipped with a 100 mm lens (Tok-101

ina). The lighting of the sample was ensured by a LED ring light (FPR-136BL2 by102

CCS Inc). A black and white speckle pattern is painted on the specimen using cans103

and an airbrush. The experimental setup can be seen in Figure 2, camera specifica-104

tions are presented in Table 1.105

An image of the unloaded and uncracked specimen is first taken. Then, during the pre-106

cracking stage, images were captured each 5000 cycles at Fmax. During propagation107

and overloading, images were taken each 0.5 kN from Fmin to Fmax and each 0.25 kN108

from Fmax to Fovl (Figure 4).109

Fig. 4: Image acquisition strategy. Each image is taken at a constant force.

All the images taken during experiments were used for DIC processing. DIC is a
full-field method that involves analysing a series of images to extract displacement
fields. The displacement field uDIC is computed between an undeformed image I0
and a deformed one I1. This displacement field is estimated following the optical flow
equation 1:

I0(X) = I1(X + uDIC(X)). (1)

The measurement of the displacement is an ill-posed problem. It is solved iteratively110

in the least squares sense using a Finite Element (FE) discretization [2] implemented111
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in UFreckles software [11]. The displacement field is decomposed over a regular mesh112

of 4-node bilinear quadrangular elements. A median filter with the 1st neighbours113

was used to reduce the impact of noise (Table 2).114

115

Table 2 DIC software parameters

Software UFreckles [11]
Shape function Bi-linear quadrilateral

Lagrange element (Q4P1)
Element size [0.097 0.097] mm2

Post-filtering Median filter using 1st neighbours

2.2 Pre-overload and overload analysis116

For all this study, cycles were analysed independently. For each cycle we computed
the variation of the load related to Fmin as follows:

δtF = F t − Fmin;

and the variation of the displacement field also related to the displacement at Fmin as
follows:

δtU = U t − UFmin ,

with U t and F t is the tth displacement vector and load respectively in the loading117

range (Fmin ≤ F t ≤ Fovl in both loading and unloading phase) and UFmin the dis-118

placement field at Fmin.119

The variation of the vertical component of the displacement vector field is depicted120

for 4 cycles with overload at Fovl and the cycle right before each overload at Fmax121

(Table 3). For every overload, the displacement magnitude increases in comparison122

to the precedent cycle, this increase is expected because the load is proportional123

to displacement magnitude. A projection onto Williams’ series expansion was then124

performed using these displacement fields, leading to the extraction of crack features.125

2.3 Asymptotic displacement using Williams’ series126

Williams [21] provides the asymptotic representation of the displacement field near a
crack tip in linear elastic isotropic materials. The power of Williams series expansion
is the preeminent asymptotic description of the displacement fields near a crack tip in
the conventional LFEM.
The 2D displacement field is expressed in the polar coordinate system crack tip
centered as follows (Figure 5):

δtUW (r, θ) =

+∞∑
n=−∞

δta
n
I ϕ

n

I
(θ)r

n
2 , (2)
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Table 3 Vertical component of the displacement field in [px] at Fmax (left) and Fovl

(right) for cycles with overload and their precedent respectively.

Vertical component of the displacement field in [px] at:

Ovl n◦ Fmax Fovl

1

2

3

4
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with δta
n
I Williams’ coefficients and ϕ a base function. ϕn

I
(θ) is expressed in a complex127

basis with i the complex number as follows:128

ϕn

I
=

1

µ
√
8π

[κeinθ/2 − n

2
ei(4−n)θ/2

+ (
n

2
+ (−1)n)e−i(4−n)θ/2], (3)

with µ=28.46 GPa and κ=2.07 the shear modulus and Kolossov’s constant respec-129

tively. ν=0.3 is the Poisson’s ratio.130

Negative values of n are typically disregarded because they would lead to an infinite131

strain energy density at the crack tip. However, the crack tip position being unknown,132

the first supersingular term (n = −1) is used to estimate the position to the equiv-133

alent elastic crack tip along a pre-defined crack path [3]. In the vicinity of the crack134

tip, n = 0 refers to the rigid body translations, n = 1 (δKI) to singular stress, n = 2135

(δT ) to the uniform stress and n = 3 (δB) to the third term in the Williams series.136

Ω

e⃗x

e⃗y

Crack

r

θ

e⃗r

e⃗θ

Fig. 5: Cartesian and cylindrical coordinate system around the crack tip in a solid Ω.

2.4 Crack features extraction137

In order to convert the DIC displacement fields in the dictionary of LEFM defined by
the Williams’ series, a projection (in the least squares sense) of δU onto the analytical
expression was performed and different fracture mechanics features was derived (e.g.
δtKI, δtT, δtB and crack tip position)[9, 8, 10]. The following objective function (eq. 4)
was minimized:

δta
n
I = argmin

δtan
I

{∥δUDIC − δUW(δta
n
I )∥2} (4)

where ∥δUDIC − δUW∥2 refers to the norm over all the nodes.138

The projection domain, as illustrated in Figure 6, is an annulus characterized by its139

external and internal radii, denoted as rext=2.4 mm and rint=0.29 mm. A region above140

and below the crack faces of rint width is also excluded as the FE DIC does not describe141
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explicitly the displacement discontinuity. The internal radius rint was considered to142

exclude the close vicinity of the crack tip where DIC may be less reliable and because143

the use of supersingular terms would lead to an ill-conditioned projection matrix. The144

external radius rext has to be small enough to avoid influences of the free boundaries,145

but large enough to include sufficient mesh points in the domain. The right size of the146

projection domain, i.e. defining rext and rint, has been identified through a parametric147

study ensuring that the values of crack features are not sensitive to the size of the148

projection domain.149

Equation 2 affirms, that displacements can be computed for an infinite sum of modes.150

However, limiting the solution from nmin = −3 to nmax = 7 is sufficient to retain the151

relevant crack parameters [4].152

Thus, the displacement field in mode I around the crack tip can be written as follows:153

δtUW =

−1∑
nmin

δta
n
I ϕ

n

I
(θ)r

n
2︸ ︷︷ ︸

supersingular terms

+ δta
0
Iϕ

0

I
(θ)︸ ︷︷ ︸

translation

+ δta
1
Iϕ

1

I
(θ)

√
r︸ ︷︷ ︸

singular term

+

nmax∑
2

δta
n
I ϕ

n

I
(θ)r

n
2︸ ︷︷ ︸

subsingular terms

=

−1∑
nmin

δta
n
I ϕ

n
I (θ)r

n
2︸ ︷︷ ︸

supersingular terms

+ δta
0
Iϕ

0

I
(θ)︸ ︷︷ ︸

translation

+ δtKIϕ
1

I
(θ)

√
r︸ ︷︷ ︸

singular term

+ δtTϕ
2

I
(θ)r + δtBϕ3

I
(θ)/

√
r +

nmax∑
4

δta
n
I ϕ

n

I
(θ)r

n
2︸ ︷︷ ︸

subsingular terms

(5)
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Fig. 6: Projection domain defined by rext the external radius and rint the internal
radius

3 Results154

3.1 Residual displacement analysis155

An examination of the projection quality is necessary to validate the features156

extraction. Thus we propose the following indicator:157

α =
∥δUDIC − δUW∥2

Nnodes
× ∆F

δtF
,

with ∆F = Fmax − Fmin.158

α is a measure of the normalized average nodal residual displacement amplitude. It is159

scaled by ∆F
δtF

to account for the increase of the displacement magnitude with the load160

δtF . It is therefore, a good candidate to quantify the quality of features extraction161

and displacement field reconstruction.162
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Fig. 7: Normalized average nodal residual displacement amplitude α as a function of
the number of cycles

Figure 7 shows α as a function of the number of cycles during the loading phase, 4163

peaks corresponding to 4 overloads are seen. The figure depicts an upward tendency.164

Due to the crack propagation, the displacement magnitude increase and thus α165

also. However the values are below 0.01 pixel which, in view of displacement values166

observed in Table 3, means that the reconstruction of the displacement fields from167

Williams’ series was very accurate.168

169

0 2 4 /Fmax 8

/F [kN]

1

1.5

2

2.5

3

3.5

4

,
[p

x
]

#10!3

Phase 1 Phase 2 Phase 3

Loading phase for ovl n/2

Fig. 8: Example of a normalized average nodal displacement error amplitude α as a
function of the load for the second overload in the loading phase

Figure 8 depicts α as a function of the load during the loading phase of a cycle with170

overload. Here three phases are seen. Phase 1 shows a significant decrease in α, which171
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can be explained by the fact that δF growth from zero while the measured displace-172

ment growth from a small but finite value. In Phase 2, we observe a plateau, indicating173

that the average extraction residual is proportional to the displacement magnitude174

(or equivalently the applied load). Finally, in Phase 3, which is the overloading phase,175

we notice an increase in α and it is probably due to the significant displacement mag-176

nitudes or again partly because Williams’ series are less appropriate to reconstruct177

the displacement during overload. However, all values remain below 0.01 pixel which178

means that the features are successfully extracted even in the overloading phase.179

3.2 Crack features180

Here, we choose to present 3 crack features (δKI, δT and δB), the 4 others are181

presented in the Appendix section in Figure A1. These features are presented in the182

following plots (Figure 9 and Figure 10) depicting their evolution upon δF for 4 cycles183

with overload and the cycle just before each overload. For these plots, continuous184

lines are used for the loading phase while dashed lines denotes the unloading phase.185

186
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Fig. 9: Crack features (δKI,δT and δB) as a function of the δF for the cycle right
before each overload

Figure 9 shows the features as a function of the load. The same behavior can be187

seen for all features, they exhibit a single regime where they are all proportional to δF188

both during loading and unloading phase. The slope value of these features increase189

from an overload to the other, reflecting the growing displacement magnitude caused190

by crack propagation. δB is less smooth than δKI and δT . These observations are191

consistent with LEFM assumptions.192

193
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Fig. 10: Crack features (δKI, δT and δB) as a function of δF for cycles with overload

Figure 10 shows crack features as a function of the load δF during cycles with194

overload. The same behavior is observed for the three features. The loading phase195

(from Fmin to Fmax) shows a proportional regime to δF . This regime changes during196

the overloading phase (from Fmax to Fovl), here crack features increase faster than197

δF making this growth an overload signature. The unloading phase is linear with δF ,198

it apparently maintains the same slope as observed during the loading phase.199

200
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Fig. 11: (δKI, δT ) , (δKI, δB) and (δB, δT ) plots for cycles with overload

(a) (b)

Fig. 12: 3D representation of δKI , δT and δB for cycles before overload (a) and
during overload (b)
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Figure 11 shows δT as a function of δKI and δB as a function of δKI, during the201

loading phase δT and δB depicts respectively a proportional regime to δKI, then this202

regime changes during the overloading phase where δT and δB grows faster than δKI.203

The unloading phase maintains almost the same slope as observed during the loading204

phase. The two hysteresis shows that in a case of a cycle with overload δT and δB are205

not proportional to δKI.206

The third plot shows δT against δB, a strong correlation is observed between the two207

features. These three plots suggests that δKI is an independent feature, while δT and208

δB are dependent on each other.209

To better understand the link, Figure 12 shows the crack features state representation210

in the (δKI,δT , δB) space during a cycle without overload (a) and with overload (b).211

In a case without overload a clear line is observed, signifying, as observed previously,212

that all the crack features are proportional to each other. In a case with overload the213

crack features coordinates seem to lie in a plane. In these two distinct cases, quali-214

tatively different structures are observed. In the next section, we will analyze these215

geometries and propose an appropriate basis to describe each of them.216

All the data presented above are available in the following doi: 10.5281/zen-217

odo.10795209 .218

4 Analysis219

4.1 Singular Value Decomposition220

As strong correlations are observed among the previously identified features, we pro-
pose an analysis based on the Singular Value Decomposition (SVD) to further reduce
the number of relevant features. The SVD is carried out on a rectangular matrix Aft

that gathers for a single cycle all the features at all time steps. The line index f corre-
sponds to the singular and subsingular coefficients in Williams’ series expansion δta

f
I

with f ranging from f = 1 to f = 7. The column index t corresponds to the loading
steps with t ranging from t = 1 to t = 26 in a case without overload and and t = 38
otherwise. The rank of the matrix Aft is therefore at most 7. Additionally, each line
of Aft is rescaled to make it dimensionless:

Aft = δta
f
I · r

f
2 −1
c

E
, (6)

where rc = rmax is a characteristic length and E is the Young’s modulus.221

The SVD of Aft can be written as follows:

Aft =

rank(Aft)∑
i=1

U
(i)
f σ(i)V

(i)
t , (7)

with222

•
∑
f

U
(i)
f · U (j)

f = δij and U
(i)
f is the ith left singular vector,223
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• σ(i) ≥ σ(j) for i < j and σ(i) is the ith singular value,224

•
∑
t
V

(i)
t · V (j)

t = δij and V
(i)
t is the ith right singular vector.225

Before analyzing the decomposition, the reconstruction error is computed. From
the SVD it is indeed possible to compute Ãk

ft, the best rank-k approximation of Aft

as:

Ãk
ft =

k∑
i=1

U
(i)
f σ(i)V

(i)
t , (8)

with k ≤ rank(Aft). The relative approximation error in Fröbenius norm, ranging
from 0 (k=rank(Aft)) to 1 (k = 0), writes:

e(k) =
||Aft − Ãk

ft||F
||Aft||F

=

√∑rank(Aft)
i=k+1 σ(i)2√∑rank(Aft)
i=1 σ(i)2

. (9)
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(a) Cycles without overload

(b) Cycles with overload

Fig. 13: Relative approximation error versus the number of terms k

Figure 13 shows the relative approximation error as a function of k. For cycles with-
out overload, the relative error drops below 1% with just a single term. Adding more
terms has a limited effect as illustrated by the slope reduction beyond k = 1. This
suggests that a single term is adequate for accurately describing the matrix Aft in a
cycle without overload. This was expected because the crack features are proportional
to each other as seen in Figure 12 (a). For cycles with overload, two terms are needed
to reach approximately a relative error of 1%. This corresponds also to a slope change
in the reconstruction error which means that an additional descriptor is needed com-
pared to the previous case. This confirms and generalizes the observation made in

18



Figure 12 (b): all the points which co-ordinates in the space of the δta
f
I Williams’ coef-

ficients are defined in Aft approximately lie on a plane generated by the orthogonal

basis (U
(1)
f , U

(2)
f ). To validate this approximation, we defined, in Equations (10,11,12),

δtK̃I,δtT̃ and δtB̃ the SVD reconstruction of the crack features as follows:

δtK̃I = Ã
(2)
1t · E

r
−1
2

c

(10)

δtT̃ (t) = Ã
(2)
2t · E (11)

δtB̃(t) = Ã
(2)
3t · E

r
1
2
c

(12)

A comparison with the original crack features is shown in Figure 14. Other crack226

features (from n = 4 to n = 7) are shown in the appendix section in Figure A1.227

Fig. 14: Crack features (δKI, δT and δB) and their SVD reconstruction ( δK̃I, δT̃
and δB̃) as a function of δF for cycles with overload

19



We can clearly see that the SVD reconstruction of the crack features is accurate.228

For δKI, it is difficult to distinguish between the reconstructed data and the original229

data. Tiny differences exist for δT . Finally, the rank 2 reconstruction smoothes δB for230

δF ≤ δFmax.231

For the cycles without overload, the evolution of the crack tip state is obviously232

dominated by δKI. Its contribution U
(1)
1 to the single mode required for a robust233

reconstruction of the crack feature evolution is around 99%. Analyzing the results of234

the SVD for the cycles with overload allows to obtain the two linear combinations of235

the original crack features describing the evolution of the crack tip state in the most236

condensed but robust way (as shown by the low reconstruction errors). As illustrated237

in Figure 15, the first mode defined by U
(1)
f is similar for all the overload cycles and is238

dominated by the contribution of δKI (f = 1) but still contains some contribution of239

δT (f = 2) and δB (f = 3). Concerning the second left singular vector U
(2)
f , the main240

contribution comes from the second and third crack features, namely δT and δB.241

This change in the number of required left singular vectors when analyzing cycles242

without overload and cycles with overload and their coordinates in the crack features243

space, unquestionably suggests that δKI cannot be considered as the unique descriptor244

of the kinematic field around the crack tip when an overload is applied. This also245

suggests that additional sub-singular terms must be included to properly describe the246

crack tip kinematic field.247

Fig. 15: U
(k)2

f for k = 1 and k = 2 for all cycles with overload

4.2 Evolution of the crack tip state248

An other interesting point is that, from Figure 16, the amplitude of the second singular249

value σ(2) grows faster, between overloads, than the amplitude of the first singular250

value σ(1). This suggests that the increase in crack length induces an increase in the251

contribution of the second singular value compared to the first one.252

20



Fig. 16: σ(2) as a function σ(1) for all cycles with overload

Let us remind that the two vectors (U
(1)
f , U

(2)
f ) actually define a basis of the253

best approximating plane, in the 7 dimensional space of the crack features, to the254

data contained in Aft. Figure 12 clearly illustrates the existence of this plane in255

the (δKI, δT, δB) space. The strong, but not perfect correlation between δT and δB256

observed in Figure 11 suggested that the normal to this plane is not in the (δT, δB)257

plane. This is confirmed by the analysis of the two dominant left singular vectors258

of the SVD U
(1)
f and U

(2)
f which both contain a non-vanishing contribution of δKI259

(f = 1). The evolution of the crack tip state in terms of the two dominant left sin-260

gular vectors is now analysed in this plane. For this purpose, the trajectories in the261

(U
(1)
f , U

(2)
f ) plane, defined by (σ(1)V

(1)
t , σ(2)V

(2)
t ) are plotted in Figure 17. It is clearly262

observed that the trajectories are similar up to a scaling respectively defined by σ(1)
263

and σ(2) along the two directions. As the crack propagates from the first overload to264

the fourth one, we observe that σ(1) and σ(2) increase at different rates (see Figure 16)265

making this change in the trajectories not a pure dilation. To further confirm that the266

crack tip loading paths, once represented in the plane defined by the two dominant267

left singular vectors U
(1)
f and U

(2)
f , is of the same nature, the trajectories defined by268

(V
(1)
t , V

(2)
t ) are plotted in Figure 18. With this representation of the data, it is clear269

that the crack tip loading path (the evolution of the crack features with respect to270

δF ) is the same irrespective of the crack length. Indeed, as a master curve emerges271

from (V
(1)
t , V

(2)
t ), we confirm the unique nature of the crack features evolution when272

it is presented in the appropriate space. The crack tip loading path is defined by two273

parallel linear branches for δF ≤ δFmax and a third smooth branch joining the first274

two ones during the overloading phase.275
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Fig. 17: σ(2)V
(2)
t as a function σ(1)V

(1)
t for all cycles with overload expressed in the

(U
(1)
f ,U

(2)
f ) basis

Fig. 18: V
(2)
t as a function V

(1)
t for all cycles with overload

5 Discussion: towards a constitutive description of276

crack tip states277

From the crack features evolution during cycles with and without overload presented278

in Section 3, the use of a SVD allows us to extract the main characteristics of the279

evolution of the kinematic field around the crack tip. For the cycles without overload,280

it is confirmed that considering a single descriptor, that can be considered to be δKI,281
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is enough. Conversely, non-singular terms must be considered when an overload is282

applied. Two linear combinations (U
(1)
f , U

(2)
f ) of crack features (vectors in the crack283

features space) must actually be considered in this case. If the crack tip loading path284

is considered in the plane defined by these two vectors a non-proportional loading285

(trajectories in (V
(1)
t , V

(2)
t ) plotted in Figure 18) is obtained. The intensities of the286

loading along these two elementary path descriptors are however different when their287

evolution with the crack length is considered (see Figure 16).288

In the proposed analysis, the SVD is performed independently for each loading289

cycle. As observed in Figure 15, the coordinates of (U
(1)
f , U

(2)
f ) in the crack features290

space are slightly changed from one overload to the next one. Thus, while the interpre-291

tation in terms of loading paths defined by the two dominant modes (see trajectories292

in (V
(1)
t , V

(2)
t ) is unquestionable, the contribution of these 2 modes once translated293

into a displacement basis (thanks to the original Williams’ functions ) is not that294

straightforward. Part of these changes in (U
(1)
f , U

(2)
f ) can be attributed to the increase295

of the crack length, the dependency of δKI/δF , δT/δF and δB/δF and all the other296

crack features per unit load with respect to the crack length being different and depen-297

dent on the specimen geometry. Also, as illustrated in Figure 19, the evolution of298

the contribution of the two right singular vectors (V
(1)
t , V

(2)
t ) with the applied load299

δF is non-linear. This means that the non-linear evolution of the crack features with300

δF , see Figure 11, is reported on the two dominant left singular vectors (U
(1)
f , U

(2)
f ).301

With this respect, the interpretation of the respective contribution of U
(1)
f and U

(2)
f302

is difficult. In particular it is not possible at that point to separate the displacement303

around the crack in a mode evolving linearly with δF (expected to be the same as for304

the case without overload and to be dependent only on the crack length) and another305

one holding the non-linear dependence on δF . It also makes difficult to interpret the306

different evolution of the singular values σ(1) and σ(2) illustrated in Figure 16.307

Fig. 19: V
(k)
t as a function of δF for all cycles with overload
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Fig. 20: C(2) as a function δF for all cycles with overload

Fig. 21: C(1) as a function δF for all cycles with overload

As a first attempt to improve the level of comprehension, we propose to recombine308

the two modes (U
(1)
f , U

(2)
f ) into (Ũ

(1)
f , Ũ

(2)
f ) so that when δF ≤ δFmax the contribution309

of Ũ
(2)
f remains constant. In other words, the sought recombination of the two modes310

should allow to align the linear branches of the trajectories in Figure 17 and Figure 18311
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with the horizontal axis. This recombination simply consists in a rotation of the ini-312

tial orthogonal basis (U
(1)
f , U

(2)
f ) within the plane where the data lies on in the crack313

features space. This rotation is obtained by computing a new SVD on a rectangular314

matrix containing σ(1)V
(1)
t , σ(2)V

(2)
t during the unloading phase (the linear branch315

corresponding to the unloading phase from δFmax to 0) as two lines of a rectangular316

matrix. The two left singular vectors (having two components) are then combined in317

a 2× 2 matrix allowing for rotating from the initial singular vector basis (U
(1)
f , U

(2)
f )318

into a new basis (Ũ
(1)
f , Ũ

(2)
f ). The evolution of the contribution of these two modified319

modes is contained into two vectors C
(1)
t , C

(2)
t resulting from the rotation of σ(1)V

(1)
t ,320

σ(2)V
(2)
t . Figure 20 shows C

(2)
t as a function of δF . It is clearly observed that when321

δF ≤ δFmax, C
(2)
t remains constant and that a non-linear increases of its amplitude322

is obtained during the overloading phase of the cycles. This behaviour is as expected323

and can be interpreted more clearly. This second mode is now only activated in the324

overloading part of the cycles when δF ≥ δFmax. However, Figure 21 shows that325

the first mode that was expected to depends linearly on δF still evolves non-linearly326

with respect to δF . Graphically, this can be explained by examining Figure 18. As327

mentioned earlier, the loading paths in this graph consist in two linear branches for328

δF ≤ δFmax connected by a curved branch corresponding to the overload phase of the329

cycle. Roughly speaking, the main orientation of this curved branch is not orthogonal330

to the two parallel linear branches. However, the decompositions used so far lead331

orthonormal basis vectors. This means that the projection of the curved branch332

onto a vector oriented along the linear branches does not vanish. As a consequence333

the contribution of the first modified mode Ũ
(1)
f exhibits the non-linear evolution334

observed in Figure 21. To further improve the analysis and to try and providing a335

decomposition of the crack features into two composites features encoding the linear336

and non-linear evolution of the kinematic field around the crack tip as a function337

of the applied load, an alternative decomposition is suggested. Following the above338

described graphical interpretation, the linear / non-linear decomposition should be339

performed onto a non-orthogonal basis, the first basis vector being aligned with the340

linear branches and the second one with the main orientation of the curved branch.341

342

For this purpose, the left singular vector U l
f further referred to as linear is defined

as Ũ
(1)
f . Then, a linear prediction of Aft′ for t

′ the steps during the unloading phase
from δFmax to 0 is built. This linear prediction is obtained through an amplitude
vector C l

t′ ∝ δF such that at δF = δFmax

U l
fC

l
t′ ≈ Aft′ . (13)

At this stage, C l
t′ is not aimed at reconstructing Aft′ accurately but only at giving

a linear prediction aligned with U l
f . Then an other SVD is carried out on a residual

rectangular matrix Ares
ft defined as follows:

Ares
ft = Aft − U l

fC
l
t. (14)
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The rank of Ares
ft can be expected to be the same as that of Aft. However, because of343

the particular shape of the (V
(1)
t , V

(2)
t ) trajectories with two parallel linear branches344

and one curved (but almost linear) branch, and because a linear prediction U l
fC

l
t along345

the orientation U l
f of the parallel branches is subtracted from Aft, only one mode is346

required to accurately reconstruct Ares
ft as confirmed in Figure 22. The corresponding347

left singular vector is set as Unl
f . Processing the data as detailed above, one obtains348

a non-orthogonal basis (U l
f , U

nl
f ) of the plane previously defined by (U

(1)
f , U

(2)
f ) or349

alternatively (Ũ
(1)
f , Ũ

(2)
f ).350

Fig. 22: Relative approximation error for Ares
ft reconstruction versus the number of

terms k
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Fig. 23: C l
t as a function of δF for all cycles with overload

Fig. 24: Cnl
t as a function of δF for all cycles with overload
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Fig. 25: Cnl
t as a function of C l

t for all cycles with overload

Eventually, for any t, Aft is projected onto (U l
f , U

nl
f ) leading to the definition351

of C l
t and Cnl

t . Defined as such, U l
fC

l
t, respectively Unl

f Cnl
t , encodes the linear (with352

respect to δF ), respectively non-linear, evolution of Aft. As illustrated in Figure 24,353

Cnl
t exhibits the same behavior as C

(2)
t in Figure 20 but as shown in Figure 23, the354

complementary part encoded in U l
f evolves linearly with respect to δF .355

For a deeper understanding, Figure 26 shows the squared coordinates of (U l
f and356

Unl
f ) in the normalized crack features basis. Compared to previously obtained basis357

(see Figure 15), U l
f appears as almost perfectly aligned with the first crack feature358

(i.e δKI) while for the second vector Unl
f the second and third features contribute359

significantly. Note the contrary to what was presented in Figure 15, the first feature360

has the highest amplitude for the second vector. Using these two vectors, Table 4,361

respectively Table 5, shows the field reconstructed from Williams’ basis functions and362

U l
f , U

nl
f after rescaling (see Equation 6). As expected from Figure 26, the kinematic363

fields corresponding to U l
f are similar to that of the Williams’ function for n = 1.364

Those of Unl
f behave differently, the main contribution comes from the three crack365

features represented in the section 3.366

Conceptually, U l
f is sough to vary with the crack length and also to depend on367

the specimen geometry. The amplitude C l
t of its contribution of the kinematic field368

is linear with respect to δF , this can be interpreted as the effect at the crack tip of369

remote loading if the material behaves linearly.370

Conversely, Unl
f that is activated through Cnl

t encompasses the effect of the non-371

linear constitutive behaviour of the material. It is expected that the constitutive372

relation of the material affects not only the evolution of Cnl
t with respect to C l

t which373

can be interpreted as a flow rule (see Figure 25) but also the link between Unl
f and374

U l
f which one would be more prone to interpret as a yield criterion describing the375

evolution of the yield surface upon the loading direction (here U l
f ).376
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Fig. 26: U l
f and Unl

f for all cycles with overload

Table 4 Displacement field corresponding to the linear and the non-linear modes of
the SVD at Fovl for the third overload.

Displacement field reconstruction

mode Horizontal component Vertical component

Linear

Non-linear
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Table 5 Strain field corresponding to the linear and the non-linear modes of the SVD
at Fovl for the third overload.

Strain field reconstruction

mode ϵxx ϵyy

Linear

Non-linear

6 Conclusion377

In this paper, fatigue tests were conducted on a SENT specimen, pictures were taken378

for DIC processing, thus displacement fields were computed. These displacement fields379

were projected on Williams’ series expansion and crack features were extracted. Crack380

features were analyzed qualitatively in cycle with and without overload, then a quan-381

titative analysis based on SVD analysis provides the most interpretable descriptors for382

what occurs during overloading. The main observations can be summarized as follows:383

• cycle without overload. in a case of a cycle without overload all features are pro-384

portional thus a single descriptor is required to depict the evolution of the crack385

tip state. In this case we consider δKI. This observation is consistent with a linear386

behavior of the specimen.387

• cycle with overload. In the loading phase (from Fmin to Fmax) crack features are388

proportional to the load, then they depict a faster increase than load during the389

overloading phase (from Fmax to Fovl) making this increase an overload signature.390

The unloading phase is linear with δF and it maintains almost the same slope as391

during the loading phase. The analysis of these crack features shows that a plane392

emanates. We suggested then an SVD analysis to propose an appropriate basis393

of the crack tip state data structure. The first result of this analysis came with394

the fact that δKI cannot be considered as the unique descriptor of the kinematic395

field. We came out with a non-orthogonal basis of composite features (U l
f , U

nl
f ) that396

describes the “linear part” through C l
t which vary linearly with respect to δF and397

the “non-linear” part through Cnl
t which is activated only in the overloading phase.398

These interpretable composite features can be considered as descriptors of the constitu-399

tive behaviour of the crack tip. A clear separation is obtained between the contribution400

to the kinematic fields around the crack tip having linear elastic response with respect401
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to the applied load and its counterpart with a non-linear and non-elastic behaviour.402

There is thus all the ingredients to build an effective constitutive model of the crack tip403

based on the minimum number of interpretable composite features (linear combination404

of Williams’ coefficients).405
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Appendix A Crack features from n = 4 to n = 7415

Fig. A1: Crack features from n = 4 to n = 7 and their SVD reconstruction ( δK̃I, δT̃
and δB̃) as a function of δF for cycles with overload
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