
HAL Id: hal-04496193
https://hal.science/hal-04496193

Preprint submitted on 8 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimality in Finite-Dimensional ZW-Calculi
Renaud Vilmart, Marc de Visme

To cite this version:

Renaud Vilmart, Marc de Visme. Minimality in Finite-Dimensional ZW-Calculi. 2024. �hal-04496193�

https://hal.science/hal-04496193
https://hal.archives-ouvertes.fr

Minimality in Finite-Dimensional ZW-Calculi

Marc de Visme, Renaud Vilmart

Université Paris-Saclay, Inria, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190,
Gif-sur-Yvette, France.

marc.de-visme@inria.fr, renaud.vilmart@inria.fr

Abstract. The ZW-calculus is a graphical language capable of representing 2-dimensional
quantum systems (qubit) through its diagrams, and manipulating them through its equa-
tional theory. We extend the formalism to accommodate finite dimensional Hilbert spaces
beyond qubit systems.
First we define a qudit version of the language, where all systems have the same arbitrary
finite dimension d, and show that the provided equational theory is both complete – i.e. se-
mantical equivalence is entirely captured by the equations – and minimal – i.e. none of the
equations are consequences of the others. We then extend the graphical language further
to accommodate all finite dimensional Hilbert spaces at the same time. We again show the
completeness of the provided equational theory.

1 Introduction

Graphical languages for quantum computations are a product of the categorical quantum me-
chanics program [1, 13] devoted to studying the foundations of quantum mechanics through the
prism of category theory. These graphical languages come in different flavours, depending on which
generators are used to build the diagrams (graphical representations of the quantum operators),
and critically, displaying different kinds of interactions between said generators. The ZX-calculus
describes the interaction between two complementary bases [11], the ZW-calculus, the interaction
between the two “spiders” derived from the “GHZ” and “W” states, the only two fully entangled
tripartite states up to SLOCC-equivalence [12], and the ZH-calculus the interaction between the
same GHZ-state inferred spider and a spider obtained by generalising the Hadamard gate [3].

The equations that describe these interactions form “equational theories”, that define syntactic
equivalence classes of diagrams, that are also semantically equivalent. When the syntactic equiva-
lence matches perfectly the semantical one (i.e. when two diagrams represent the same quantum
operator iff they can be turned into one another), we say that the equational theory is complete.
Complete equational theories have been found for the aforementioned graphical languages, betimes
for restrictions of them [2,4, 9, 10,18,20,23,24,33].

As is customary for the computer science part of the community, the focus was largely set onto
qubit systems, i.e. systems where the base quantum system is 2-dimensional, yet this is enough
to get applications in optimisation [5,25], quantum error correction [6,22,32], verification [16,21],
simulation [26–28]... However, physics allow for qudit systems (where the base quantum system is
d-dimensional with d > 2) and even infinite dimensional systems. Several attempts have hence been
made to go beyond the qubit case [7, 19, 34], but it was only recently that a complete equational
theory was found for d-dimensional (i.e. qudit) systems [30] and later for finite dimensional systems
(so-called “qufinite”, i.e. for the category FdHilb) [36]. The results were obtained by generalising
both the ZX and the ZW calculi and mixing them together. The W-node in particular allows for a
neat intuitive (and unique) normal form for the diagrams. Satisfying the necessary conditions for
every diagram to be normalisable then yields a complete equational theory. However, we believe
that the ones obtained in [30,36] are far from being minimal, due in particular to the presence the
generators from both the ZX and the ZW calculi.

From a foundational perspective, it can be enlightening to know if an equation is a defining
property of quantum systems (and hence necessary), or on the contrary if it is derivable from more
fundamental properties (see e.g. [14,15]). The redundancy in the equational theory may also cause
issues when trying to transport the completeness result to other diagrammatic languages for qudit
systems (every equation has to be proven in the new language, hence the fewer the better); or
when trying to generalise further, e.g. to the FdHilb setting.

We argue here that the ZW-calculus is enough to get a natural normal form (akin to that of [30])
even in the qudit version, and provide two elegant equational theories, differing primarily in how
we deal with the parameters in one of the generators. We show that the equational theories are
complete, resorting to the normal form instead of transporting the completeness result from [30],
for the reason described above. We also show that the first equational theory is minimal, meaning
that none of the equations can be derived from the others, hence avoiding the aforementioned
redundancy in the presentation.

We then adapt diagrams and the equational theory of the graphical language to accommodate
all finite dimensional Hilbert spaces (FdHilb), in a way that requires no additional generator
and only two new equations. Here again we prove the completeness of the equational theory, by
leveraging that of the qudit setting.

The paper is split into two parts, Section 2 and Section 3, devoted respectively to the Quditd
version, and to the FdHilb version. In the Quditd version, diagrams and their interpretation are
introduced in Section 2.1 and the equational theory is introduced and discussed in Section 2.2.
We then show its minimality in Section 2.3 and its completeness in Section 2.4. In the FdHilb
version, diagrams and their interpretation are introduced in Section 3.1, and the equational theory
is introduced and shown to be complete in Section 3.2. All missing proofs are provided in the
appendix.

The Dirac Notation

All the upcoming diagrams can be given an interpretation as a linear map, in the appropriate
category. In quantum information, it is usual to express such linear maps using the so-called Dirac
notation. The current section hence serves as a gentle introduction to this notation.

Let d ≥ 2. In the d-dimensional Hilbert space Cd, the canonical basis


1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1




is usually denoted {|0〉 , |1〉 , ..., |d− 1〉}. All 1-qudit systems have states that live in Cd and that can
hence be represented by linear combinations of the elements of this basis: |ψ〉 = a0 |0〉 + a1 |1〉 +
... + ad−1 |d− 1〉 (notice that the “ket” notation |.〉 is used for states in general, not only basis
elements).

To combine systems, we use the tensor product (Kronecker product): (. ⊗ .) which is a fairly
standard operation on linear maps. In particular, the overall state obtained by composing two 1-
qudit systems in respective states |ψ〉 and |ϕ〉 is simply |ψ〉⊗|ϕ〉. Notice that {|i〉 ⊗ |j〉}0≤i<d,0≤j<d′
forms a basis of Cd ⊗ Cd′ ' Cd×d′ . It is customary to write |ψ,ϕ〉 to abbreviate |ψ〉 ⊗ |ϕ〉.

The “bra” notation 〈.| is used to represent the dagger (the conjugate transpose) of a state,

i.e. 〈ψ| = |ψ〉† = |ψ〉
ᵀ
. The choice of the “bra-ket” notation is such that composing a bra with ket

forms the bracket, the usual inner product in Cd:

〈ψ| ◦ |ϕ〉 = 〈ψ|ϕ〉

Linear combinations of kets and bras of the canonical basis can be used to represent any linear
map of the correct dimensions, e.g. the 1-qudit identity:

id =

d−1∑
k=0

|k〉〈k|

2 ZW-Calculus for Qudit Systems

In this section, we introduce a graphical language for quantum systems that all have the same
fixed dimension d (d ≥ 2): qudit systems.

2.1 Diagrams of ZWd and their Interpretation

First, we need to introduce the mathematical objects at the heart of the graphical language – the
diagrams – what they represent.

The Diagrams As is traditional for graphical languages for finite-dimensional quantum systems,
we work with a †-compact prop [29, 31, 37]. Categorically speaking, this is a symmetric, compact
closed monoidal category generated by a single object, endowed with a contravariant endofunctor
that behaves well with the symmetry and the compact structure. The following explains some of
these concepts in more detail.

Let us denote ZWd the †-compact prop generated by:

. the Z-spider r

n...

...
m

: n→ m, for r ∈ C

. the W-node
...
n

: 1→ n

. the kets
k

: 0→ 1, for 1 ≤ k < d

. the global scalars r : 0→ 0, for r ∈ C

The symmetry and the compact structure of the prop are represented respectively by:

. : 2→ 2 and

.
(

: 0→ 2, : 2→ 0
)
,

and the identity as : 1→ 1. All these generators can be composed:

. sequentially:

...

...
D1

...
D2

:=

...

...
D2 ◦

...

...
D1

. in parallel:

...

...
D1

...

...
D2 :=

...

...
D1 ⊗

...

...
D2

The symmetry satisfies the following identities:

=
...

...
D =

...

...

D

and the compact structure:

= =

= =

This compact structure in particular allows us to define the ”upside-down” version of the
generators, for instance:

...
:= ...

...
k

:= k

The † functor is defined inductively as:

. (D2 ◦D1)† = D†1 ◦D
†
2

. (D1 ⊗D2)† = D†1 ⊗D
†
2

.
()†

=

.
()†

=

.
()†

=

.
()†

=

.

(
r

n...

...
m

)†
= r

m...

...
n

.

(
...
n

)†
=

...

.

(
k

)†
=

k

. (r)
†

= r̄
Notice that thank to the identities satisfied by the †-compact prop, the †-functor is involutive.

As will be made clearer in what follows, in ZWd, d ≥ 2 represents the dimension of the ”base”
quantum system, called qudit. As this d will be fixed in the following, we may forget to specify it.
For convenience, we define an empty white node as a parameter 1 Z-spider:

n...

...
m

:= 1

n...

...
m

and give the 1→ 0 W-node a special symbol, akin to the dagger of the kets (as its interpretation,
as we will see later, is merely 〈0|):

:=

The Interpretation The point of the diagrams of the ZWd is to represent quantum operators
on multipartite d-dimensional systems. The way those are usually specified is thanks to the cat-
egory Quditd. This forms again a symmetric †-compact prop, where the base object is 1 := Cd,
and morphisms n → m are linear maps Cdn → Cdm . The symmetry and the compact structure
correspond to their counterparts in ZWd, they will be stated out in the following, as part of the
interpretation of ZWd diagrams. The † functor is the usual † of linear maps in C.

We may hence interpret diagrams of the ZWd-calculus thanks to the functor J.K : ZWd →
Quditd inductively defined as follows:

JD2 ◦D1K = JD2K ◦ JD1K
JD1 ⊗D2K = JD1K⊗ JD2K

r z
=
∑
k

|k〉〈k|

r z
=
∑
k,`

|`, k〉〈k, `|

q y
=

q y†
=
∑
k

|k, k〉

t

r

n...

...
m

|

=

d−1∑
k=0

rk
√
k!
n+m−2

|km〉〈kn|

t

...
n

|

=
∑

k∈{0,...,d−1}
i1+...+in=k

√(
k

i1, ..., in

)
|i1, ..., in〉〈k|

s
k

{
=
√
k! |k〉

JrK = r

where

(
k

i1, ..., in

)
=

k!

i1!...in!
is a multinomial coefficient. Notice that the interpretation of the

1→ 0 W-node is simply:

r z
=

∑
k∈{0,...,d−1}

0=k

√(
k

0

)
〈k| = 〈0|

The presence of
√
− on the coefficients is not particularly relevant, and is simply an artefact of us

maintaining some symmetry between generators and their dagger. Indeed, as explained below, we

have

s
k

k

{
= k!, meaning that the coefficient k! needs to be split between both nodes, resulting

in either an asymmetric presentation or a square root.

Notice also that the interpretation of the Z-spider differs from more usual generalisations of its

qubit counterpart, because of the
√
k
n+m−2

which depends on the degree of the spider. While it
makes the interpretation of the diagrams slightly more complicated, it allows us – as will be stated
later – to quite conveniently generalise equations from the qubit ZW-calculus, and hence have a
simpler equational theory. It will be shown in the following (Corollary 1), that the above set of
generators makes for a universal calculus, i.e. any linear map of Quditd can be represented by a
ZWd-diagram.

To gain intuition about the upcoming equations between diagrams, it can be useful to semanti-
cally decompose a diagram into sums of simpler ones1. To do so, it can be convenient to understand
|k〉 as a bunch of k indistinguishable particles.

The W-node spreads the k “particles” that enter it by a multinomial distribution:

u

v
...

k
}

~ =
∑

i1+...+in=k

(
k

i1, ..., in

)s
i1 in

...

{

The 2→ 1 W-node takes two bunches of particles k and ` and regroups them into one, and yields
the null state if k + ` exceeds the “capacity” (i.e. the dimension) of a single wire:

t
k `

|

=


s
k + `

{
if k + ` < d

~0 if k + ` ≥ d

This will be proven graphically (Lemma 7) from the upcoming equational theory (Figure 1). When
k+` < d, the fact that there is no additional scalar is due to the rescaling of the k-dots to represent√
k! |k〉. This rescaling also makes the “copy” more natural: The Z-spider 1→ n copies any bunch

of k particles entering it, yielding global scalar rk in the process:

u

v
k

r
...
n

}

~ = rk
s
k k...
n

{

This will again be proven graphically (Lemma 8) from the equational theory.

The rescaling, however, forces:

s
k

k

{
= k! and

s
k

`

{
= 0 if k 6= `

Finally, it can be useful to decompose the identity as a linear combination of products of kets and
bras:

r z
=

d−1∑
k=0

1

k!

s
k

k

{

2.2 Equational Theory

With the above interpretation of the ZWd, different diagrams may yield the same linear map. All
axioms of symmetric †-compact props in particular preserve the interpretation. More generally, we
may want to relate together all diagrams that have the same semantics. This is done through an
equational theory, i.e. a set of equations that can be applied locally in a diagram without changing
the semantics of the whole.

1 Notice that here, such decompositions are merely semantical. The upcoming completeness is only inter-
ested in equivalence between single diagrams.

Equations of the ZWd-Calculus On top of the axioms of symmetric †-compact props, we
assume some conventional equations about the topology of the generators, which should align with
the symmetries of the symbols used to depict them. The Z-spider does not distinguish between
any of its connections: it is “flexsymmetric” [8], meaning that we can interchange any of its legs
without changing the semantics. Graphically, for any permutation of wires σ:

r

...

...
σ

...

... ...

=
r

... ...

On the other hand, the binary W -node is only co-commutative, which, together with the upcoming
Equation (a), means that all the outputs of the n-ary W-node can be exchanged, i.e. for any
permutation of wire σ:

...
σ
...

=
...

With all this in place, we can give the core of the equational theory, in Figure 1. When diagram
D1 can be turned into diagram D2 using the rules of ZWd, we write ZWd ` D1 = D2.

r
s

...

... ...

...

=
(s)

...

...

rs

...

...

...

=
(a)

...

=
(id)

...
d =

(h) 0

...
m

r

n...

n 6=0
=
(b1) r r

...
m

n...

...

...

=
(b2)

...

...

r s

=
(+)

r+s 1 =
(e)

1

r

...
=
(cp)

r ·
1 1

... ...
k

k

0<k<d
=
(p)

1

...
k

k!

1

1 1
1

(d-1)!...d-1

...1
2! =

(nf)

Fig. 1: Equational theory ZWd for the qudit ZW-calculus.

Remark 1. In this framework, we can tensor global scalars together r⊗ s, which graphically could
be confused with their product rs. This is actually unambiguous in the equational theory, as:

ZWd ` r ⊗ s =
(cp)

1

r

1

s
=
(cp)

1

r s

=
(s)

1

rs
=
(cp)

rs

Moreover, Equation (e) states that global scalar 1 is the empty diagram. Scalar multiplication is
assumed to be automatically applied, and scalar 1 is assumed to be automatically removed in the
following.

All rules up to (cp) are fairly standard generalisations of rules of the qubit ZW-calculus (with
(b2) being inspired from [30] to avoid using a fermionic swap, as explained below). The non-

conventional
√
k
n+m−2

coefficients in the interpretation of the Z-spider seem to be necessary for

Equations (s), (b1) and (+) to all work. Equation (p) relates |k〉 for k > 1 to |1〉. On the left hand
side of the equation, the Z-spider forces the k rightmost outputs from the W-node to carry the
same state, hence applying |k〉 on top of the W-node results in only two terms: one where the k
particles all go to the left, and one where they are spread on the k inputs of the Z-spider, resulting
in a mere |1〉 on the right wire. This can be achieved by applying a |1〉 on the input of a W-node,
which results in |0, 1〉 + |1, 0〉 and by “multiplying” the number of particles on the left by k. The
Z-spider parameter k! is here to deal with the unnormalisation of one of the two terms:

u

ww
v

...
k

k
}

��
~ =

s
k 0

{
+ k!

s
0 1

{
=

u

www
v

1

...
k

k!

}

���
~

Finally, Equation (nf) simply states what the normal form (to be defined later) of the unary
Z-spider should be.

Proposition 1. All equations in ZWd are sound, i.e.:

ZWd ` D1 = D2 =⇒ JD1K = JD2K

Proof. This is a straightforward verification for most of the equations. They can all be proven
using the aforementioned identities in the semantics of the diagrams, especially the decomposition
of the identity. Equation (b2) requires the Vandermonde identity:∑

k1+...+kp=m

(
n1
k1

)
...

(
np
kp

)
=

(
n1 + ...+ np

m

)
.

Related Work The first and only result to date of a complete equational theory for a graphical
language describing qudit systems comes from the “ZXW-calculus” [30]. There, the authors start
from a qudit version of the ZX-Calculus and most probably end up requiring a W-node in the
definition of a normal form, and hence in the equational theory leading to completeness. We argue
here that we can get a complete equational theory, purely inside the ZW-calculus. Doing so, we end
up with fewer generators, and as a consequence, fewer, more intuitive equations in the equational
theory.

Focussing on ZW-calculus is not a new idea. The first ever completeness proof for qubit graphical
languages was in the (qubit) ZW-calculus, introduced in [12] and tweaked and made complete
in [18,20]. The ZW-calculus noticeably has very nice combinatorial properties different from those
of its counterparts, which in particular allows for a very natural notion of normal form. It is hence
not suprising that some attempts were made to get a complete equational theory of qudit systems
purely in ZW. There have then been tentative generalisations for qudit systems, in particular in [19]
where q-arithmetic is used, and in [35] where the W-node is generalised in a different way (and
that we encounter in [30]).

The system we are actually the closest with, is QPath [17]. Our W-node is merely the “triangle”
node of QPath that we truncated to a finite dimension, and we generalised their “line weight” to an
n-ary Z-spider. The degree-2 Z-spider furthermore has exactly the same interpretation as the line
weight. While in QPath the triangle nodes satisfy a bialgebra, this is not the case when truncating
to finite dimension. Here we could either resort to define a “fermionic swap” that would replace
the usual swap in the bialgebra (as in [19] and [35]), or give a context in which the bialgebra works
(as is done in [30]). While such a “fermionic swap” exists in our setting, it does not have all the
nice properties of the qubit fermionic swap, that in particular allow us to see it as a quasi-proper
swap. Instead we went with the latter solution, which as it turns out works in our setting, despite
the W-node having a different interpretation from that of [30], and we end up with Equation (b2).

A final important distinction with [35] and [30] is that we decided that the Z-spider would
have a single parameter, instead of a (d− 1)-sized list of them that would describe all but the 0-th
weights in the description of the Z-spider as a linear combination of the basis states. This makes the
overall presentation leaner, with the downside of requiring Equation (nf) that fully describes the

normal form of the unary Z-spider. In Appendix B, we give a presentation of the qudit ZW-calculus
with lists as parameters. This simplifies Equation (nf) at the cost of more complex bookkeeping
and operations on Z-spider parameters.

2.3 Minimality

Minimality of an equational theory states that every single equation is necessary: none can be
derived from the others. Said otherwise, as soon as we remove one of the equations, some equalities
(that were previously provable) become unprovable. Minimality is a fundamental property, as it
allows us to pinpoint properties that are necessary to our model, and a contrario those that are
consequences of the necessary ones. Notice however that there is usually not a single minimal
equational theory, as it often happens that one equation can be replaced by an equivalent one.

In trying to prove minimality, it often happens that two equations fail to be proven necessary
individually, but that the pair (i.e. at least one of the two) can be proven necessary. Such cases
underline some sort of proximity between the two equations, and the obstacle it poses to minimality
can sometimes be circumvented (somewhat artificially) by merging them into a single, potentially

slightly less intuitive, equation. This happened once here: we merged equations ...
d = and

0
= , that we initially had as axioms, into Equation (h). This finally provides us with a

minimal equational theory for qudit ZW-calculus.
To prove that an equation is necessary, we define a non-standard interpretation which is pre-

served by all the equations (including the axioms of †-compact props), except the equation of
interest. When such an interpretation is exhibited, we can safely conclude that the equation is
necessary, as if it were a consequence of the others, it would also preserve this interpretation. Inter-
pretations like these sometimes simply take the form of a quantity that turns out to be invariant
for all equations except the one that is considered.

In the following, we show that the equational theory ZWd from Figure 1 is minimal, i.e. that
none of the equations can be derived from the others. It is to be noted that most of the equations
in Figure 1 are schemas, that is they are parametrised, and the equation is assumed for all possible
values of the parameters. Our minimality result is “weak” in the sense that for each equation
schema, we show that at least one of the occurrences cannot be derived from the other equations,
but we do not pinpoint for which parameters the equation is necessary or not. Nevertheless:

Theorem 1. All equations in ZWd are necessary, hence ZWd is minimal.

Several arguments in the proof require to distinguish between Z-spiders that have a non-trivial
influence on the semantics of the diagrams, from those that essentially have no effect on the
semantics. This is captured by the following definition:

Definition 1 (Effective Z-spider). Let z be a Z-spider in diagram D. For x ∈ C, we denote
by D[z ∗= x] the diagram obtained by multiplying the parameter of z by x in D. We say that z is
effective if:

∀x ∈ C\{1},∀λ ∈ C, JD[z ∗= x]K 6= λ JDK

There is a similar notion that we need for determining whether a W-node could essentially just
be an identity from its input to one of its outputs, the other outputs merely bearing a |0〉:

Definition 2 (Trivial W-node and sole effective output). Let D be a diagram with a W -
node. Let’s call a one of its outputs:

...

...
D =

...D′

...

...

a

We say that edge a is the sole effective output of the W-node if:

u

www
v ...D′

...

...

a

}

���
~

=

u

www
v ...D′

...

...

a

}

���
~

If a W-node has a sole effective output, we say that it is trivial.

We can now prove Theorem 1:

Proof. We consider each of these equations individually:

(s) When applying the transformation that turns all Z-spider parameters and global scalars to
their real part (r 7→ Re(r)), Equation (s) is the only one that is not preserved.

(a) It is the only equation permitting to create non-trivial W-nodes with arity > d2

2 from a diagram

that only has W-nodes with arity ≤ d2

2 .
(id) It is the only equation that can create nodes connected to boundaries from a node-free diagram.
(cp) It is the only equation that creates a non-1 scalar
(e) It is the only equation that can create generators out of empty diagrams.

(p) It is the only equation able to introduce generator
k

for k > 1.

(nf) Take the interpretation that maps
k

to . All rules hold (up to colinearity) except (nf).

(+) Take the interpretation that maps all the Z-spider parameters (and the global scalars) to their
absolute value (r 7→ |r|). This interpretation preserves all equations except (+).

(b1) Consider diagrams as graphs, and define an “effective Z-path” in the diagram as a path 1) that
goes form a boundary to another boundary, and 2) that only goes through effective Z-spiders or
through trivial W-nodes, through their sole effective output. All equations except (b1) preserve
the existence of effective Z-paths.

(b2) Consider diagrams as graphs, and define a “W-path” in the diagram as a path 1) that goes
form a boundary to another boundary, 2) which cannot use two outputs of a W-node (if it goes
through a W-node, it has to use the input edge) and 3) that does not go through a Z-spider.
All equations, except (b2), preserve the existence of a W-path. (b2) is the only equation that
can bring the number of W-paths from non-zero to zero (which is done by adding a Z-spider
on the path).

(h) To each wire in a diagram D, we associate a number 0 ≤ k < d (or more graphically we
annotate each wire by some number k). The procedure to do so is as follows:
1. annotate all wires with d− 1
2. rewrite the annotations using the following rules, until a fixed point is reached:

• a
a6=0→ 0 and

k

a
k<a→

k

k

•
a0 ak

ak+1 aq
r

...

...
→

a a

a a
r

...

...
with a := min(ai)

•
...

a

b1 bn
→

...

min(a,
∑
bi)

min(a, b1) min(a, bn)

This simple procedure obviously terminates, as a step is only applied if at least one of the
annotations is decreased. By considering inputs and outputs of D (which are the only wires
that can be guaranteed to remain during rewrites with ZWd), we can check that Equation (h)
is the only one that can modify the outcome of the procedure.

Some Useful Derivable Equalities The equational theory being minimal, there are several
useful and intuitive identities that were left out, as they can be proven to be derivable. The
following lemmas will in particular be useful in the upcoming proof of completeness:

Lemma 1.

ZWd ` =

Lemma 2.

ZWd `

...

...

=

...

...

Lemma 3.

ZWd `
...

=
...

Lemma 4.

ZWd `
0

=

Lemma 5.

ZWd `
...

r s

=
r+s

...

Lemma 6.

ZWd ` =

Lemma 7.

ZWd `
k `

=


k + ` if k + ` < d

0 · if k + ` ≥ d

Lemma 8. If n > 0:

ZWd `
k

r
...
n

= rk ·
k k...
n

Lemma 9.

ZWd `

1

=

1 1

and

ZWd `

1

=

1

2.4 Completeness

Completeness of an equational theory with respect to a semantics is the fundamental property
that ensures that semantical equivalence of diagrams is entirely captured by the equational theory.
Minimality is worthless without some form of completeness, as it is extremely simple to design
minimal, but not complete, equational theories. For instance, the empty equational theory (that
contains no axiom), is minimal but clearly not complete for the qudit ZW-diagrams. We hence
show in this section that we indeed have completeness.

Normal Form and Universality The usual way to prove completeness is to show that any
diagram can be put in a normal form, and that this normal form is unique and similar for all
equivalent diagrams. As is customary in a category that is compact-closed, we can focus on states,
as there is an isomorphism between operators and states [1]:

...

...
D =

...
D ...

...
=:

...
pDq

...

Although this section is one of the lengthiest parts of the paper, it does not show in the body
as all proofs are offset to Appendix A.

Definition 3. We define N : Quditd → ZWd as the functor such that, for any n-qudit state
|ψ〉 = r0 |0...0〉+ r1 |0...01〉+ ...+ ri

∣∣xi1...xin〉+ ... :

N (|ψ〉) =

1

r0 r1
ri√

xi1!...x
i
n!

...
x i
1

... ...

...
xin

...

We say of any diagram in the image of N that it is in normal form.

This functor N creates a diagram whose interpretation is the starting state:

Proposition 2. ∀ |ψ〉 ∈ Quditd[0, n], JN (|ψ〉)K = |ψ〉.

As a simple consequence of this proposition, any qudit operator can be represented by a diagram
of ZW:

Corollary 1 (Universality).

∀f ∈ Quditd[n,m], ∃Df ∈ ZWd[n,m], JDf K = f

As we defined the normal form as the image of a map from the semantics, any diagram can
only be associated to a unique normal form.

Compositions of Normal Forms Our goal now is to show that any diagram can be put in
normal form. To do so, we show that all generators can be put in normal form, and that all
compositions of diagrams in normal form can be put in normal form.

We start by showing the latter for the tensor product:

Proposition 3. The spatial composition of diagrams in normal form can be put in normal form,
i.e. ZWd ` N (v1)⊗N (v2) = N (v1 ⊗ v2).

When turning arbitrary operators into states, the sequential composition turns into the appli-
cation of cups onto pairs of outputs of the state, as:

...

...
D1

...
D2

=
...
pD2q

......

...
pD1q =

3

...
pD2q⊗ pD1q

Proposition 4. The diagram obtained by applying a cup to two outputs of a diagram in
normal form can be put in normal form.

Normal Forms of the Generators Then we move on to showing that all the generators can be
put in normal form.

Proposition 5. The Z-spider can be put in normal form.

Proposition 6. The diagram obtained by applying to two outputs of a normal form can be

put in normal form.

Corollary 2. The W-node can be put in normal form.

Proposition 7. Generators
k

can be put in normal form.

Theorem 2 (Completeness for Qudit Systems). The language is complete: for any two
diagrams D1 and D2 of the ZWd-calculus:

JD1K = JD2K ⇐⇒ ZWd ` D1 = D2

Proof. By Propositions 5 and 7, and Corollary 2, any generator of the language can be put in
normal form. Thanks to Propositions 3 and 4, compositions of diagrams in normal form can be
put in normal form. As a consequence, any diagram can be put in normal form. By uniqueness of
this normal form, if two diagrams share the same semantics, they can be rewritten into the same
diagram. This proves completeness.

3 Finite Dimensional Hilbert Spaces

In the previous setting, all systems are required to be d-dimensional for some fixed d. Here we relax
that constraint, which allows us to represent morphisms of FdHilb

FdHilb [1] is the strict symmetric monoidal †-compact category of finite dimensional Hilbert
spaces. Its objects are tensor products of finite dimensional Hilbert spaces Cd(d ∈ N \ {0}), and its
morphisms are linear maps between them. The symmetry and the compact structure are naturally
extended from that of Quditd.

In this new setting, we will be able to represent all morphisms of FdHilb, at the cost of
annotating the wires of the diagrams to keep track of their dimensions. Instead of the dimension
itself, we rather annotate the wire with its dimension −1, i.e. with the largest k such that |k〉 is
allowed on the wire. We call such k the capacity of the wire. This makes the bookkeeping a little
bit less tedious.

3.1 Diagrams and Interpretation

We also require the following constraints for the capacities around each generator:

. All capacities around a Z-spider are the same

. The input capacity of the W-node must be larger than each of its outputs

The first constraint follows from the fact that Z-spiders in ZW can be seen as a generalisation of
graph edges (more precisely they can be seen as hyperedges). Hence the whole hyperedge should
have a single capacity. The second constraint simply comes from the fact that a larger capacity
on the outputs of a W-node will never be used, so we might as well prevent it. When considering
1 → 1 W-nodes, which represent projections, this restriction allows us to see at a glance which
side has the largest dimension.

The first restriction further allows us to put the capacity annotation on the Z-spider rather
than on all its legs, making annotating diagrams less cumbersome.

We now work with a †-compact symmetric monoidal category, but which is not a prop anymore.
Our base objects are Cd for d ∈ N \ {0}. Every pair of objects can be composed with ⊗ to form a
third object, with ⊗ being associative, and with the tensor unit I being I := C1. We work with a
strict monoidal category, so we consider I⊗Cd = Cd = Cd⊗ I. To simplify notations, we represent
objects Cd1 ⊗ Cd2 ⊗ ...⊗ Cdn by a list of capacities 〈d1 − 1, d2 − 1, ..., dn − 1〉 (the tensor product
simply becomes the concatenation of lists). The tensor unit is represented by 〈〉.

In this new setting, the generators are generalised as follows:

. Z-spiders a .r

n...

...
m

: 〈
n︷ ︸︸ ︷

a, ..., a〉 → 〈
m︷ ︸︸ ︷

a, ..., a〉 with r ∈ C

. W-nodes ...
bn

a

b1

: 〈a〉 → 〈b1, ..., bn〉

with a ≥ max
1≤i≤n

(bi)

. kets
k

a : 〈〉 → 〈a〉 with k ≤ a

. global scalars r : 〈〉 → 〈〉 with r ∈ C

with the symmetry and the compact structure being generalised to

.
ba

: 〈a, b〉 → 〈b, a〉 and

.

(
a

: 〈〉 → 〈a, a〉,
a

: 〈a, a〉 → 〈〉
)

,

and the identity as a : 〈a〉 → 〈a〉.
Diagrams can still be composed together both sequentially and in parallel. The composition of

categories prevents us from composing diagrams with unmatched objects (e.g. two Z-spiders with
different capacities in sequence), but the conditions on the capacities of the W-nodes still have to be
checked for a diagram to be valid. Such valid diagrams are called ZWf -diagrams, and are graphical
representations of the morphisms of the †-compact symmetric monoidal category FdHilb.

The compact structure still allows us to define upside-down versions of the W-node and the
kets. Again, we give the 1→ 0 W-node a special symbol:

a := a

The interpretation of these diagrams is now a monoidal functor J.K : ZWf → FdHilb induc-
tively defined as:

JD2 ◦D1K = JD2K ◦ JD1K
JD1 ⊗D2K = JD1K⊗ JD2K

r
a

z
=

a∑
k=0

|k〉〈k|

s
a

{
=

s

a

{†
=

a∑
k=0

|k, k〉

JrK = r

t
ba

|

=

a∑
k=0

b∑
`=0

|`, k〉〈k, `|

t

a .r

n...

...
m

|

=

a∑
k=0

rk
√
k!
n+m−2

|km〉〈kn|

s
k

a

{
=

{√
k! |k〉 if 0 < k ≤ a

~0 otherwise

t

...
bn

a

b1

|

=
∑

0≤ki≤bi
k1+...+kn≤a

√(
k1+...+kn
k1, ..., kn

)
|k1, ..., kn〉〈k1+...+kn|

Notice that we use the same notation for the interpretation of ZWd-diagrams, and for the inter-
pretation of the ZWf -diagrams. Which interpretation we are referring to should be clear from the
context.

3.2 Complete Equational Theory

We once again equip the language with an equational theory ZWf , defined in Figure 2. This
equational theory only slightly differs from the one for qudit systems in Figure 1. It is interesting
to notice that 1) the associativity of the W-node is broken down into two equations (a) and (a′),
whose choice depends on the capacities involved, 2) the W-bialgebra equation (b2) does not need
a context anymore, but instead side conditions on the capacities, 3) the equation that allows for
a normal form is greatly simplified, and 4) we now have a version of the copy of a white node
through a W-node (zcp).

The category Quditd is a full subcategory of FdHilb, and as such there is an obvious inclusion

functor Quditd
id
↪→ FdHilb. This inclusion transports to the ZW-calculi: we can turn any ZWd-

diagram into a ZWf -diagram through ιd in such a way that the following diagram commutes:

ZWd ZWf

Quditd FdHilb

J.KJ.K

ιd

id

The functor ιd simply takes a ZWd-diagram and annotates all its wires with d− 1.

We show that the present equational theory is complete. To do so, we need to adapt the notion
of normal form from qudit systems (and we again use the map/state duality to focus on states
rather than arbitrary morphisms):

a .
. a

r
s

...

... ...

...

=
(s)

a .

...

...

rs

...

...

a

a
=
(id)

a

...... an

b

c

a1

b≥min(c,
∑

ai)
=
(a)

c

...... ana1

bmb1

a .

...
m

r

n...
n 6=0
=
(b1)

a a

b1 . . bmr r
...
m

n... . aa .

a

r s

=
(+)

a .r+s 1 =
(e)

a

1

...
=
(cp)

r · aa

1 1

...

c

a1 an

b1 bm

...

...

c≥min(
∑

ai,
∑

bi)
`ij=min(ai,bj)

=
(b2)

`1,1

a1 an

b1

`n,m

bm

...

...

a

b

...
b+1 =

(h)

a

b .0
b c

a

...
k

k

0<k≤a
=
(p)

a

c .

b

1

1

...
k

k!

1 =
(e1)

1

1 1

1
a1

b

c

a0

=
(a′)

a1

b

a0

c
b

a+b

a
=

(zcp)

ba a
=

(nf)

1a−1

a

1
a!

a...

Fig. 2: Equational theory ZWf for the finite-dimensional ZW-calculus.

Definition 4. We define N : FdHilb → ZWf as the functor such that, for any n-ary state
|ψ〉 = r0 |0...0〉+ r1 |0...01〉+ ...+ ri

∣∣xi1...xin〉+ ... ∈ FdHilb[〈〉, 〈a1, ..., an〉] :

N (|ψ〉) =

1 1 1

ana1

1

r0 r1
ri√

xi1!...x
i
n!

...
x i
1

... ...

...
xin

...

1

We say of any diagram in the image of N that it is in normal form. Notice that xij ≤ aj for all
〈〉 ≤ i < a1...an and 1 ≤ j ≤ n.

We can once again show that N builds a diagram that represents |ψ〉:

Lemma 10.
∀ |ψ〉 ∈ FdHilb[0, 〈a1, ..., an〉], JN (|ψ〉)K = |ψ〉

We hence get universality of the language as a direct consequence:

Corollary 3.

∀f ∈FdHilb[〈a1, ..., an〉, 〈b1, ..., bm〉],
∃Df ∈ ZWf [〈a1, ..., an〉, 〈b1, ..., bm〉], JDf K = f

Using the normal form, we can then leverage the completeness from the qudit ZW-calculus to
get the similar result in the current setting:

Theorem 3 (Completeness for Finite Dimensional Systems). The language is complete:
for any two diagrams D1 and D2 of the ZWf -calculus:

JD1K = JD2K ⇐⇒ ZWf ` D1 = D2

Proof. The proof, in its entirety in Appendix C, uses the completeness of ZWd for qudit systems.
We once again use the map / state duality to restrict the proof to states. Then, we proceed as
follows:

1. We show that all equations of ZWd are derivable from ZWf , i.e. that ZWd ` D1 = D2 =⇒
ZWf ` ιd(D1) = ιd(D2) for all d ≥ 2

2. We show that any ZWf -diagram D, with maximum capacity ≤ d− 1 can be turned into

ZWf `
D
... ana1

=

ιd(Dd)

...
ana1

dd

for some ZWd-diagram Dd

3. Using rules of ZWd, we can turn Dd in (qudit) normal form
4. We show that ιd(D) with D in ZWd normal form can be turned in ZWf normal form. Conse-

quently, any ZWf -diagram can be put in ZWf normal form
5. We conclude thanks to the uniqueness of the ZWf normal form.

Related Work Another complete presentation of a graphical language for FdHilb was recently
announced [36]. This one builds upon the aforementioned ZXW-calculus, and introduces a new
generator that takes two systems, of dimensions a and b, and builds a system of dimension a× b.
Our approach builds upon ZWd, the qudit version of the ZW-calculus from Section 2 and hence
starts with fewer generators and equations. As a consequence, the graphical language for FdHilb
we end up with has fewer equations as well.

Moreover, we did not require a new generator, and simply promoted the qudit W-node to work
with any mix of dimensions in a natural manner, which was enough to provide us with universality.
This way we deal with dimensions is less constraining, as the generator used in [36] only allows
to multiply dimensions together. For instance, a (non-trivial) 〈2〉 → 〈3〉 diagram would require
at least going through a 6-dimensional system, while in our setting one can directly go from a
2-dimensional system to a 3-dimensional one.

4 Conclusion

In this paper, we explored the potential for a minimal yet complete diagrammatic language for
quantum mechanics beyond qubit systems. This starts with a well-chosen generalisation of the
generators of the ZW-calculus, allowing us to have few and (mostly) intuitive equations. For both
qudit systems and finite dimensional systems, we showed that the diagrams are universal, and
that the equational theories are complete for their respective interpretation. In the case of qudit
systems, we further showed that the equational theory was minimal. As we used it to build the
equational theory for finite dimensional systems, we conjecture the latter is also minimal, or very
close to being so. It turns out that transporting the minimality theorem from the first setting
to the second one is challenging, as some minimality arguments break when adding or modifying
equations. Proving minimality in the second setting hence requires a fair amount of work, and is
hence left as an open question.

References

1. S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. In: Proceed-
ings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004., pp. 415–425,
doi:10.1109/LICS.2004.1319636.

2. Miriam Backens (2014): The ZX-Calculus is Complete for Stabilizer Quantum Mechanics. In: New
Journal of Physics, 16, IOP Publishing, p. 093021, doi:10.1088/1367-2630/16/9/093021. Available at
https://doi.org/10.1088%2F1367-2630%2F16%2F9%2F093021.

3. Miriam Backens & Aleks Kissinger (2019): ZH: A Complete Graphical Calculus for Quantum Compu-
tations Involving Classical Non-linearity. In Peter Selinger & Giulio Chiribella, editors: Proceedings of
the 15th International Conference on Quantum Physics and Logic, Halifax, Canada, 3-7th June 2018,
Electronic Proceedings in Theoretical Computer Science 287, pp. 23–42, doi:10.4204/EPTCS.287.2.

4. Miriam Backens, Aleks Kissinger, Hector Miller-Bakewell, John van de Wetering & Sal Wolffs (2023):
Completeness of the ZH-calculus. Compositionality 5, doi:10.32408/compositionality-5-5. Available at
https://doi.org/10.32408/compositionality-5-5.

http://dx.doi.org/10.1109/LICS.2004.1319636
http://dx.doi.org/10.1088/1367-2630/16/9/093021
https://doi.org/10.1088%2F1367-2630%2F16%2F9%2F093021
http://dx.doi.org/10.4204/EPTCS.287.2
http://dx.doi.org/10.32408/compositionality-5-5
https://doi.org/10.32408/compositionality-5-5

5. Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski & John van de Wetering
(2020): There and back again: A circuit extraction tale. arXiv: Quantum Physics. Available at https:
//arxiv.org/abs/2003.01664.

6. Niel de Beaudrap & Dominic Horsman (2020): The ZX calculus is a language for surface code lattice
surgery. Quantum 4, p. 218, doi:10.22331/q-2020-01-09-218. Available at https://doi.org/10.22331/
q-2020-01-09-218.

7. Robert I. Booth & Titouan Carette (2022): Complete ZX-Calculi for the Stabiliser Fragment in Odd
Prime Dimensions. In Stefan Szeider, Robert Ganian & Alexandra Silva, editors: 47th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2022), Leibniz International
Proceedings in Informatics (LIPIcs) 241, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, pp. 24:1–24:15, doi:10.4230/LIPIcs.MFCS.2022.24. Available at https://drops.dagstuhl.

de/entities/document/10.4230/LIPIcs.MFCS.2022.24.

8. Titouan Carette (2021): Wielding the ZX-calculus, Flexsymmetry, Mixed States, and Scalable Nota-
tions. (Manier le ZX-calcul, flexsymétrie, systèmes ouverts et limandes). Ph.D. thesis, University of
Lorraine, Nancy, France. Available at https://tel.archives-ouvertes.fr/tel-03468027.

9. Titouan Carette, Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2019): Completeness of
Graphical Languages for Mixed States Quantum Mechanics. In Christel Baier, Ioannis Chatzi-
giannakis, Paola Flocchini & Stefano Leonardi, editors: 46th International Colloquium on Au-
tomata, Languages, and Programming (ICALP 2019), Leibniz International Proceedings in Infor-
matics (LIPIcs) 132, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp.
108:1–108:15, doi:10.4230/LIPIcs.ICALP.2019.108. Available at http://drops.dagstuhl.de/opus/

volltexte/2019/10684.

10. Titouan Carette, Etienne Moutot, Thomas Perez & Renaud Vilmart (2023): Compositionality of
Planar Perfect Matchings: A Universal and Complete Fragment of ZW-Calculus. In Kousha Etes-
sami, Uriel Feige & Gabriele Puppis, editors: 50th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2023), Leibniz International Proceedings in Informatics (LIPIcs)
261, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 120:1–120:17,
doi:10.4230/LIPIcs.ICALP.2023.120. Available at https://drops.dagstuhl.de/entities/document/
10.4230/LIPIcs.ICALP.2023.120.

11. Bob Coecke & Ross Duncan (2011): Interacting Quantum Observables: Categorical Algebra and Dia-
grammatics. New Journal of Physics 13(4), p. 043016, doi:10.1088/1367-2630/13/4/043016. Available
at https://doi.org/10.1088%2F1367-2630%2F13%2F4%2F043016.

12. Bob Coecke & Aleks Kissinger (2010): The Compositional Structure of Multipartite Quantum En-
tanglement. In: Automata, Languages and Programming, Springer Berlin Heidelberg, pp. 297–308,
doi:10.1007/978-3-642-14162-1 25. Available at https://doi.org/10.1007%2F978-3-642-14162-1_

25.

13. Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes: A First Course in
Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, Cambridge,
doi:10.1017/9781316219317.

14. Joseph Collins & Ross Duncan (2020): Hopf-Frobenius Algebras and a Simpler Drinfeld Double. Elec-
tronic Proceedings in Theoretical Computer Science 318, p. 150–180, doi:10.4204/eptcs.318.10. Avail-
able at http://dx.doi.org/10.4204/EPTCS.318.10.

15. Ross Duncan & Kevin Dunne (2016): Interacting Frobenius Algebras are Hopf. In: 2016 31st Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–10.

16. Ross Duncan & Maxime Lucas (2014): Verifying the Steane code with Quantomatic. In Bob Coecke
& Matty Hoban, editors: Proceedings of the 10th International Workshop on Quantum Physics and
Logic, Castelldefels (Barcelona), Spain, 17th to 19th July 2013, Electronic Proceedings in Theoretical
Computer Science 171, Open Publishing Association, pp. 33–49, doi:10.4204/EPTCS.171.4.

17. Giovanni de Felice & Bob Coecke (2022): Quantum Linear Optics via String Diagrams.

18. Amar Hadzihasanovic (2015): A Diagrammatic Axiomatisation for Qubit Entanglement. In:
2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 573–584,
doi:10.1109/LICS.2015.59.

19. Amar Hadzihasanovic (2017): The Algebra of Entanglement and the Geometry of Composition. Ph.D.
thesis, University of Oxford. Available at https://arxiv.org/abs/1403.7828.

20. Amar Hadzihasanovic, Kang Feng Ng & Quanlong Wang (2018): Two Complete Axiomatisations
of Pure-state Qubit Quantum Computing. In: Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS ’18, ACM, New York, NY, USA, pp. 502–511,
doi:10.1145/3209108.3209128. Available at http://doi.acm.org/10.1145/3209108.3209128.

21. Anne Hillebrand (2011): Quantum Protocols involving Multiparticle Entanglement and their Represen-
tations. Master’s thesis, University of Oxford. Available at https://www.cs.ox.ac.uk/people/bob.

coecke/Anne.pdf.

https://arxiv.org/abs/2003.01664
https://arxiv.org/abs/2003.01664
http://dx.doi.org/10.22331/q-2020-01-09-218
https://doi.org/10.22331/q-2020-01-09-218
https://doi.org/10.22331/q-2020-01-09-218
http://dx.doi.org/10.4230/LIPIcs.MFCS.2022.24
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.24
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.24
https://tel.archives-ouvertes.fr/tel-03468027
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.108
http://drops.dagstuhl.de/opus/volltexte/2019/10684
http://drops.dagstuhl.de/opus/volltexte/2019/10684
http://dx.doi.org/10.4230/LIPIcs.ICALP.2023.120
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.120
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.120
http://dx.doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088%2F1367-2630%2F13%2F4%2F043016
http://dx.doi.org/10.1007/978-3-642-14162-1_25
https://doi.org/10.1007%2F978-3-642-14162-1_25
https://doi.org/10.1007%2F978-3-642-14162-1_25
http://dx.doi.org/10.1017/9781316219317
http://dx.doi.org/10.4204/eptcs.318.10
http://dx.doi.org/10.4204/EPTCS.318.10
http://dx.doi.org/10.4204/EPTCS.171.4
http://dx.doi.org/10.1109/LICS.2015.59
https://arxiv.org/abs/1403.7828
http://dx.doi.org/10.1145/3209108.3209128
http://doi.acm.org/10.1145/3209108.3209128
https://www.cs.ox.ac.uk/people/bob.coecke/Anne.pdf
https://www.cs.ox.ac.uk/people/bob.coecke/Anne.pdf

22. Jiaxin Huang, Sarah Meng Li, Lia Yeh, Aleks Kissinger, Michele Mosca & Michael Vasmer (2023):
Graphical CSS Code Transformation Using ZX Calculus. Electronic Proceedings in Theoretical Com-
puter Science 384, p. 1–19, doi:10.4204/eptcs.384.1. Available at http://dx.doi.org/10.4204/EPTCS.
384.1.

23. Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2018): A Complete Axiomatisation of the
ZX-Calculus for Clifford+T Quantum Mechanics. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’18, ACM, New York, NY, USA, pp. 559–568,
doi:10.1145/3209108.3209131. Available at http://doi.acm.org/10.1145/3209108.3209131.

24. Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2020): Completeness of the ZX-Calculus. Log-
ical Methods in Computer Science Volume 16, Issue 2, doi:10.23638/LMCS-16(2:11)2020. Available at
https://lmcs.episciences.org/6532.

25. Aleks Kissinger & John van de Wetering (2020): Reducing the number of non-Clifford gates in quantum
circuits. Phys. Rev. A 102, p. 022406, doi:10.1103/PhysRevA.102.022406. Available at https://link.
aps.org/doi/10.1103/PhysRevA.102.022406.

26. Aleks Kissinger & John van de Wetering (2022): Simulating quantum circuits with ZX-calculus re-
duced stabiliser decompositions. Quantum Science and Technology 7(4), p. 044001, doi:10.1088/2058-
9565/ac5d20. Available at https://dx.doi.org/10.1088/2058-9565/ac5d20.

27. Aleks Kissinger, John van de Wetering & Renaud Vilmart (2022): Classical Simulation of Quantum
Circuits with Partial and Graphical Stabiliser Decompositions. In François Le Gall & Tomoyuki Mori-
mae, editors: 17th Conference on the Theory of Quantum Computation, Communication and Cryptog-
raphy (TQC 2022), Leibniz International Proceedings in Informatics (LIPIcs) 232, Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 5:1–5:13, doi:10.4230/LIPIcs.TQC.2022.5.
Available at https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2022.5.

28. Mark Koch, Richie Yeung & Quanlong Wang (2023): Speedy Contraction of ZX Diagrams with Trian-
gles via Stabiliser Decompositions.

29. Stephen Lack (2004): Composing PROPs. In: Theory and Applications of Categories, 13, pp. 147–163.
Available at http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html.

30. Boldizsár Poór, Quanlong Wang, Razin A. Shaikh, Lia Yeh, Richie Yeung & Bob Coecke
(2023): Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus. In:
2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–14,
doi:10.1109/LICS56636.2023.10175672.

31. Peter Selinger (2010): A Survey of Graphical Languages for Monoidal Categories. In: New Structures
for Physics, Springer, pp. 289–355.

32. Alex Townsend-Teague, Julio Magdalena de la Fuente & Markus Kesselring (2023): Floquetify-
ing the Colour Code. Electronic Proceedings in Theoretical Computer Science 384, p. 265–303,
doi:10.4204/eptcs.384.14. Available at http://dx.doi.org/10.4204/EPTCS.384.14.

33. Renaud Vilmart (2019): A Near-Minimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum
Mechanics. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp.
1–10, doi:10.1109/LICS.2019.8785765.

34. Quanlong Wang (2018): Qutrit ZX-calculus is Complete for Stabilizer Quantum Mechanics. In Bob
Coecke & Aleks Kissinger, editors: Proceedings 14th International Conference on Quantum Physics
and Logic, Nijmegen, The Netherlands, 3-7 July 2017, Electronic Proceedings in Theoretical Computer
Science 266, pp. 58–70, doi:10.4204/EPTCS.266.3.

35. Quanlong Wang (2021): A non-anyonic qudit ZW-calculus.
36. Quanlong Wang & Boldizsár Poór (2023): Completeness of qufinite ZXW calculus, a graphical language

for mixed-dimensional quantum computing.
37. Fabio Zanasi (2015): Interacting Hopf Algebras – the theory of linear systems. Ph.D. thesis, Université

de Lyon. Available at http://www.zanasi.com/fabio/#/publications.html.

A Auxiliary Lemmas and Proofs For Qudit

In this section, we prove all the lemmas that were left unproven in the body of the article. To do
so, we introduce the following auxiliary lemmas:

Lemma 11. If 0 < k < d:

ZWd ` k!
1

= ...
k

k

Lemma 12.

ZWd `

1

=
1

http://dx.doi.org/10.4204/eptcs.384.1
http://dx.doi.org/10.4204/EPTCS.384.1
http://dx.doi.org/10.4204/EPTCS.384.1
http://dx.doi.org/10.1145/3209108.3209131
http://doi.acm.org/10.1145/3209108.3209131
http://dx.doi.org/10.23638/LMCS-16(2:11)2020
https://lmcs.episciences.org/6532
http://dx.doi.org/10.1103/PhysRevA.102.022406
https://link.aps.org/doi/10.1103/PhysRevA.102.022406
https://link.aps.org/doi/10.1103/PhysRevA.102.022406
http://dx.doi.org/10.1088/2058-9565/ac5d20
http://dx.doi.org/10.1088/2058-9565/ac5d20
https://dx.doi.org/10.1088/2058-9565/ac5d20
http://dx.doi.org/10.4230/LIPIcs.TQC.2022.5
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2022.5
http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html
http://dx.doi.org/10.1109/LICS56636.2023.10175672
http://dx.doi.org/10.4204/eptcs.384.14
http://dx.doi.org/10.4204/EPTCS.384.14
http://dx.doi.org/10.1109/LICS.2019.8785765
http://dx.doi.org/10.4204/EPTCS.266.3
http://www.zanasi.com/fabio/#/publications.html

Lemma 13.

ZWd `

1

=

1

Lemma 14. If k 6= `:

ZWd `
k

k

= k! and ZWd `
k

`

= 0

Lemma 15.

ZWd `

1

r
= r ·

1

1/r

Lemma 16. If 0 ≤ k < d:

ZWd ` ...
k

1

=

1

Lemma 17. If 0 ≤ k < d, we have:

ZWd `

1

k ..
.

=

1

k!

Lemma 18. The bialgebra between W-nodes
can be used in the following context, if 0 ≤ ki <
d for all i:

ZWd ` ...
kn

...
k1

...

1

...

=

...

...

1

...
kn

...
k1

Now, since the lemmas’ ordering does not follow their dependencies any more, we provide
in Figure 3 a small (automatically generated) graph of all dependencies between them, so as to
convince the reader that there is no circular proof. Equations from the equational theories are not
displayed in the graph, they are assumed to be available at any point.

Proof (Proof of Lemma 1).

ZWd ` =
(s)

=
(id)

=
(b2)

=
(id)

Proof (Proof of Lemma 2).

ZWd `

...

...

=
(b2)
(s)

...

...

=
(s)
(b1)

...

...

=
(s)
1

...

...

Proof (Proof of Lemma 3).

ZWd `
...

=
(cp)
(id)

...

1

=
2

...

1

=
(cp)
(id)

...

Proof (Proof of Lemma 4).

ZWd `
0

=
3 0

=
(h)

...
d =

(b1)

...
d =

(a)

Proof (Proof of Lemma 5).

ZWd `
...

r s

=
(s)
(b1)

r s

...

=
(+)

r+s

...
=
(s)

r+s

...

T
h
m

.
2

P
ro

p
.

4

P
ro

p
.

7
P

ro
p
.

5
C

o
r.

2

P
ro

p
.

3

L
em

.
3

L
em

.
5

L
em

.
6

L
em

.
7

L
em

.
1
3

L
em

.
1
7

L
em

.
1
8

L
em

.
1

P
ro

p
.

6

L
em

.
2

L
em

.
8

L
em

.
4

L
em

.
1
1

L
em

.
1
2

L
em

.
9L

em
.

1
4

L
em

.
1
5

L
em

.
1
6

P
ro

p
.

2

L
em

.
2
1

L
em

.
2
5

L
em

.
2
6

L
em

.
2
2

L
em

.
2
8

L
em

.
2
7

L
em

.
2
9

L
em

.
3
0

L
em

.
3
1

L
em

.
3
2

L
em

.
3
3

L
em

.
2
4

P
ro

p
.

9
P

ro
p
.

1
0

T
h
m

.
3

P
ro

p
.

1
1

Fig. 3: Dependencies between lemmas, corollaries, propositions and theorems.

Proof (Proof of Lemma 6).

ZWd ` =
(b1)

=
(b1)

... =
(b1)

...
d =

(h)
4

=
(b1)
(a)
(id)

Proof (Proof of Lemma 7). First, notice that if k = 0 or ` = 0, the equation is obvious by (id).
Then, if k < d:

ZWd `
...
k

1 1

=
(cp)

1

...
k

=
(id)
(b1)

1

...
k

k! =
(p)

...
k

k

=
(b1)
(id)

k

Otherwise, if K ≥ d:

ZWd `
...
K

1 1

=
(cp)

1

...
K

=
(a)
(s)

1

...
K-d

...
d

=
(h)
4

1

...
K-d =

(b1)

1

... =
4

(id)

1

0

=
(cp)

0 ·

Hence:

ZWd `
k `

=
...
k+`

1 1

=


k + ` if k + ` < d

~0 if k + ` ≥ d

Proof (Proof of Lemma 8).

ZWd `
k

r
...
n

=
7

...
k

1 1

r
...
n

=
(b1)

r r

...
k

1 1

...
n

=
(cp)

rk ·
...
k

1 1

...
k

1 1

...
n

=
7

rk ·
k k...
n

Proof (Proof of Lemma 11).

ZWd ` k!
1

=
(cp)

1

k! =
(id)
(a)
(b1)
3

1

...
k

k! =
(p)

...
k

k

=
(id)

...
k

k

Proof (Proof of Lemma 12).

ZWd `

1

=
11

1

(d− 1)!

...
d-1

d-1

=
(b1)
(s)
(a)

1

(d− 1)! ...d-1
...
2d-2

d-1

=
(h)
4

(b1)
(a)

1

(d− 1)! ...d-1

d-1

=
(a)
(id)

1

(d− 1)!
...
d-1

d-1

=
11

1

Proof (Proof of Lemma 9). The proof goes in three steps:

ZWd `

1 1

=
(cp)

1

=
(b1)

1

=
2
(s)

1

=
(s)
(b1)
(a)

1

=
(b1)
(s)

1

=
12
(b1)
(a)

1

=
(id)
(s)

1

=
6

1

=
(id)

1

(1)

ZWd `

1

=
1
(s)

1

=
(1)

1 1

=
12
(b1)
(a)

1

1
(d-1)!...d-1

...1
2!

1

...d-1

=
(b1)
(s)

1

1

1 1
1

(d-1)!...d-1

...1
2!

=
(nf)

1

=
(s)
1

1

(2)

ZWd `

1 1

=
(1)

1

=
(2)

1

Proof (Proof of Lemma 13).

ZWd `

1

=
(b1)

1

=
12
8

1

=
(id)

1

Proof (Proof of Lemma 14). First:

ZWd `
1

1

=
(cp)

1

=
(id)
(a)
(s)

1

=
9

1

=
(id)
(a)

1

=
(cp)

1

Then:

ZWd `
k

k

=
7

...
k

1 1

k

=
(cp)

1

...
k

k

=
11

k!
1

1

= k!

Finally:

ZWd `
k

`

=
7

`

k-``

=
8

k-``

=
6

` k-`

=
(id)
(b1)

`

k-`

...
k-l

=
11

(k − l)!
` 1

=
4

(k − l)!
` 1

0
=
(cp)

0

Proof (Proof of Lemma 15).

ZWd `

1

r
=
1
(s)

1

rr

1/r

=
(b1)

1

r

1/r

=
(cp)

r ·

1

1/r

Proof (Proof of Lemma 16). First notice that the equation derives from (b1) when k = 0. Then,
for 0 < k < d:

ZWd ` ...
k

1

=
11

1

k!
...
k

k

...
k

=
(b1)
(s)
(a)

1

k! ...
k

k

...
k
...
k

=
(s)
(b1)

1

k!

k

...
k

...
k

=
(s)
1
(a)

1

k!

k

...
k
...
k

=
(b1)
(s)
(a)

1

k!

k

...
k

=
11

1

Proof (Proof of Lemma 17). If k = 0, the equation derives from Lemma 8 and Lemma 3. Else, if
k < d:

ZWd `

1

k ..
.

=
(b1)
(s)

1

...
k
...
k

=
9

1

...
k
...
k

1 1

=
(s)
(p)

...
k

k

1

1
(k!)2

...
k

k

=
1

(b1)
(s)
(a)

...
k

1

1
(k!)2

k k

=
(b1)
(a)

...
k

1

1
(k!)2

k k

=
8
14

k!
...
k

1

1
(k!)2

k

=
(s)
(p)

k!

1

1
k!

...
k

1

=
16
15

1 1

k!
=
9

1

k!
=
(s)

1

k!

Proof (Proof of Lemma 18). To apply (b2), we would need to have ki connections between the
leftmost W-node and the i-th W-node of the bottom of the bialgebra, but so far we only have one.
We can get more, in the following way:

ZWd ` ...
kn

...
k1

...

1

...

=
11

1

(d− 1)!
...
kn

...
k1

...

...

...
d-1

d-1

=
(b1)
(s)
(a)

1

(d− 1)!
...
kn

...
k1

...

...

d-1

...
d-1

d-1......
d-1

as ki < d, we now have enough connections to apply (b2). Doing so and undoing the transformations
on the left part, we get:

ZWd `
1

(d− 1)!
...
kn

...
k1

...

...

d-1

...
d-1

d-1......
d-1

=
2

1

(d− 1)!

...

...

d-1

...
d-1

d-1......
d-1

......
=

...

...

1

...
kn

...
k1

Proof (Proof of Proposition 2). First notice that:

u

v
1

......

}

~ = |1, 0, ..., 0〉+ |0, 1, ..., 0〉+ . . .+ |0, 0, ..., 1〉

=

s
1

...

{
+

s
1

...

{
+ . . .+

s
...

1

{

In a given term, each |0〉 will merely cancel the Z-spider connected to it, and bring no contribution
to the resulting state. Every contribution is brought by the |1〉. The number of parallel edges
dictates to which basis state the contribution will go to. Consider for instance the ith term:

u

wwwwww
v

r0 r1
ri√

xi1!...x
i
n!

...
x i
1

... ...

...
xin

...

1

}

������
~

=

u

wwwww
v

ri√
xi1!...x

i
n!

...
x i
1

... ...

...
xin

...

1 }

�����
~

=

u

wwwww
v

ri√
xi1!...x

i
n!

...
x i
1

...
xin

...

1 }

�����
~

=
ri√

xi1!...xin!

u

ww
v

...
x i
1

...
xin

...

1

1 1 1

}

��
~ =

ri√
xi1!...xin!

s
...

xi1 xin

{
= ri

∣∣xi1, ..., xin〉

We do indeed recover the ith term in |ψ〉. We have something similar for all terms, so in the end
JN (|ψ〉)K = |ψ〉.

Proof (Proof of Proposition 3). Putting two diagrams in normal form side by side, we get:

ZWd `

1

? ?

...

...

...

...

?

... ...

1

? ?

...
...

...

...

=
8

1

? ?

...

...

...

...

?

... ...

? ?

...
...

...

... =
(b1)

1

? ?

...

...

...

...

?

... ...

? ?

...
...

...

...

=
2

1

? ?

...

...

...

...

?

... ...

? ?

...
...

...

... =
(b1)
(id)

1?

?

...

...

...

...

?

... ...

? ?

...
...

...

...??

...
...

...
...

=
(b1)
(s)

1

?

?

...

...

...

...

?

... ...

?

?

...
...

...

...??

...
...

...
...

?
...

=
(s)
(b1)

1

?

...

...

...

...

?

... ...

?

?

...
...

...

...??

...
...

...
...

?
...

=
(id)
(b1)

1

?

...

...

...

...

?

... ...

?

?

...
...

...

...??

...
...

...
...

?
...

=
(s)
1

1

?

...

...

...

...

?

... ...

? ?

...
...

...

...??

...
...

...
...

?...

The diagram obtained at the end of this process is indeed in normal form.

Proof (Proof of Proposition 4). First, we can show that the cup can “distribute” to each white
node in the normal form:

ZWd `

1

?

...

...

...

?

... ...

=
18

1

?

...

...

...

?

... ... =
13

1

?

...

...

...

?

... ... =
18

1

?...?

... ...

?

...

...
=

1

?...?

... ...

?

......

We can then treat each white node independently. If a white node had k connections with the
first output, and ` with the second one, with k 6= `, then it can simply be removed as:

ZWd ` ...
k
...
`

=
(s)
(id)
(b1)

...
`...

k-` =
6

...
`...

k-` =
3

(b1)
7

This then copies through the white node (with (b1)) and gets absorbed by the top and bottom
W-nodes of the normal form (by (id)). If k = `, however the ”cup gadget” disappears and the white
node gets a new parameter, as:

ZWd ` ...
k
...
k

1

=
(s)
(b1)

1

k ..
.

=
17

1

k!

After the last two simplifications, it is possible that two white nodes end up with exactly the same
connections. It is then possible to merge them (performing the sum of their parameters), using
Lemma 5. After doing all these simplifications, the diagram is again in normal form.

Proof (Proof of Proposition 5). First, if n > 0:

ZWd `
r
...
n

=
(s)

r
...
n

=
(nf)

1

1 1
1

(d-1)!...d-1

...1
2!

r
...
n

=
(b1)
(s)

1

1
...d-1

...

...
n

r rd-1

(d-1)!
r2

2!
...d-1

If n = 0, then r can be obtained by compositions: r = r . It can hence be turned in

normal form by Propositions 3 and 4.

Proof (Proof of Proposition 6). By simply using (a), we get:

ZWd `

1

?

...

...

...

?

... ...
=
(a)

1

?

...

...

...

?

... ...

then, if a white node ends up with more than d − 1 connections with the resulting W-node, we
can remove it by (h) (again the generated by the rule copies through the white node and gets
absorbed by the top and bottom W-nodes of the normal form, and white nodes with the same
connections can be merged with Lemma 5). If two nodes end up with the same connections, they
can be merged using Lemma 5. We end up with a diagram in normal form.

Proof (Proof of Corollary 2). Thanks to:

ZWd ` =

the binary W-node can be seen as applying to 2 outputs of the normal form of

(notice that the diagram obtained by swapping 2 outputs of a normal form is directly in normal
form). Thanks to 6, the obtained diagram can be put in normal form. This can obviously be
generalised to the n-ary W-node thanks to (a).

Proof (Proof of Proposition 7). The cases where k = 0 and k = 1 are fairly trivial:

ZWd ` =
(cp)
(id)

1

1 and ZWd `
1

=
1

1

1

When k > 1, it can be obtained by composition, thanks to
k

=
7

...
k

1 1

, hence by Propositions

3 and 6, it can be put in normal form.

B Alternative Presentation

Equation (nf) is certainly the least elegant of the equational theory, as its justification is simply:
“we need it for the completeness proof”. Part of the difficulty in breaking it down to simpler ones
is the fact that a single parameter describes the behaviour of the unary Z-spider on the whole
d-dimensional space. If we instead had a list of parameters as in [30,35], we could replace (nf) by
a single simple equation, at the cost of a more complicated handling of the parameters, especially
in Equation (+). We provide here a presentation in such a system.

We redefine the Z-spider as having −→r := (r1, ..., rd−1) ∈ Cd−1 as parameter, with interpretation:

t
−→r

n...

...
m

|

= |0m〉〈0n|+
d−1∑
k=1

rk
√
k!
n+m−2

|km〉〈kn| .

When a single parameter is used, we want to get the previous definition back, so we denote:

r := (r, r2, ..., rd−1)

The two main operations that will be done on the lists of complex numbers are the following:

. The Hadamard product, or term-by-term product:

(r1, ..., rd−1)� (s1, ..., sd−1) := (r1s1, ..., rd−1sd−1)

. A discrete binomial convolution:

(r1, ..., rd−1) ? (s1, ..., sd−1) :=

(
r1 + s1, ...,

k∑
i=0

(
k

i

)
risk−i, ...,

d−1∑
i=0

(
d− 1

i

)
risd−1−i

)

taking r0 = s0 := 1.

Notice that in particular:

(r, r2, ..., rd−1) ? (s, s2, ..., sd−1) =
(
(r + s), (r + s)2, ..., (r + s)d−1

)
.

These two operations redefine the effects of Equations (s) and (+) on the parameters of the Z-
spiders. The rest of the equational theory remains the same, except (nf) can be replaced by (e1).
The obtained equational theory is given in Figure 4. Equation (e1) gives the normal form of a
unary Z-spider, but with the simplest non-trivial support. It is then possible to derive Equation
(nf) by decomposing arbitrary lists of parameters into convolutions of this simple one.

−→r −→s

...

... ...

...

=
(s)

...

...

−→r �−→s

...

...

...

=
(a)

...

=
(id)

...
d =

(h) 0

...
m

r

n...

n 6=0
=
(b1) r r

...
m

n... −→r −→s
=
(?)

−→r ?−→s 1 =
(e)

1

−→r
...
n

=
(cp)

r1 ·
1

...
n

1

...

...

=
(b2)

...

...

...
k

k

0<k<d
=
(p)

1

...
k

k!

1

=
(e1)

(1, 0, ..., 0)

Fig. 4: Alternative equational theory ZW′d for the qudit ZW-calculus.

To prove that the equational theory is complete, it suffices to prove that ZWd is derivable with
ZW′d. Since all equations of ZWd but (nf) are either exactly in ZW′d or are special cases of equations
of ZW′d, it suffices to show that ZW′d ` (nf). Notice also that all lemmas and propositions derivable
in ZWd remain derivable in ZW′d if they do not use (nf).

We denote the elementary lists −→ek := (

k−1︷ ︸︸ ︷
0, ..., 0, 1, 0...). These can be shown to be decomposable

as follows:

Lemma 19.

ZW′d `
−→ek

=

−→e1

1

−→e1

e
2iπ
k

... −→e1

e
2i(k-1)π

k

xk

where xk = (k!)
-1
k if k is odd and xk = (k!)

-1
k e

iπ
k if k is even.

Proof. Proving this equality is more a matter of proving a non-trivial equation involving our
convolution (. ? .) than a diagrammatic one. The operation that is performed is essentially:

r0
−→e1 ? ... ? rk−1−→e1 =

1!
∑
i

ri, 2!
∑
i1,i2

ri1ri2 , 3!
∑
i1,i2,i3

ri1ri2ri3 , ..., k!r0...rk−1, 0, ..., 0


where we are looking for ris such that the above is equal to −→ek . Taking the ris to be the kth roots
of unity makes all k − 1 first terms equal to 0, and the kth equal to (−1)k+1k!. The (k!)

-1
k and

(k!)
-1
k e

iπ
k then simply correct for the (−1)k+1k! that is left.

We can then use those to decompose arbitrary unary Z-spiders:

Lemma 20. For any −→r ∈ Cd−1, there exist s1, ..., sd−1 such that:

ZW′d `
−→r

=

−→e1

s1

−→e2

s2

... −−→ed−1

sd−1

Proof. Finding such sis are just a matter of solving a linear system of equations in variables
s1, s

2
2, ..., s

d−1
d−1.

We can finally use the above two lemmas to derive the normal form of arbitrary unary Z-spiders:

Proposition 8. For any −→r ∈ Cd−1, the unary Z-spider with parameter −→r :
−→r

can be put in

normal form using ZW′d.

Proof. First of all, notice that tensor products of diagrams in normal form can be put in normal
form, as Proposition 3 does not use (nf) at all. Same goes for Proposition 6 which states that the

diagram obtained by applying to outputs of a normal form can be put in normal form. We

can hence easily show that
−→ek

can be put in normal form:

ZW′d `
−→ek

=
19

−→e1

1

−→e1

e
2iπ
k

... −→e1

e
2i(k-1)π

k

xk

=
(b1)

−→e1

xk

−→e1

xke
2iπ
k

... −→e1

xke
2i(k-1)π

k

=
(e1)

xk xke
2iπ
k

...

xke
2i(k-1)π

k

1 1 1

=
NF

...
NF NF

=
3

NF

... =
6

NF

where the “NF” boxes represent diagrams in normal form, the exact shape of which does not matter
for the proof, as they are uniquely defined from the semantics of the diagram they correspond to.

Similarly, we can further show that any
−→r

can be put in normal form:

ZW′d `
−→r

=
20

−→e1

s1

−→e2

s2

... −−→ed−1

sd−1

= s1 s2 sd−1

...
NF NF NF

=
(b1)

NF
...

NF NF

=
3

NF

... =
6

NF

Theorem 4 (Completeness). The language is complete with ZW′d: for any two diagrams D1 and
D2 of the ZWd-calculus:

JD1K = JD2K ⇐⇒ ZW′d ` D1 = D2

Proof. By Proposition 8, we can derive the normal form of by taking −→r ← 1. In other words

ZW′d ` (nf). As a consequence ZW′d ` ZWd, so by Theorem 2, the equational theory ZW′d makes
the language complete.

C Lemmas and Proofs for FdHilb

In this section, for ease of notation, we will omit the box over the capacity annotations.

Lemma 21.

ZWf ` a = a

Proof.

ZWf ` a =
(s)

a
=
(id) a

a

a

=
(a)
(b1) a

a a

a

=
(a′)

a

a

a

a

=
(a)
(id)

a

Lemma 22. If b ≤ a:

ZWf `
a

b

a

=
(b2)

a

a

a

=
(id)

a

Lemma 23.

ZWf `
a

0
=
(a) a

=
a

Lemma 24. Equation (zcp) can be generalised to:

ZWf `

n∑
i=1

ai

a1 an
...

=
ana1

...

Proof.

ZWf `

n∑
i=1

ai

a1 an
...

=
(a)

n∑
i=1

ai

ana1 an-1
...

n−1∑
i=1

ai =
(zcp)

ana1 an-1
...

n−1∑
i=1

ai

=
ind. ana1 an-1

...

Lemma 25. Equation (a′) can be generalised to:

ZWf `
b

a0 an

c

...

=

a0 an

c

...

b

Proof. By induction on n + 1 the number of wires labelled a0,...,an. When n + 1 = 2, the case is
directly dealt with rule (a′). Else, assuming the result is proven for n:

ZWf `
b

a0 an

c

...

=
(a)

b

a0

c

a1 an
...

c

b

=
(a′)

a0

c

a1 an
...

c

b

b

=
(b1)

a0

c

a1 an
...

c

b

b

b

=
ind.
(s)

a0

c

a1 an
...

b

bb
=
(s)
(b1)

a0

c

a1 an
...

b

b

b
=
(s)
21
(a)

a0 an

c

...

b

Lemma 26.

ZWf `

...

...

aa

a

aa

=

...

...

aa

aa

a

a a

Proof.

ZWf `

...

...

aa

a

aa

=
22

...

...

aa

a

aa

a

na =
25

...

...

aa

aa

a

na

a

=
(b2)

...

...

aa

aa

a

a

a a

=
(b1)
(a)
(s) ...

...

aa

aa

a

a

a
a

a a =
(b1)
(s)

...

...

aa

aa a

a
a a =

(b1)
(a)

...

...

aa

aa

a

a a

Lemma 27.

ZWf `
0

a
=

a

Proof.

ZWf `
0

a
=
(b2) 0

a

1

=
(h)

...
a+1

a

1

=
(b1)

...
a+1

a

1 1
=
(a) a

Lemma 28.

ZWf ` ra
...

=
a
...
a

Proof. The case where there are no outputs is dealt with

ZWf `
r
a =

27

0

r
a =

(s)
0a =

(s)

0

0
a =

27
a =

(b2)
1

The general case is a direct application of (b1) with m = 0.

Lemma 29.

ZWf `
k

a =
1 ...
k

a

1
1

1

Proof.

ZWf `
k

a =
(id)
28

...
k

k

a

a
1

=
(p)

1

...
k

k!

1

1

a

1
=
28
(id)

1

...
k

a

1

=
(cp)

1 ...
k

a

1
1

1

Lemma 30. If b ≥ a ≥ k ≥ bi:

ZWf `
k
a

b
=

k

b and ZWf `
k
a

b1
...
bn

=

k
k

b1
...
bn

Proof.

ZWf `
k
a

b
=
29

1 ...
k

a

1
1

1

b

=
(a′)

1 ...
k1

1

1

b
=
29

k

b

ZWf `
k
a

b1
...
bn

=

k

a

b1
...
bn

k

=
(b2)

k

b1
...
bn

k

b1 bn =
(id)

k
k

b1
...
bn

Lemma 31. Let a ≥ b. Then:

ZWf `
a

b

=
b

Proof. We work by induction on a ≥ b. If a = b, the result is a direct application of Equation (id).
Else:

ZWf `
a

b

=
(nf)

a-1

1
a!
a...

1

a

b

=
(b2)

a-1
1
a!

a...

1

b 11

b

=
ind.
(id)

1
a!

a...

1

b

b

=
(a)
(s)

b

b

a...
1

1
a!

=
(h)
27

b

b

1

1
a!

=
(id)
28

b

Definition 5. With d ≥ a, we define the “a-restricted Z-spider as:

r|a

n...

...
m

d :=

n...

...
m

d

r a

Lemma 32.

ZWf `

1

? ?

...

...

...

...

?

... ...

d d

d

d d d

=

1

? ?

...

...

...

...

?

... ...

1

1 1 1

d d

Proof.

ZWf `

1

? ?

...

...

...

...

?

... ...

d d

d

d d d

=
30

1

? ?

...

...

...

...

?

... ...

d

d d d

1

d d

=
(b2)

1

? ?

...

...

...

...

?

... ...

d d d

1

1 11

d d

=
(b1)
31

1

? ?

...

...

...

...

?

... ...

1 1

1

1

dd d d
d d

d d

=
(a)

1

? ?

...

...

...

...

?

... ...

1

1 1 1

d d

Lemma 33.

ZWf `
.|a

d
=

d

1

1
a!...a

...1
2!

d

d d dd

Proof. We need a few intermediary derivations first:

ZWf `
r

x...

a

b

...
c1 cn

=
(b1) x...

a

b

...

c1 cn

r r

b b

=
(a′)

b

...

c1 cn

r
x...

a

r
x...

bb

=
(b1)

b

...

c1 cn

r
x...

a

r
x...

=
(s)
21

b

...

c1 cn

r
x...

a

r
x...

(3)

If x+ y > a:

ZWf `

r

y...

a

b

...

s
x...

c ...
=
(b2)
(3)
(s) ...

b

sr
x+y...

a

r
x...

...
cb

=
(h)
27
28
(id)

r

y...

a

b

...

...

(4)

ZWf `

1

...

1

1 1 1

a

1

a... =
(a)

1

...

a

1 1 1

a

1

a...

a

=
(a)
(b1)

1

...

a

1 1 1

a

1 1

a

a

a

=
30
(b2)

1

...

1

1 1 1

a

1 1

a

a

a

1
1

=
(id)
(b1)

1

...

1

1 1 1

a

1 1

1

a

a

a

a

=
(a)
(b2)

1

...

1

1 1 1

a

1 1

1

a

a

1
1

= ... =

1

...

1

1 1 1

a

1 1

1

1

1

=
24

1

...

1

1 1 11 1

1

1

1

=
21
(a)

1

...

1

1 1 11

(5)

We then reason by induction on a. If a = 0, we have:

ZWf `
.|0

d
=

d

0

=
(id)
21

d

0

0 =
(h)
27

d

0

0 =
28
(cp)
(id)
(a)

d

1

1

1

The case a = 1 is obtained as:

ZWf `
.|1

d
=

d

1

=
(e1)

d

1

1
1

Otherwise, if we suppose the result is proven for 1 and for a− 1, then we can prove:

ZWf `
.|a

d
=

d

a

=
(nf)

a-1

1
a!
a...

1

a

d

=
ind.

1

1
(a-1)!...a-1

...1
2!

a-1

1
a!
a...

1

d

1

1 1

1

1

a

=
25
(s)

1

1
(a-1)!
...a-1

...1
2!

a-1

1
a!

a...

1

d

1

1 1

1

1

...

a

=
ind.
(5)

1

1
(a-1)!
...a-1

...1
2!

1
a!

a...

1

d

1

1 1

1

1

a

1

1

1

=
30

1

1
(a-1)!
...a-1

...1
2!

1
a!

a...

1

d

2

1 1

1

1

a

1

2

1

=
(cp)

1

1
(a-1)!
...a-1

...1
2!

1
a!

a...

1

d

2

1 1

1

1

a

1

=
(b1)

1

1
(a-1)!
...a-1

...1
2!

1
a!

a...

1

d

1

1 1

1

1

a

2

2

=
30
(b2)

1

1
(a-1)!
...a-1

...1
2!

1
a!

a...

1

d

1

1 1

1

1

a

1

1

1

=
(3)

1

1
(a-1)!

...a-1

...1
2!

1
a!

a...

1

d

1
1

1
1

1

a

1

1
1

1
2!

1
(a-1)!

...a-1

1

1

1

=
(4)
28

1

1
(a-1)!
...a-1

...1
2!

1
a!

a...

1

d

1

1

1

1

a

1

1

1

1

=
(s)
21

1

1
(a-1)!
...a-1

...1
2!

1
a!

a...

1

d

1

1

1

1

a

1

1

=
(s)
21
(b1)

1

1
(a-1)!
...a-1

...1
2!

1
a!

a...

1

d

1

1

1

1

a

1

1

=
(s)
(a)

1

1
(a-1)!
...a-1

...1
2!

1
a!

a...

1

d

1

1 1

1

1

a

=
(a′)
(s)

1

... 1
a!

a...

d

1

1 1 1

a

a...

=
(5)

d

1

1
a!...a

...1
2!

1

1 1 11
=
32

d

1

1
a!...a

...1
2!

d

d d dd

Proposition 9. All equations of ZWd are derivable from ZWf , i.e.

∀d ≥ 2, ZWd ` D1 = D2 =⇒ ZWf ` ιd(D1) = ιd(D2)

Proof. First, notice that the result is obviously true for all axioms of compact-closed props. Then,
it is enough to show the result for the equations in Figure 1, as all equations provable with ZWd

derive from them. Equations (s), (id), (a), (b1), (+), (cp), (h) and (p) are directly translated to an
equation of ZWf through ιd. Then, (b2) is exactly Lemma 26, and (nf) is Lemma 33 with a← d.

Proposition 10. Let D ∈ ZWf be a diagram (state) with its largest capacity being d − 1. Then,
there exists Dd ∈ ZWd such that:

ZWf ` D
...

a1 an

=
ιd(Dd)

...
a1 an

Proof. Let us write δ := d − 1 for the maximum capacity in D. Using Lemma 22, we can “force”
capacity δ on all wires:

ZWf ` a =
22

a

δ

a

Every original generator in D is then surrounded by W-nodes (connected to them by their output).
These can be turned into purely qudit systems as follows:

ZWf ` r

...

...
a

δ δ

δ δ

=
(s)

...

...

δ δ

δ δ

r
a =

(b1)

...

...
δ

r a

= r|a

n...

...
m

δ

ZWf `
a

δ

δ δ

b c
=
(a)

a

δ

δ δ

b c

b c

=
(b2)

a

δ

δ δ

b c

δ =
(a)

a

δ

δ δ

b c

δ

δδ
=

δ

δ δ

.|a

.|b .|c

Finally, using (s) with 33, all “a-restricted” Z-spiders r|a

n...

...
m

δ can be turned into diagrams that only

use capacity δ. Doing so for all generators, we consume all the W-nodes created at the beginning
of the proof through Lemma 22, except the ones that are connected to the outputs of the diagram.

We hence end up in the form
ιd(Dd)

...
a1 an

.

Proposition 11. Let Dd be a ZWd-state in (qudit) normal form. Then
ιd(Dd)

...
a1 an

can be put in

(qufinite) normal form.

Proof. First, we may use Lemma 32 to turn all “internal” capacities in ιd(Dd) into 1. ιd(Dd) is
hence technically in qufinite normal form. It remains to remove the W-nodes 〈δ〉 → 〈ai〉 at the
bottom of the diagram. This can be done as follows, considering each output individually:

ZWf `

?

...

...?

...

1 1

δ

ai

=
(a)

...?

...

1

δ

ai

?

...

1

δ
δ

=
(b2)

...?

...

1

δ

ai

?

...

1

δ

aiai

=
(b2)

...?

...

1

ai

?

...

1

aiai

1 1 1 1
=
(id)
(a)

...?

...

1

ai

?

...

1

Finally, we may remove Z-spiders connected k times to output ai when k > ai using Equation (h)
followed by Lemma 28 and Equation (id).

Proof (Proof of Theorem 3). We can now show that any ZWf -state D can be put in normal form.
First, use Proposition 10 to turn all but the outputs of the diagram into a qudit diagram. Using
Proposition 9 and Theorem 2, we can turn the qudit-part of that diagram into qudit normal form.
Finally, using Proposition 11, the whole diagram can be put in qufinite normal form.

If two ZWf -states D1 and D2 are semantically equivalent (JD1K = JD2K), then they can both
be turned into normal form. By uniqueness of the normal form, the two diagrams are equal,
i.e. JD1K = JD2K =⇒ ZWf ` D1 = D2.

	Minimality in Finite-Dimensional ZW-Calculi

