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Abstract

In this paper, we propose a Bayesian inversion approach combining adaptive Polynomial Chaos Kriging (PCK)

surrogate models and a rare event estimation method called Subset Simulation (SuS). It is based on the re-

cently introduced Bayesian Updating with Structural reliability (BUS) framework that enables to reformulate

the classical Bayesian inference into a rare event estimation problem. In this context, the SuS method aims

at drawing samples from the posterior distribution as well as estimating the model evidence, which is usually

computationally intractable when considering classical MCMC approaches. The proposed approach involves the

construction of a PCK surrogate model which provides both global and local approximations of the likelihood

function, through the combination of a Polynomial Chaos and Kriging surrogates. Furthermore, we propose an

adaptive scheme for enriching the PCK surrogate throughout the SuS sampling procedure, in order to improve

its accuracy near informative regions. The applicability and the efficiency of the proposed approach are assessed

through its application to three cases studies with increasing complexity. Results highlighted that the proposed

approach enables to accurately approximating posteriors with a limited amount of full model calls, even in the

case of multi-modal posteriors, which are usually difficult to sample when using classical MCMC algorithms.
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1. Introduction1

In science and engineering, computational models are widely used for assessing the response of a physical2

system. Such models can be seen as input-output maps, which predict measurable quantities related to the3

system response for a given set of input parameters. Inverse problems consist of inferring these parameters given4

a set of observations of the system response [1].5

In most cases, solving inverse problems remains a challenging task due to their ill-posedness in the Hadamard6

sense: indeed, a solution may not exist and/or be not unique, and may not be continuously varying with7

respect to the observation data. In this context, the Bayesian formulation for inverse problems provides a8

general framework for quantifying epistemic uncertainties on parameters, and assimilating noisy observation9

data in order to update these uncertainties. Based on probability theory, it requires the definition of a prior10

distribution which represents the beliefs before collecting observation data, and contributes to the regularization11

of ill-posed inverse problems [2, 3]. A discrepancy model is also required in order to link model predictions12

to observations, through the definition of a so-called likelihood function. Then, Bayesian inference provides a13

posterior distribution which summarizes all the available knowledge on parameters once the observation data14

have been collected and analyzed. This posterior distribution may subsequently be used for computing some15

Quantities of Interest (QoI) related to parameters, such as mean or covariance matrix, or marginals distributions.16

It is also possible to make new predictions by integrating over the posterior. Furthermore, the so-called model17

evidence, given by the normalization constant of the posterior, may be used for quantifying the plausibility of a18

given model given the available data, in the framework of model selection [4].19

The computation of the posterior constitutes a major task of Bayesian inference. In general, a closed-20

form expression is not available, notably due to the fact that the model evidence is often a multi-dimensional21

integral, the calculation of which is often intractable. Then, the posterior is usually estimated from samples, and22

Monte Carlo estimates are often considered for computing posterior QoI. In this context, Markov Chain Monte23

Carlo (MCMC) techniques constitute a widely used class in the framework of Bayesian computations [5, 6].24

They typically consist of generating Markov chains in the parameter space to draw samples from the posterior25

distribution, by avoiding the computation of the model evidence. In this context, the Metropolis-Hastings (MH)26

[7, 8] constitutes the cornerstone of MCMC algorithms. A wide range of MCMC variants have been developed,27

including adaptive variants [9, 10], algorithms based on Hamiltonian dynamics [11], or affine-invariant algorithms28

[12]. Nevertheless, MCMC algorithms suffer from several drawbacks: firstly, the Markovian nature of such29

processes induces sample auto-correlation, which may alter the reliability of Monte Carlo estimates of posterior30

QoI. Secondly, the absence of clear convergence criterion constitutes a major drawback. Instead, numerical31

heuristic criterion have been proposed in the literature [13, 14, 15]. Lastly, MCMC algorithms require a large32

amount of likelihood evaluations, which make such algorithms intractable when dealing with computationally33

extensive models.34

Then, few alternatives to MCMC-based approaches have been proposed in the literature, such as Variational35
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Bayesian (VB) inference [16] aiming at computing the posterior by solving an optimization problem, Approximate36

Bayesian Computation (ABC) [17], Laplace approximations [18] or Nested Sampling [19, 20]. Recently, some37

authors have proposed novel sampling-free approaches, in the sense that an analytical form of the posterior is38

computed instead of drawing samples for estimating it. El Moselhy & Marzouk [21] introduced an approach39

based on optimal transport maps, which push forward the prior to the posterior. Nagel & Sudret [22] introduced40

the so-called Spectral Likelihood Expansion (SLE) approach, based on a spectral representation of the likelihood41

function in a basis of polynomials which are orthonormal with respect to the prior. Then, as a generalization42

of SLE, Wagner et al. [23] proposed an adaptive approach based on Stochastic Spectral Embedding (SSE) [24],43

which aims at constructing local spectral expansions of the likelihood function.44

Another recent novel framework for Bayesian computations has been introduced by Straub & Papaionannou45

[25], known as Bayesian Updating with Structural reliability methods (BUS). It aims at reformulating the46

classical Bayesian inference formulation into a rare event estimation problem [26]. Structural Reliability (SR)47

methods [27, 28] have been developed in order to estimate the probability of rare events, based on physical48

and engineering models. Then, such methods can be used in the BUS framework, in order to compute the49

posterior as well as the model evidence, since the latter can be written as the probability of a rare event [26]. In50

particular, the Subset Simulation (SuS) method [29] constitutes a widely used SR method, enabling to estimate51

the probability of rare events for a wide range of applications. Such method has been recently implemented in52

the BUS framework [30], in order to efficiently draw samples from posterior distributions.53

Nevertheless, such approach requires an important amount of likelihood evaluations, as MCMC sampling54

techniques. Firstly, some authors proposed to accelerate MCMC calculations by using surrogate models. In this55

context, surrogates may be constructed offline, and then used for replacing the full forward model throughout56

MCMC sampling. Such strategy has been considered with Polynomial Chaos (PC) surrogates based on the prior57

distribution [31, 32, 33], or with Kriging surrogates [34]. Another approach consists in adaptively refining the58

surrogate model throughout the sampling procedure, as proposed in [35] for PC surrogates or in [36] for Deep59

Neural Networks (DNN), to name a few. Likewise, in the BUS framework, some authors recently proposed60

approaches based on surrogate models: Giovanis et al. [37] proposed an approach based on SuS and Artificial61

Neural Networks (ANN), whereas Wang & Shafieezadeh [38] combined adaptive Kriging and Rejection Sampling62

(RS).63

Moreover, SR methods provide a wide range of active learning approaches, enabling to construct surrogate64

models with adaptive experimental designs, which are iteratively enriched to improve the accuracy of surrogate65

model predictions of QoI related to rare events [39, 40]. In particular, such approaches tend to limit the number66

of model calls, which makes their use suitable for computationally expensive models. In this context, local67

surrogate models such as Kriging [41, 38] are often considered, due to the local error measure they provide,68

which can be used for selecting new enrichment points for experimental designs. Recently, Schöbi et al. [42]69

proposed a new surrogate modeling technique named Polynomial Chaos Kriging (PCK), which combines a PC70

for approximating the global behavior of the model, and a Kriging for catching local variations. PCK provides71
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Kriging local features (e.g. prediction variance) to a PC surrogate, by embedding a PC into the trend of a72

Kriging process. Hence, PCK surrogate models are well suited for Kriging-based active learning approaches,73

which makes it a powerful candidate for rare event estimation, as highlighted in [43].74

In this paper, a hybrid Bayesian inversion approach based on the BUS framework is proposed, which uses75

adaptive PCK surrogate models within SuS. In this context, our main contributions are the following:76

• We propose an implementation of PCK within SuS in the BUS framework, to accelerate the SuS sampling77

procedure. The main idea is to construct a PCK surrogate of the log-likelihood function, which can be78

enriched in an adaptive way throughout the rare event estimation procedure performed with SuS.79

• In order to improve the accuracy of the PCK in posterior high-probability zones with a limited number80

of full model calls, we propose an active learning scheme for adaptively refining the PCK surrogate in81

posterior high-probability zones.82

Firstly, a global approximation of the log-likelihood on the prior support is constructed, by using an Exper-83

imental Design (ED) of limited size. It is well known that the accuracy of prior-based surrogates near posterior84

high-probability zones cannot be guaranteed in general [44, 35]. This motivates the introduction of the pro-85

posed active learning scheme: the ED of the PCK is then iteratively enriched by selecting points in informative86

zones, based on a combination of PCK local features and a clustering technique [45]. The proposed approach87

enables to efficiently improve the local accuracy of the PCK surrogate with a limited amount of full model calls.88

More specifically, such adaptive scheme enables to handle multi-modal posteriors, which are difficult to sample89

when using classical MCMC sampling approaches. The approach fully exploits the versatility of PCK, by firstly90

capturing the global trend of the posterior and subsequently focusing on informative zones.91

The paper is organized as follows: the basics of Bayesian inference and the BUS framework are briefly92

presented in Section 2. Then, Section 3 establishes the main theoretical and practical basics related to PCK93

surrogate models. The proposed Bayesian inversion approach is subsequently described in Section 4. The94

performance of the proposed approach is assessed in Section 5, through four cases studies of increasing complexity.95

Lastly, the paper is summarized and concluded in Section 6.96

2. Bayesian Updating with Structural reliability methods (BUS)97

2.1. Bayesian inference98

Let (Ω,F ,P) be a probability space, where Ω is a sample space, F a Borel algebra on Ω and P a probability99

measure on (Ω,F). Consider a system with uncertain parameters, which are represented by a random vector100

Θ : Ω −→ Dθ ⊂ Rm. The behavior of the system is represented by an computational modelM : Dθ −→ Dy ⊂ Rn
101

which maps a set of parameters θ ∈ Dθ to a response M(θ). The random vector Θ is assumed to admit a102
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Probability Density Function (PDF) denoted by ρ(θ), which expresses the prior belief in Θ. Then, let suppose103

that a set of observations of the system response is available, and gathered in a vector y ∈ Dy. The so-called104

likelihood function L(θ;y) is proportional to the probability of observing y given a realization Θ = θ of the105

uncertain parameters. In order to link observations to responses of M, an additive Gaussian discrepancy model106

is often considered:107

y = M(θ) + ε (2.1)

where ε ∼ Nn (0,Σε) is a normal random vector with zero mean and covariance matrix Σε. In this case, the108

likelihood function reads:109

L(θ;y) = ϕn (y −M(θ);Σε) (2.2)

where ϕn(·;Σε) is the PDF of the distribution Nn (0,Σε).110

Then, applying Bayes’ theorem, the posterior PDF π(θ|y) of Θ can be written as follows:111

π(θ|y) = ρ(θ)L(θ;y)
Z

(2.3)

where Z is a normalization constant, known as model evidence:112

Z =

∫
Dθ

ρ(θ)L(θ;y)dθ (2.4)

The posterior PDF (2.3) summarizes all available information on uncertain parameters Θ after the data113

have been collected. In most cases, the posterior PDF does not admit a closed-form expression. Moreover, the114

model evidence is often a multidimensional integral which is computationally expensive to evaluate. In this115

context, Markov Chain Monte Carlo (MCMC) methods are widely used for drawing samples from the posterior116

distribution, without computing the model evidence [5, 6]. Such methods aim at constructing an ergodic Markov117

chain
(
Θ(τ)

)
τ∈N

whose invariant distribution is the posterior distribution, which writes:118

π(θ(τ+1)|y) =
∫
Dθ

π(θ(τ)|y)K(θ(τ),θ(τ+1))dθ(τ) (2.5)

where K(θ,θ′) is the density of the transitional distribution from the state θ(τ) of the chain
(
Θ(τ)

)
τ∈N

to119

the state θ(τ+1). A sufficient condition for Eq.(2.5) to apply is the so-called detailed balance condition, which120

expresses the time-reversibility of the Markov chain:121

π(θ(τ)|y)K(θ(τ),θ(τ+1)) = π(θ(τ+1)|y)K(θ(τ+1),θ(τ)) (2.6)

This condition is generally verified for most MCMC algorithms, such as the well-known Metropolis-Hastings122

algorithm [7, 8], which constitutes the cornerstone of MCMC.123
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2.2. The BUS framework124

2.2.1. Structural Reliability problems125

The BUS framework, initially introduced in [25], consists in reformulating the classical Bayesian updating126

problem presented in Section 2.1 into a Structural Reliability (SR) problem. SR methods aim at estimating the127

probability of rare events [27, 46]. Such events are usually described in terms of a limit state function (LSF)128

h : Dx −→ R, whose values are classifying safety and failure domains Ds, Df respectively, in the space Dx of129

the random parameters X of the reliability problem:130

Ds = {x ∈ Dx | h(x) > 0} (2.7)

Df = {x ∈ Dx | h(x) ≤ 0}

The main goal of SR methods is to estimate the failure probability Pf = P(h(X) ∈ Df ), which can be written131

as the following integral if X admits a density ρ(x):132

Pf =

∫
Dx

1Df
(x)ρ(x)dx (2.8)

where 1A is the indicator function of A ⊂ Dx.133

The integral which defines the probability (2.8) can not be solved analytically in the general case. The134

Rejection Sampling (RS) method aims at estimating Pf by Monte Carlo simulation:135

P̂f =
1

N

N∑
n=1

1Df
(x(n)) (2.9)

where (x(1), . . . ,x(N)) are samples drawn from the distribution of the parameters X. The accuracy of this136

estimate may be measured by computing the Coefficient of Variation (CoV) of P̂f , which is given by:137

CoV
[
P̂f

]
=

√√√√1− P̂f

N P̂f

(2.10)

It appears from Eq. (2.10) that such direct Monte Carlo estimation may become inefficient when failure proba-138

bilities are small. Indeed, the required number of samples to obtain a target CoV dramatically increases when139

the failure probability is decreasing.140

In this context, several alternative SR methods have been developed in order to provide more efficient141

estimations of failure probabilities, such as First Order Reliability Method (FORM) [28], importance sampling142

[47], or Subset Simulation (SuS) [29]. One will focus on the latter method in the present paper.143
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2.2.2. BUS framework formulation144

Keeping the notations introduced in Section 2.1, let p : Ω −→ Dp = [0, 1] a random variable uniformly145

distributed on [0, 1] (i.e. p ∼ U ([0, 1])), which is assumed to be independent from the parameters Θ. The BUS146

framework proposes to consider the parameters (Θ, p) which take values in the augmented space Dθ × Dp, as147

well as the failure event F ⊂ Dθ ×Dp defined by:148

F = {(θ, p) ∈ Dθ ×Dp | p ≤ cL(θ;y)} (2.11)

where c > 0 is a constant, chosen such that cL(θ;y) ≤ 1, ∀θ ∈ Dθ. The choice of such constant will be detailed149

in further sections.150

It has been demonstrated in [25] that the posterior PDF π(θ|y) given in Eq. (2.3) rewrites as follows:151

π(θ|y) = 1

Pf

∫
Dp

1F (θ, p)ρ(θ)dp (2.12)

where Pf is the failure probability given by:152

Pf = P((Θ, p) ∈ F ) =

∫
Dθ

∫
Dp

1F (θ, p)ρ(θ)dpdθ (2.13)

Thus, Eqs. (2.12) and (2.13) ensure that sampling from the posterior distribution is tantamount to solving the153

reliability problem in the augmented space Dθ ×Dp with the LSF given by [25]:154

h(θ, p) = p− cL(θ;y) (2.14)

Moreover, it is worth noting that the failure probability Pf is directly linked to the model evidence given by Eq.155

(2.4). Indeed, rewriting the integral in Eq. (2.13) yields:156

Pf = c

∫
Dθ

L(θ;y)ρ(θ)dθ = cZ (2.15)

2.3. BUS and subset simulation157

2.3.1. Formulation158

Subset Simulation (SuS) [29] is a widely used SR method which enables to efficiently estimate small failure159

probabilities in high-dimensional random variable spaces. The main idea of SuS consists in expressing the rare160

event F in Eq. (2.11) as an intersection of nested intermediate events Fr ⊂ · · · ⊂ F1 ⊂ F0, where F0 is the161

certain event (i.e. P(F0) = 1) and Fr = F . In this framework, the failure probability in Eq. (2.13) rewrites:162

Pf = P

(
r⋂

i=0

Fi

)
=

r∏
i=1

P(Fi|Fi−1) (2.16)
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Thus, the failure probability Pf is expressed as a product of larger conditional probabilities, which can be163

more efficiently estimated than a single small probability. Following [29] and [30], the intermediate events are164

defined by using a sequence of threshold values 0 = hr < · · · < h1 < h0 = +∞:165

Fi = {(θ, p) ∈ Dθ ×Dp | hl(θ, p) ≤ hi } (2.17)

where hl(θ, p) is a modified form of the LSF function h(θ, p) given by Eq. (2.14):166

hl(θ, p) = log (p)− log (c)− log (L(θ)) (2.18)

where the dependence to data y of L will be omitted for the sake of concision.167

Such LSF formulation has been introduced in [30] in order to ensure smooth transitions between intermediate168

events, and therefore to improve numerical stability of SuS within BUS [37].169

The threshold values (hi)1≤i≤r are chosen so that the corresponding conditional probabilities (P(Fi|Fi−1))1≤i≤r170

are equal to a value Pt in average, usually chosen as Pt = 10% [29, 48, 30]. In this way, the estimation of the171

probabilities (P(Fi|Fi−1))1≤i≤r through Monte Carlo estimation is sensibly more efficient than the direct estima-172

tion of Pf . The generation of samples splits into two parts: firstly, samples are drawn from the prior distribution173

in order to estimate the probability P(F1|F0) through direct Monte Carlo (see Eq. (2.9)). Next, for each174

i ∈ {1, . . . , r}, samples conditional to intermediate event Fi are generated with MCMC sampling, as described175

by Algorithm 1. Finally, samples of the last SuS level correspond to samples of the posterior distribution of176

parameters Θ. It is important to underline that the model evidence (see Eq. (2.4)) is available as a by-product177

of the SuS procedure, due to the relation given in Eq.(2.15). Then, unlike classical MCMC sampling methods178

which provide posterior samples by avoiding to compute the model evidence, the SuS procedure applied in the179

BUS framework enables to both draw posterior samples and compute the model evidence.180

2.3.2. MCMC sampling within SuS181

In this paper, MCMC sampling (Step 5 of Algorithm 1) will be performed by using the adaptive Conditional182

Sampling (aCS) algorithm introduced in [49]. The samples are generated in an underlying standard normal183

probability space, also known as U-space, by considering an isoprobabilistic transform T : Dθ × Dp −→ Du =184

Rm+1, which maps the random vector (Θ, p) to a standard normal uncorrelated random vector U . Such mapping185

can be performed by using the Nataf [50, 51] or Rosenblatt [52] transform. Then, considering a Markov chain186

state u ∈ Du, a candidate sample v ∼ Nm+1(u, I) is drawn, by imposing that u and v are jointly Gaussian with187

component-wise cross-correlation coefficients equal to ρ ∈ [0, 1]. This correlation parameter is adapted on the188

fly through MCMC sampling, in order to obtain an optimal Markov chain acceptance rate. For further details,189

the reader is referred to [49].190
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Algorithm 1: Subset Simulation in the BUS framework [29, 30].

Input: Number of samples per subset K, probability of intermediate subsets Pt, BUS normalizing
constant c

Output: Samples (θ(i,k), p(i,k))(i,k)∈{0,...,r}×{1,...,K}, failure probability Pf

Initialization;

1. Draw K samples (θ(0,k), p(0,k))k∈{1,...,K} from the prior distribution of (Θ, p) ;
2. Set i = 0 and p0 = 1;
while hi > 0 do

3. Set i = i+ 1 ;

4. Sort (θ(i−1,k), p(i−1,k))k∈{1,...,K} with respect to the LSF values (hl(θ
(i−1,k), p(i−1,k)))k∈{1,...,K} ;

4. Set hi as the Pt-percentile of the set (θ(i−1,k), p(i−1,k))k∈{1,...,K} with respect to the LSF values

(hl(θ
(i−1,k), p(i−1,k)))k∈{1,...,K};

if hi < 0 then

Set hi = 0 and Pi =
n
K , where n = Card

{
k ∈ {1, . . . ,K}

∣∣∣ hl(θ(i−1,k), p(i−1,k)) ≤ max(hi, 0)
}
;

else
Set Pi = Pt ;

end

5. Generate the samples (θ(i,k), p(i,k))k∈{1,...,K} by using MCMC. n Markov chains of length K/n

are generated from the seeds (θ(i−1,k), p(i−1,k))k∈{1,...,n} ;

end
6. Set r = i and Pf =

∏r
j=0 Pj ;

2.3.3. Choosing the BUS normalizing constant191

Lastly, the choice of the BUS normalizing constant c plays a crucial role in the generation of posterior192

samples with the SuS procedure. The choice c−1 = Lmax = maxθ∈Dθ
L(θ) clearly constitutes the optimal193

choice. However, such value is not known in advance in general. Moreover, evaluating the likelihood function194

may require an important computational cost, which makes Maximum Likelihood Estimate (MLE) potentially195

intractable. On the one hand, if c−1 ≤ Lmax, samples produced by BUS do not follow the posterior distribution196

[25, 53]. On the other hand, if c−1 ≥ Lmax, the efficiency of the BUS procedure may be affected, since the failure197

probability in Eq. (2.13) is proportional to c.198

In this context, adaptive approaches have been proposed [54, 30] in order to learn the constant c during the199

SuS procedure. More specifically, such approaches consist in taking c as the largest likelihood within the already200

generated samples, and updating it when larger likelihood values are computed.201

3. Surrogate modeling202

3.1. Polynomial Chaos203

3.1.1. Formulation204

Keeping the notations introduced in Section 2, one supposes that the computational model takes scalar values,205

i.e. M : Dθ −→ R. The following can be easily extended to the case of vector valued models. Furthermore,206
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the random vector Θ : Ω −→ Dθ is supposed to have independent components, denoted by (Θ1, . . . ,Θm).207

Polynomial Chaos formulations for dependent input random variables can be found in [55, 56]. The marginal208

parameter space associated to Θi will be denoted by Dθi , so that Dθ =
∏m

i=1 Dθi .209

The PDF ρi of each component Θi enables to define a Hilbert space, namely the space L2(ρi) of functions210

defined on Dθi which are square integrable with respect to ρi:211

L2(ρi) =

{
ϕ : Dθi −→ R

∣∣∣∣∣ E [ϕ(Θi)
2
]
=

∫
Dθi

ϕ(θ)2ρi(θi)dθi < +∞

}
(3.1)

This space is equipped with the following inner product:212

⟨ϕ|ψ⟩ρi =

∫
Dθi

ϕ(θi)ψ(θi)ρi(θi)dθi = E [ϕ(Θi)ψ(Θi)] (3.2)

for all ϕ, ψ ∈ L2(ρi). Then, it is possible to construct a Hilbert basis of L2(ρi) formed by univariate polynomials213

(ψ
(i)
j )j∈N which are orthonormal with respect to ρi [57, 58]. Such construction has been originally introduced214

for Gaussian random variables by Wiener in [59], and then generalized to other distributions in [58] and [60].215

In general, it is possible to construct a Hilbert basis of polynomials for a given probability distribution, under216

some conditions precised in [61].217

Moreover, let L2(ρ) be the Hilbert space of functions defined on Dθ which are square integrable with respect218

to ρ. This space is equipped with the inner product defined by ⟨Φ|Ψ⟩ρ =
∫
Dθ

Φ(θ)Ψ(θ)ρ(θ)dθ = E [Φ(Θ)Ψ(Θ)].219

Knowing that the components (Θ1, . . . ,Θm) are mutually independent, their joint PDF π can be expressed as220

the tensor product of the marginals PDF:221

ρ(θ) =

m∏
i=1

ρi(θi) (3.3)

for all θ = (θ1, . . . , θm) ∈ Dθ. This ensures that L2(π) is isomorphic to the tensorial product of Hilbert spaces222

(L2(ρi))1≤i≤m:223

L2(ρ) ∼=
m⊗
i=1

L2(ρi) (3.4)

Consequently, the following multivariate polynomials define a hilbertian basis of L2(ρ):224

Ψα(θ) =

m∏
i=1

ψ(i)
αi
(θi) (3.5)

where the multi-index notation α = (α1, . . . , αm) ∈ Nm has been used. Such polynomials are orthonormal225

with respect to π (i.e. ⟨Ψα|Ψβ⟩ρ = δαβ, where δαβ is the multi-index version of the Kronecker delta), and226

any function which belongs to L2(ρ) can be expanded in the basis (Ψα)α∈Nm . Assuming that M ∈ L2(ρ), the227

so-called Polynomial Chaos Expansion (PCE) [57] of M reads:228

M(Θ) =
∑

α∈Nm

aαΨα(Θ) (3.6)
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where (aα)α∈Nm are the PCE coefficients. For each multi-index α ∈ Nm, the coefficient aα can be interpreted229

as the coordinate of the orthogonal projection of M(Θ) on the vector space spanned by Ψα:230

aα = ⟨M(Θ)|Ψα⟩ρ = E [M(Θ)Ψα(Θ)] (3.7)

3.1.2. Calculation of PC coefficients231

For computational purposes, the PCE representation (3.6) is truncated by using a finite set A ⊂ Nm of232

multi-indices:233

M(Θ) ≈ M̂PC(Θ) =
∑
α∈A

aαΨα(Θ) (3.8)

Re-indexing the multi-indices {α ∈ A} by {1, . . . , P} with P = Card(A) yields the following vector notation:234

M̂PC = a⊺Ψ (3.9)

where a = (a1, . . . , aP ) and Ψ = (Ψ1, . . . ,ΨP ). The PCE coefficients a can be computed by using non-intrusive235

methods, from point-wise model evaluations. This refers to projection methods [62, 63], stochastic collocation236

[64] or regression [65, 66, 67]. In the context of regression approaches, Ordinary Least Squares (OLS) are usually237

considered [65, 66]. Given an experimental design (ED) X = (θ(1), . . . ,θ(K)) and the corresponding model238

outputs Y = (M(θ(1)), . . . ,M(θ(K))) such approaches aim at solving the following minimization problem:239

a = argmin
a∗∈Rp

∥Y −Aa∗∥2 (3.10)

where A is the K × P matrix with coefficients Aij = Ψj(θ
(i)), and ∥ · ∥ is the Euclidean norm of RP , i.e.240

∥x∥2 =
∑P

i=1 x
2
i for x = (x1, . . . , xP ) ∈ RP . In most cases, PCE representations are compressible, in the sense241

that only few terms are significantly contributing to the variance of the model response. Then, compressive242

sensing [68] techniques have been recently used in the PCE framework in order to construct sparse PCE with243

ED of limited sizes. One refers to [69] for an recent in-depth review and benchmark on sparse PCE. Finally, once244

PCE coefficients are computed, the generalization error of the truncated PCE defined by E
[
(M(Θ)− M̂(Θ))2

]
245

may be estimated by using cross-validation techniques [70]. In this context, the Leave One Out (LOO) error is246

commonly used as an estimate of the PCE generalization error (see [67] for further details).247

3.2. Polynomial Chaos-based Kriging248

Polynomial Chaos Kriging (PCK) [42, 43] consists in a Kriging [71] whose trend is given by a PCE:249

M(θ) ≈ M̂PCK(θ) =
∑
α∈A

aαΨα(θ) + σ2Z(θ) (3.11)
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where
∑

α∈A aαΨα(θ) is a truncated PCE, σ2 the PCK variance and Z a zero-mean stationnary Gaussian250

process with a correlation kernel RZ(θ,θ
′;η).251

The interest of such formulation is twofold: the trend provides a global approximation of the model response252

on the support Dθ of input parameters, whereas the Gaussian process enables to catch the local variability of the253

model response. Furthermore, the prediction variance associated to the Gaussian process provides a local error254

measure for PCK model predictions, which can be used as an indicator of the sparsity of the ED. Indeed, Kriging255

is an exact interpolating method, in the sense that µŷ(θ) = M(θ) and σŷ(θ) = 0, ∀θ ∈ X , where µŷ(θ) and256

σŷ(θ) are respectively the Kriging prediction mean and standard deviation at the point θ. Thus, the prediction257

variance is low near ED points and becomes important in unexplored zones of the parameter space. Such local258

indicator has been exploited in the framework of adaptive surrogate modeling [39, 43], in order to enrich EDs.259

Note also that a global error measure consisting in a formulation of LOO error is available for Kriging surrogates260

[72].261

Moreover, it is worth noting that global surrogates such as PCE do not dispose of local error measures as262

simple and direct as Kriging prediction variance, but rather global error measures, such as the LOO error [67].263

The PCK formulation then provides a simple way to assess the local error of PCE predictions. It is also worth264

noting that recent work of Sudret & Marelli [73] provided a local error estimate for PCE surrogates, based on265

bootstrap resampling.266

The setup of a PCK surrogate model requires the calculation of the PC coefficients a = (aα)α∈T as well267

as Kriging variance σ2 and correlation hyper-parameters η. In this context, Schöbi et al [42] propose two268

computational approaches, namely Sequential PCK (S-PCK) and Optimal PCK (O-PCK). The first approach269

consist in constructing a PCE surrogate by using the LAR algorithm [67], and then using this PCE as the trend270

of a universal Kriging model, whose parameters are calibrated through Maximum Likelihood Estimation (MLE)271

[74]. The second approach aims at iteratively constructing a PCK by adding polynomials one-by-one to the272

trend, and selecting the surrogate which minimizes a LOO error estimate. For further details, the reader is273

referred to [42].274

4. Bayesian updating using adaptive PCK within subset simulation275

4.1. General framework276

The proposed Bayesian updating methodology aims at constructing a PCK surrogate which is enriched in277

an adaptive way throughout the SuS procedure described by Algorithm 1. Keeping the notations introduced278

in the previous sections, an initial ED X (0) = (θ1, . . . ,θK0) of size K0 is defined. Then, the log-likelihood279

L(θ) = log (L(θ;y)) in Eq. (2.18) is approximated by a PCK surrogate by using the ED X (0):280

L(θ) ≈ L̂(θ) =
∑
α∈T

aαΨα(θ) + σ2Z(θ) (4.1)
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where the polynomials (Ψα)α∈T are chosen to be orthonormal with respect to the prior density ρ(θ).281

This surrogate model aims at approximating the global behavior of the log-likelihood on the support of the282

prior distribution. The PCE trend is built by using the LAR-based procedure introduced in [67], in order to283

provide sparse PCE which can be trained with an ED of small size (typically with K0 ∼ 101−102). Substituting284

the full log-likelihood by its surrogate in the modified LSF expression given by Eq. (2.18) yields a surrogate285

LSF, given by:286

ĥ(θ, p) = log (p)− log (c)− L̂(θ) (4.2)

Firstly, given a prescribed number N of samples per subset, the Monte Carlo Simulation (MCS) step of SuS is287

performed, by using the surrogate LSF instead of the full one. In this way, samples
{
(θ(0,k), p(0,k))

}
1≤k≤K

are288

generated, and the corresponding log-likelihood values
{
L̂(θ(0,k))

}
1≤k≤K

are computed. Then, a critical step289

is the calculation of an initial value of the BUS normalizing constant c. In the adaptive BUS-SuS approach290

introduced in [30], this value is set as the largest log-likelihood of the generated samples. In the framework291

of the proposed approach, a modification of this approach is required: indeed, samples drawn through Monte292

Carlo sampling which are too far away from the ED X (0) may lead to inaccurate PCK predictions. This implies293

to potentially sensibly underestimate the optimal value copt = maxL, or conversely, to strongly overestimate it294

and altering the efficiency of the SuS procedure, as mentioned in Section 2.3.3. Consequently, we propose to set295

the initial value of c as the maximum likelihood on a subset of S(0) =
{
θ(0,k)

}
1≤k≤K

, formed by points which296

are not too far away from X (0). At this point, the question is to define a criterion for filtering points whose297

predictions are deemed to be not accurate.298

A quite natural choice proposed in [37] or [75] is based on the convex hull of the points of the ED. The convex299

hull of X (0), denoted by Conv(X (0)) is the smallest convex set which contains the points of X (0). If the ED300

points are sufficiently dense, such set may be seen as the ”representativeness domain” of the trained surrogate301

model. Then, the initial constant c may be set as the maximum surrogate likelihood on this set:302

c = max
θ∈K(0)

exp(L̂(θ)) (4.3)

where K(0) = S(0) ∩Conv(X (0)). The Quickhull algorithm [76] will be used for computing the convex hull, as in303

[75, 37].304

Next, at SuS level i ≥ 1, the surrogate LSF ĥl is used for setting the threshold value hi (see Algorithm 1).305

Subsequently, n Markov chain seeds
{
(θ(i−1,k), p(i−1,k))

}
1≤k≤n

are selected according to surrogate LSF values.306

We propose to enrich the ED X (i−1) of the surrogate log-likelihood L̂, by adding Kt ≥ 1 new points, based on a307

point enrichment criterion, which will be described in Section 4.2. A new PCK is then trained on the enriched308

ED X (i). The adaptive Conditional Sampling [49] procedure is then launched by using the surrogate LSF, in309

order to generate the samples
{
(θ(i,k), p(i,k))

}
1≤k≤K

of the current subset. Then, the value of the constant c is310

updated at the end of the SuS stage i. For the same reasons underlined for the MCS step, this constant is the311

maximum likelihood on the set defined by K(i) = Conv(X (i)) ∩
{
θ(i,k)

}
1≤k≤K

, i.e. as c∗ = max(c, ci), where312
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ci = maxθ∈K(i) exp(L̂(θ)). Such update is a priori modifying the definition of the current subset Fi (see Eq.313

(2.17)) since the latter explicitely depends on the scaling constant. However, as derived in [30], updating the314

scaling constant c does not affect the distribution of the samples of Fi if its corresponding threshold value hi is315

adjusted as follows:316

h∗i = hi + log
c

c∗
(4.4)

Moreover, we also follow the procedure of [30] aiming at decreasing the dependence of the samples of each subset.317

Knowing that for a fixed θ ∈ Dθ, any p ∈ Dp which satisfies log (p) ≤ log (c) − L(θ) + hi lies in the subset Fi,318

the p component of a sample (θ, p) ∈ Fi may be resampled by drawing p∗ ∼ U([0,min(1, c exp(hi)L(θ)])). This319

enables to increase the performance of the BUS procedure, since the rejection of a sample during the MCMC320

sampling phase implies to duplicate an existing sample.321

Then, the SuS procedure is continued until reaching the last subset, i.e. until hi ≤ 0.322

4.2. Point enrichment step323

In the framework of active learning structural reliability methods [77, 39, 78], learning functions are used in324

order to measure the information gain related to quantities of interest provided by adding a new point to the325

ED. In this context, a wide range of functions has been developed, including the Expected Feasibility Function326

(EFF) [77], the so-called U -function [39], the Fraction of Bootstrap Replicates (FBR) [73] or the constrained327

min-max function [78].328

The U -function introduced in [39] is particularly well suited for Kriging-based approaches, by focusing on329

the accuracy on the sign of the surrogate LSF: sample points with non-positive LSF values are classified as330

failure points, which traduces in the BUS framework by points which are distributed according to the posterior331

distribution. Therefore, the potentially important uncertainties on predictions at points which are close to the332

Limit State Surface (LSS) given by ∂Dj = {(θ, p) ∈ Dθ×Dp| hl(θ, p) = 0} can cause them to change sign, which333

may lead to misclassification. The U -function aims at selecting points in zones where points are announced to334

be close to the LSS, and/or where Kriging prediction variance is important [39]. This function is given by:335

U(θ, p) =
|µĥ(θ, p)|
σĥ(θ, p)

(4.5)

where µĥ(θ, p) and σĥ(θ, p) are, in turn, the prediction mean and variance of the surrogate LSF given by Eq.336

(4.2). Note that, for a fixed value of c and p ∈ Dp, ĥ(θ, p) is a Gaussian random variable:337

ĥ(θ, p) ∼ N
(
log (p)− log (c)− µL̂(θ), σ

2
L̂
(θ)
)

(4.6)

where µL̂(θ) and σL̂(θ) are the prediction mean and variance of the surrogate log-likelihood (4.1). Therefore,338
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in the framework of the proposed approach, the U -function (4.5) rewrites:339

U(θ, p) =
| log (p)− log (c)− µL̂(θ)|

σL̂(θ)
(4.7)

Themisclassification probability of a point (θ, p) ∈ Dθ×Dp is defined by the probability of having µĥ(θ, p) > 0340

and h(θ, p) ≤ 0 or vice-versa. This probability may be expressed as follows [79, 43]:341

Pm(θ, p) = Φ (−U(θ, p)) = Φ

(
−
| log (p)− log (c)− µL̂(θ)|

σL̂(θ)

)
(4.8)

Such probability is bounded between 0 and 0.5. The case Pm(θ, p) → 0 corresponds to points whose prediction342

variance is low, and/or points which are far away from the LSS. Conversely, the case Pm(θ, p) → 0.5 corresponds343

to “dangerous” points, which are close to the LSS and/or whose prediction variance is important.344

In the case where only one enrichment point is needed, the latter may be selected as the point which345

maximizes the misclassification probability (4.8). In the case of multiple point enrichment, clustering techniques346

[45] applied in the framework of adaptive surrogate modeling for SR analysis [43, 41, 80] enable to efficiently347

selecting new points. In this paper, the weighted k-means algorithm [45] is considered.348

Recall that at SuS stage i ≥ 1, we dispose of n Markov chain seeds
{
(θ(i−1,k), p(i−1,k))

}
1≤k≤n

. As proposed349

in [43, 41], the weights considered for clustering are set as the corresponding misclassification probabilities350 {
Pm(θ(i−1,k), p(i−1,k))

}
1≤k≤n

. However, the surrogate log-likelihood L̂(θ) is defined on the physical parameter351

space Dθ, and then does not depend on values of p ∈ Dp. Hence, performing a clustering in the augmented352

space Dθ × Dp may lead to redundant enrichment points, since the obtained clusters may lie on a line of353

the form {θ} × Dp. Consequently, we propose to perform weighted k-means clustering on the candidate set354

given by
{
θ(i−1,k)

}
1≤k≤n

by using the same misclassification probabilities
{
Pm(θ(i−1,k), p(i−1,k))

}
1≤k≤n

as355

weights. This is tantamount to projecting the seeds onto the parameter space Dθ by using the canonical356

projection Dθ × Dp −→ Dθ. In this way, the centroids
{
θ∗

(j)
}
1≤j≤Kt

of the Kt obtained clusters are selected357

in order to enrich the ED of the surrogate log-likelihood L̂(θ). The updated ED of L̂(θ) is then given by358

X (i) = X (i−1) ∪
{
θ∗

(j)
}
1≤j≤Kt

.359

4.3. Stopping criterion360

The stopping criterion of the surrogate model learning phase may be defined based on the variability of361

estimated failure probabilities [74], the stability of the estimated failure domain [43, 78] or learning functions362

[39, 73]. In this paper, we use the stopping criterion based on the U -function introduced in [39]. At SuS stage363

i, this criterion writes:364

min
(θ,p)∈S(i)

0

U (θ, p) ≥ ϵU (4.9)
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where S(i)
0 is the set formed by the nMarkov chain seeds selected for the i-th subset (see Algorithm 1), and ϵU is a365

threshold value. Following [39], we choose the value ϵU = 2, which has provided satisfactory accuracy in several366

application examples. Choosing this value is tantamount to impose a maximal misclassification probability367

of Φ(−2) ≈ 0.023. Notwithstanding its widespread use, it should be underlined that such value may be too368

conservative in some cases, for complex LSF functions and/or for high dimensionalities [41]. However, the369

search for an optimal stopping criterion is out of the scope of this paper, and the reader is referred to [41] for370

further details about recent improvement strategies.371

4.4. Summary of the proposed method372

The proposed approach, which will be named BUS-PCK in the following sections, is summarized hereafter:373

1. An initial ED X (0) of size K0 is selected, in order to build a PCK surrogate L̂ ≈ L of the log-likelihood374

(Eq. (4.1)). This induces the definition of a surrogate LSF ĥ (see Eq. (4.2)).375

2. Level 0 of SuS procedure (MCS): K samples are drawn from the prior distribution, and the corresponding376

surrogate LSF values are computed.377

3. Initialize BUS normalizing constant c from the generated sample according to Eq. (4.3). This implies the378

computation of the convex hull of MCS samples with the Quickhull algorithm [76].379

4. At SuS level i ≥ 1:380

a. The threshold value hi of the current subset Fi is computed as the Pt-percentile of the surrogate LSF381

values on the samples of level i− 1 (with Pt = 10%, following [29, 30]). The intermediate probability382

Pi = P(Fi|Fi−1) is then computed (see Algorithm 1).383

b. Learning phase of the PCK surrogate (see Section 4.2): Kt points are added to the ED X (i−1) at384

previous SuS level, by using the seeds (i.e. the PiK samples which are lying in Fi) as candidate385

points. If the stopping condition of the learning phase is met (see Section 4.3), the PCK surrogate386

model is deemed to be sufficiently accurate near posterior high-probability zones.387

c. Generation of conditional samples: the population of the next SuS subset is generated by using the388

aCS MCMC algorithm [49], from the previously identified seeds.389

d. Update the BUS normalizing constant c and the threshold value hi according to Section 4.1.390

e. Convergence of SuS procedure: if hi ≤ 0, the SuS procedure is stopped, and the failure probability Pf391

is computed as described in Algorithm 1. The samples of the last SuS level correspond to posterior392

samples.393

5. Set r = i and compute the failure probability Pf =
∏r

j=1. Posterior samples are given by the projection394

on Dθ of the K samples which lie in the subset F = Fr. The model evidence is computed as Z = Pf/c.395

The flowchart of the proposed approach is shown in Fig. 1.396
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Figure 1: Flowchart of the proposed approach.

5. Case studies397

In this section, three case studies of increasing complexity are presented for assessing the performance of398

the proposed Bayesian updating approach, which will named BUS-PCK in the following. The PCK surrogates399

will be constructed by using the Optimal PC-Kriging (O-PCK) approach described in [42]. The PCE trends400 ∑
α∈T aαΨα will be constructed by using the classical isotropic truncation sets given by:401

Tq =

{
α ∈ Nm

∣∣∣∣∣ ∥α∥1 =

m∑
i=1

αi ≤ q

}
(5.1)
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where q ≤ 10 is the PCE degree. Sparse PCE are constructed with these truncation sets by using the LAR-402

based approach introduced in [67]. Moreover, we consider the Matèrn kernel with shape parameter ν = 5
2 for all403

Kriging Gaussian processes. This kernel is given by:404

R(∥θ − θ′∥;η) =
m∏
i=1

1

2ν−1Γ(ν)

(√
2ν

|θi − θ′i|
ηi

)ν

Kν

(√
2ν

|θi − θ′i|
ηi

)
(5.2)

where Γ is the Euler’s Gamma function and Kν is the modified Bessel function of the second kind. In this405

context, we use the software UQLab [81] which provides an implementation of PCK.406

The PCK approximation L̂(θ) of the log-likelihood L(θ) induces the definition of a surrogate posterior PDF:407

408

π̂(θ) =
ρ(θ) exp(L̂(θ))

Ẑ
(5.3)

where Ẑ is the surrogate model evidence:409

Ẑ =

∫
Dθ

ρ(θ) exp(L̂(θ))dθ (5.4)

In order to assess the accuracy of the approximation of the posterior PDF, measures taken from information410

theory are often considered. Indeed, the Kullback-Leibler Divergence (KLD) [82] is usually used for measuring411

the similarity between the surrogate and the true posterior PDF [32], and is defined by:412

DKL(π̂||π) =
∫
Dθ

π̂(θ) log

(
π̂(θ)

π(θ)

)
dθ (5.5)

This measure does not define a distance in the mathematical sense, especially due to the fact that it is not413

symmetric, i.e. DKL(π̂||π) ̸= DKL(π||π̂). A symmetrized and somewhat regularized version of KLD is given by414

the Jensen-Shannon Divergence (JSD), defined by [83]:415

DJS(π̂||π) =
1

2
(DKL(π̂||π̃) +DKL(π||π̃)) (5.6)

where π̃ = 1
2 (π̂ + π). In this paper, we will use the average Jensen-Shannon Divergence (aJSD) introduced in416

[23], given by:417

DJS(π̂||π) =
1

m

m∑
i=1

DJS(π̂i||πi) (5.7)

where π̂i and πi are the i-th surrogate and true posterior marginal PDF. This measure enables to summarize418

the accuracy of the approximation of the posterior PDF in a single scalar, which is computationally affordable419

since it is based on an average of univariate integrals.420

In the following sections, one will consider K = 5000 samples per subset, based on [26, 30]. Indeed, in the421

framework of the numerical examples presented hereafter, such sample size has been observed to be sufficient for422

exploring the posterior distribution with the SuS procedure [26, 30]. In the general case, when combining the SuS423
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procedure with surrogate models, it might be possible to consider an “overkill” sample size (i.e. K ∼ 105− 106)424

[84], in order to ensure that all posterior high-probability regions are discovered. The intermediate probability425

Pt is chosen as Pt = 10%, based on [30]. The SuS procedure described in Section 2.3 is first applied by using426

the full model, and the corresponding results will be considered as a reference. Regarding to the proposed427

approach, varying initial ED sizes K0 and ratios κ = Kt/K0 will be considered. Moreover, 50 replications of the428

calculations will be produced.429

5.1. One-dimensional analytical function430

5.1.1. Problem description431

The first case study focuses on a one-dimensional analytical function, which presents a combination of a432

global trend and a localized behavior:433

M(θ) = 1 + cos

(
θ

2

)
+ 3 exp(−4(θ − 2)2) (5.8)

The first two terms may be well approximated by a low-order PCE, whereas the third term induces a peak which434

requires a sensibly high PCE degree for providing an accurate approximation. Hence, such behavior would make435

classical PCE-based Bayesian inversions fail, since global approximations are not sufficient here to accurately436

mimic the model near the high-likelihood zone (around θ = 2). One considers a random variable Θ with prior437

N (0, 1), an observation data y = M(2) = 4.54 and an additive Gaussian discrepancy model with noise variance438

σ = 0.4. This leads to the following likelihood function:439

L(θ; y) = 1√
2πσ

exp

(
− 1

2σ2
(M(θ)− y)2

)
(5.9)

5.1.2. Posterior distribution440

First, the proposed methodology is illustrated in Fig.2, for the case K0 = 20 and κ = 0.2. At level 0 of SuS441

procedure, a PCK surrogate model of the log-likelihood is built on the initial ED X (0) of size K0. The points442

of X (0) are sensibly dense around the prior mean θ = 0, whereas the log-likelihood peak is located near θ ≈ 2.443

As shown in Fig.2a, the predictions of the PCK surrogate for θ ≥ 2 are sensibly uncertain and overestimate the444

log-likelihood, which leads to indicate a wrong location of the posterior high-probability zone. Then, at SuS level445

1, the point enrichment step described in Section 4.2 enables to select Kt = κK0 new points Xnew =
{
θ(i)
∗
}
1≤i≤4

446

to add to the ED, based on the misclassification probability given in Eq.(4.8). These points locate in the vicinity447

of the log-likelihood peak, near θ ≈ 2, as shown by the white diamonds in Fig. 2. Then, the PCK surrogate448

model is updated, by using the ED X (1) = X (0) ∪ Xnew. The predictions of the updated surrogate model are449

sensibly more accurate near the log-likelihood peak, as underlined by Fig.2b.450

Then, the convergence of JSD with respect to the effective number of model calls denoted by E[Nc] is shown451

in Fig.3. For a single run, the number of model calls is given by Nc = K0(1 + nSκ), where nS is the number452
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(a) Before point enrichment (b) After point enrichment

Figure 2: 1D analytical function: illustration of the proposed method at SuS level 1

of subsets required for stopping the SuS procedure. For moderate ED sizes K0 ≈ 50, the proposed approach453

is more efficient than its non-adaptive counterpart (κ = 0), since the JSD for κ ≥ 0.1 is at least one order of454

magnitude smaller than that for κ = 0. In the case of larger EDs, JSD values for κ ∈ {0, 0.1, 0.2} are closer,455

which can be explained by the fact that more informative points (i.e. with high likelihood) are drawn during456

the initial sampling step aiming at constructing the initial ED of the surrogate model. For a fixed amount of457

model calls, the JSD decreases when κ increases, though. This underlines the efficiency of the point enrichment458

step, which enables to better focus on high-likelihood zones for enriching the surrogate model.459

Figure 3: 1D analytical function: convergence of JSD with respect to the average number of model calls E[Nc].

The posterior PDF obtained with the reference calculations and the proposed approach are shown in Fig. 4.460

Visual inspection of PDF confirms the analysis of the convergence of JSD, since the reference posterior PDF is461

well approximated by its surrogate counterpart as the experimental size increases. Lastly, several QoI obtained462

from calculations, namely the effective number of model calls E[Nc], the posterior mean E[θ|y], the standard463

deviation
√
Var[θ|y], and the model evidence Z are summarized in Tab. 1. The corresponding relative errors464

ϵ = |χ−χref |/χref are given in brackets, in %. The results emphasize the efficiency of the BUS-PCK approach,465

since a satisfactory approximation of the posterior PDF is provided for E[Nc] = 100 model calls, which represents466
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a reduction of 99.3% of the full cost of the SuS procedure described in Section 2.3, namely 1.5 · 104 full model467

calls.468

Figure 4: 1D analytical function: prior and posterior PDF: (a) Kt/K0 = 0.1; (b) Kt/K0 = 0.5.

K0 Kt/K0 E[Nc] E[θ|y]
√
Var[θ|y] Z

BUS-PCK 20 0.1 24 1.938 (0.2) 0.213 (59.3) 0.028 (16.1)
20 0.5 40 1.954 (0.6) 0.147 (10.1) 0.037 (53.3)
50 0.1 60 1.944 (0.1) 0.168 (25.4) 0.025 (4.2)
50 0.5 100 1.942 (0.0) 0.138 (3.4) 0.025 (3.4)
100 0.1 120 1.941 (0.0) 0.148 (10.5) 0.024 (0.1)
100 0.5 200 1.942 (0.0) 0.134 (0.4) 0.024 (0.6)

Reference 15000 1.942 0.134 0.024

Table 1: 1D analytical function: posterior QoI, with relative errors in %.

5.2. Two degrees-of-freedom shear building469

5.2.1. Problem description470

The second case study was originally introduced in [85], and then studied in [30, 37, 25, 38], and involves471

a two degrees-of-freedom shear building, shown in Fig. 5. The problem consists in estimating the posterior472

inter-story stiffnesses of the structure, based on measurements of the eigen-frequencies of the structure.473

The inter-story stiffnesses are set as ki = Θikn for i ∈ {1, 2}, where kn = 29.7 · 106 N.m−1 and Θ1,Θ2474

21



Figure 5: Two degrees-of-freedom shear building

are random variables endowed with lognormal priors with modes 1.3 and 0.8, and standard deviations equal to475

1. The masses of the two stories are supposed to be deterministic, and are set as m1 = 16.531 · 103 kg and476

m2 = 16.131 · 103 kg. Two measured eigen-frequencies f̃ = (f̃1, f̃2) will be used for Bayesian updating, with477

f̃1 = 3.13 Hz and f̃2 = 9.83 Hz. The corresponding likelihood function writes:478

L(θ; f̃) = exp

(
−J(θ)

2σ2

)
(5.10)

where σ = 1/16 and J(θ) is the modal measure-of-fit function given by [85]:479

J(θ) =

2∑
i=1

µ2
i

(
fi(θ)

2

f̃2i
− 1

)2

(5.11)

with µ1 = µ2 = 1, and (fi(θ))i∈{1,2} are the eigen-frequencies obtained by solving the equation of motion for480

un-damped free vibration applied to the structure. This equation is given by:481

Mü+Ku = 0 (5.12)

where M =

m1 0

0 m2

 is the mass matrix and K =

k1 + k2 −k2
−k2 k2

 is the stiffness matrix, and u = (u1, u2)
⊺

482

the displacement vector.483

The posterior distribution of the parameters Θ = (Θ1,Θ2) is bi-modal with significantly distant modes484

[85, 37], which makes the problem difficult to solve when using classical MCMC sampling approaches.485

5.2.2. Posterior distribution486

The proposed approach is applied by considering K0 ∈ {20, 50, 100, 200} and κ ∈ {0, 0.1, 0.2, 0.5}.487

Fig. 6 illustrates the proposed approach in the framework of the previously presented mechanical problem,488

with K0 = 50 and Kt = 10. Firstly, an initial ED formed by samples drawn from the prior is defined, and the489

surrogate log-likelihood is subsequently trained. The first step of SuS procedure enables to identify PtK = 500490

seeds, to generate the population of the first subset. As shown in Fig. 6a, most of these seeds lie outside491
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(a) SuS level 1 (b) SuS level 2

Figure 6: Two DOF structure: misclassification probability of seeds and enrichment of the ED of the surrogate log-likelihood at
SuS levels 1 & 2.

the convex hull of the current ED. Moreover, the misclassification probability (see Eq. 4.8) of such seeds is492

sensibly important, which indicates that log-likelihood predictions are classifying posterior points outside of the493

ED convex hull, and/or predictions are significantly uncertain in such zones. The weighted k-means clustering494

proposed in Section 4.2 enables to select enrichment points (white diamonds in Fig. 6a) which are quite uniformly495

spaced outside from the convex hull of the current ED. The surrogate model is then updated, by using the new496

ED. As shown in Fig.6b, the ED convex hull has been enlarged, and the seeds of SuS level 2 are mostly lying497

in it, and form two clusters. Then, the point enrichment step proposes Kt new candidate points which are498

located in these clusters. In this way, the accuracy of predictions provided by the surrogate model is improved499

specifically in these zones, which correspond to the posterior support.500

Next, the convergence of aJSD (5.7) with respect to E[Nc] is shown in Fig. 7. The proposed methodology is501

significantly more efficient when κ > 0, since aJSD values for κ > 0 are about two orders of magnitude smaller502

than those for κ = 0, for a given ED size (see Fig. 7b). In the non-adaptive case (κ = 0), the aJSD is converging503

much more slower as the ED size increases. This is due to the fact that the posterior support is located in504

low-probability zones of the prior (see Fig. 6). Then, without adaptive point enrichment, a very large ED size505

K0 is required to draw a sufficient amount of informative points. In this context, the proposed point enrichment506

method based on clustering is well suited to the problem, since it allows to enrich the surrogate log-likelihood507

near the posterior high-probability zones, even in the case of a non-connected posterior support.508

Then, the contours of the posterior joint PDF obtained with reference calculations and the proposed approach509

for K0 = 200 and κ = 0.2 are shown in Fig. 8. The shape of the joint posterior is well approximated by the510

proposed approach, with a limited amount of model calls (∼ 102). Furthermore, the location of posterior modes511

is well reproduced. QoI related to left and right clusters of the identified posterior are summarized in Tab. 2 &512

3. An average number of model calls of E[Nc] = 320 is sufficient to provide an accurate approximation of the513

posterior PDF, which represents a reduction of about 98.4% of the total cost of 2 · 104 model calls required by514

using the full likelihood function.515
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Figure 7: 2 DOF structure: convergence of aJSD with respect to E[Nc].

Figure 8: Contours of the posterior joint PDF: (a) Reference; (b) K0 = 200 and Kt/K0 = 0.2.

K0 Kt/K0 E[Nc] E[θ1|f̃ ] E[θ2|f̃ ]
√

Var[θ1|f̃ ]
√
Var[θ2|f̃ ] Z (×10−3)

BUS-PCK 50 0.2 80.4 0.502 (0.0) 0.893 (0.7) 0.044 (18.8) 0.086 (23.9) 1.484 (1.3)
50 0.5 125 0.502 (0.0) 0.898 (0.1) 0.039 (3.5) 0.073 (3.9) 1.474 (1.9)
100 0.2 160 0.505 (0.6) 0.887 (1.4) 0.045 (21.3) 0.085 (22.0) 1.618 (7.6)
100 0.5 250 0.502 (0.0) 0.899 (0.0) 0.039 (3.0) 0.072 (2.9) 1.485 (1.2)
200 0.2 320 0.501 (0.2) 0.900 (0.1) 0.038 (2.1) 0.070 (0.9) 1.509 (0.4)
200 0.5 500 0.502 (0.0) 0.899 (0.0) 0.038 (0.6) 0.070 (0.3) 1.483 (1.3)

Reference 20000 0.502 0.899 0.037 0.070 1.503

Table 2: 2 DOF structure: posterior QoI related to the left cluster, with relative errors in %.

516

5.3. Multimodal mixture of Gaussians517

5.3.1. Problem description518

The third case study is introduced in [86], and involves a mixture of Gaussian distributions. A uniform prior519
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K0 Kt/K0 E[Nc] E[θ1|f̃ ] E[θ2|f̃ ]
√

Var[θ1|f̃ ]
√
Var[θ2|f̃ ] Z (×10−3)

BUS-PCK 50 0.2 80.4 1.811 (0.2) 0.245 (0.8) 0.178 (25.7) 0.022 (17.9) 1.484 (1.3)
50 0.5 125 1.812 (0.1) 0.246 (0.2) 0.144 (1.8) 0.020 (5.9) 1.474 (1.9)
100 0.2 160 1.801 (0.7) 0.246 (0.3) 0.154 (8.5) 0.021 (11.9) 1.618 (7.6)
100 0.5 250 1.813 (0.1) 0.246 (0.2) 0.144 (1.3) 0.019 (3.6) 1.485 (1.2)
200 0.2 320 1.814 (0.0) 0.247 (0.0) 0.143 (0.9) 0.019 (0.5) 1.509 (0.4)
200 0.5 500 1.814 (0.0) 0.247 (0.0) 0.144 (1.3) 0.019 (2.1) 1.483 (1.3)

Reference 20000 1.814 0.247 0.142 0.019 1.503

Table 3: 2 DOF structure: posterior QoI related to the right cluster, with relative errors in %.

over the square [0, a]× [0, a] is considered, whereas the likelihood function is defined by:520

L(θ; {µj}) =
n∑

j=1

wjφ2(θ;µj , σ) (5.13)

where the {µj} are drawn from the prior U([0, a]× [0, a]), {wj} are the weights of the mixture, and φ2(·;µj , σ)521

is the PDF of the bivariate Gaussian distribution N (µj , σ
2I). We set a = 10, σ = 0.1, n = 10 and wj = 1/n for522

all j ∈ {1, . . . , n}. The corresponding posterior PDF π(θ; {µj}) ∝ 1[0,a]2(θ)L(θ; {µj}) is multimodal, with 10523

modes. This is illustrated in Fig. 9, where contours of the likelihood function are presented.

Figure 9: Multimodal Gaussian mixture: contours of likelihood function

524

5.3.2. Posterior distribution525

The proposed approach is applied by considering K0 ∈ {50, 100, 150, 250} and κ ∈ {0, 0.1, 0.2}. Fig. 10526

presents a comparison between posterior samples drawn with the SuS procedure (see Section 2.3) and samples527

drawn with the proposed approach, for K0 ∈ {100, 150, 250} and κ = 0.2. Firstly, as depicted by Fig. 10a, the528

posterior samples obtained with the aBUS-SuS algorithm separate into 10 significantly spaced clusters. This529

underlines the complexity of the posterior PDF, which would be difficult to sample by using classical MCMC530
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Figure 10: Multimodal Gaussian mixture: reference (a) and BUS-PCK-based (b-d) posterior samples (sample size: 5 · 103). Black
crosses (×) represent the modes {µj} of the posterior distribution.

approaches, for which the generated Markov chains may be trapped near few modes [86].531

Next, for K0 = 100 and κ = 0.2, the proposed approach completely misses 3 modes (see Fig. 10b). When532

K0 = 150 and κ = 0.2, the proposed approach correctly identifies the 10 modes of the posterior (see Fig. 10c),533

even though the spread of the clusters near (0, 0) and (10, 3) is roughly approximated. Lastly, the 10 modes of534

the posterior are well reproduced when K0 = 250 and κ = 0.2 (see Fig. 10d).535

The convergence of aJSD (5.7) with respect to E[Nc] is shown in Fig. 11. First, when no surrogate model536

adaptation is performed (i.e. κ = 0), the aJSD stagnates around a value of 10−1. This may be explained by the537

highly localized behavior of the likelihood function, which seems to be difficult to approximate with a fixed ED538

built from the uniform prior U([0, a]× [0, a]). For a given number of full likelihood calls, significantly lower aJSD539

values are obtained when κ > 0. In particular, when E[Nc] ≥ 200, the aJSD with κ = 0.2 is approximately two540

orders of magnitude smaller than aJSD in the case κ = 0. This underlines the efficiency of the proposed adaptive541

point enrichment scheme, as mentioned in the example presented in Section 5.2. The proposed approach takes542

advantage of the local features provided by the Gaussian process of the PCK surrogate for better catching the543

likelihood behavior near the modes {µj} of the posterior.544

Finally, QoI related to the posterior distribution are summarized in Tab. 4. For the sake of brevity, only the545

components of the posterior mean E
[
θ|{µj}

]
and the standard deviation

√
Var

[
θ|{µj}

]
are considered as QoI,546

rather than considering the statistics of each of the 10 clusters of the posterior. The proposed approach provides547

correct estimates of E
[
θi|{µj}

]
and

√
Var

[
θi|{µj}

]
from K0 = 100 and κ = 0.2. Moreover, fair estimates of548

the model evidence Z are obtained with K0 = 150 and κ = 0.2. Finally, it is worth noting that the proposed549
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Figure 11: Multimodal Gaussian mixture: convergence of aJSD with respect to E[Nc]

method provides a quite good approximation of the posterior with a number of full likelihood evaluations of550

about E[Nc] ≈ 240 (see Tab. 4), which corresponds to a reduction of about 98.8% of the total cost of 2 · 104 full551

likelihood evaluations required by a direct application of the SuS procedure.552

K0 Kt/K0 E[Nc] E[θ1|{µj}] E[θ2|{µj}]
√
Var[θ1|{µj}]

√
Var[θ2|{µj}] Z

BUS-PCK 100 0.1 127.4 4.323 (14.6) 4.309 (13.8) 2.730 (7.2) 2.960 (2.2) 0.063 (525.4)
100 0.2 158 4.584 (9.5) 4.778 (4.4) 2.825 (3.9) 2.986 (3.1) 0.046 (352.0)
150 0.1 192.9 4.590 (9.4) 4.794 (4.1) 2.857 (2.9) 2.949 (1.8) 0.024 (138.0)
150 0.2 238.8 5.069 (0.1) 4.921 (1.5) 2.954 (0.4) 2.852 (1.5) 0.012 (16.3)
250 0.1 325 5.053 (0.2) 4.830 (3.4) 2.901 (1.4) 2.843 (1.8) 0.011 (4.4)
250 0.2 400 5.058 (0.1) 4.953 (0.9) 2.927 (0.5) 2.885 (0.4) 0.010 (2.7)

Reference 20000 5.065 4.998 2.941 2.896 0.010

Table 4: Multimodal Gaussian mixture: posterior QoI, with relative errors in %.

5.4. Diffusion problem553

5.4.1. Problem description554

The last case study consists in a 1D diffusion problem introduced in [26], as the steady state version of the555

problem studied in [33]. The problem is described by the following diffusion equation on the domain D = [0, 1]:556

∇ (a(x)∇u(x)) + b(x) = 0 (5.14)

where the diffusivity a(x) is represented by a random field, and the source term b(x) is given by:557

b(x) =

N∑
i=1

si√
2πσi

exp

(
− (li − x)2

2σ2
i

)
(5.15)

This term corresponds to N localized sources with locations (li)1≤i≤N and strengths (si)1≤i≤N and widths558

(σi)1≤i≤N . One considers N = 3 sources at locations l1 = 0.25, l2 = 0.5 and l3 = 0.75. The strengths559
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are assumed to be identical, and are set as si = 10, as well as the widths, which are fixed to σ2
i = 10−3.560

Furthermore, Dirichlet boundary conditions u(0) = u(1) = 0 are adopted for solving Eq. (5.14). The diffusion561

equation (5.14) is solved by using linear finite elements, on a uniform grid with spacing ∆x = 1
48 .562

The problem consists in inferring the diffusivity a(x) from noisy measurements of the field u(x), provided by563

a set of n = 11 sensors uniformly spaced in D (excluding the endpoints). The prior of the log-diffusivity log a is564

supposed to be a Gaussian stationnary random field, with mean µlog a = 0.1 and standard deviation σlog a = 0.2,565

and an exponential correlation kernel:566

Rlog a(x, x
′) = exp

(
−|x− x′|

ℓc

)
(5.16)

with ℓc = 0.3.567

The log-diffusivity random field is represented by a truncated Karhunen-Loève (KL) [87, 57] expansion:568

log a(x) ≈ µlog a +

m∑
i=1

√
λiζiϕi(x) (5.17)

where m = 10 [26], (ζi)1≤i≤m are the m first KL eigenmodes, and (λi, ϕi)1≤i≤m are the eigenvalues and eigen-569

functions associated to the covariance kernel Σlog a(x, x
′) = σ2

log aRlog a(x, x
′). The latter are satisfying the570

Fredholm integral equations of the second kind:571

∫
D
Σlog a(x, x

′)ϕi(x
′)dx′ = λiϕi(x) (5.18)

which can be solved analytically in the case of exponential kernels [57].572

Then, synthetic data is generated from a realization of the log-diffusivity random field, by computing the573

corresponding field u(x) at sensors locations and adding to it a Gaussian noise term with zero mean and standard574

deviation σu = 0.1. In order to avoid to commit an inverse crime [1], this synthetic data is generated by using575

a much finer grid for solving Eq. (5.14). The m = 10 first KL eigenmodes (ζi)1≤i≤m are subsequently inferred576

from the generated data.577

5.4.2. Posterior distribution578

The proposed approach is applied by considering K0 ∈ {50, 100, 250, 500} and κ ∈ {0, 0.1, 0.2}. The conver-579

gence of aJSD (5.7) with respect to E[Nc] is shown in Fig. 12. The performance of the approach depends less580

on the adaptation step of the surrogate model, since the aJSD presents a similar behavior for κ = 0 and κ > 0.581

However, for moderate to large ED sizes (≈ 250−500), the adaptive point enrichment provides a slightly smaller582

aJSD than in the non-adaptive case (5 ·10−3 when κ = 0 and 10−3 when κ > 0). Such behavior may be explained583

by the fact that most of the posterior mass is enclosed in high-probability zones of the prior. In this case, the584

adaptive point enrichment targets zones in which samples are frequently drawn when sampling from the prior.585
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This clearly underlines the difference of performance between the present diffusion problem and the mechanical586

problem presented in Section 5.2, which presented a bi-modal with support located in low-probability zones of587

the prior.588

Figure 12: Diffusion problem: convergence of aJSD with respect to E[Nc].

Then, it is worth noting that the active dimensionality of the problem is limited to 6, since the posterior589

distribution of the four last KL eigenmodes is sensibly close to their prior distribution. This has been often590

encountered in the framework of UQ benchmark problems related to diffusion with random diffusivity fields [23].591

Consequently, the following analysis will be then focused on the six first KL eigenmodes.592

The posterior univariate and bivariate PDF of the six first KL eigenmodes are shown in Fig.13. The reference593

PDF and those obtained for K0 = 250 and κ = 0.1 are compared. The shape of the posterior distribution is well594

approximated with the proposed approach, with a quite limited amount of model calls (≈ 350). In particular,595

the correlation structure is well reproduced, notably regarding to the couples (ζ1, ζ3) and (ζ2, ζ4) which exhibit596

quite strong linear correlations. Posterior mean and standard deviation values are summarized in Tab. 5 & 6.597

It is also worthwhile noting that the following approach provides a fair estimate of the model evidence with a598

quite moderate amount of model calls (≈ 350 − 500), as underlined by Tab. 7 which summarizes values of the599

model evidence. As mentioned earlier, a quite important advantage of the proposed approach is that it enables600

to compute the model evidence as a by-product of the SuS procedure (see Algorithm 1). Classical MCMC601

approaches do not enable to estimate the model evidence once the sampling procedure is performed.602

E[ζi|d] K0 Kt/K0 E[Nc] ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

BUS-PCK 100 0.1 127 −0.55 (23.4) −0.13 (68.1) 0.71 (29.6) −0.57 (41.2) 0.05 (116.0) −0.54 (46.0)
100 0.2 159.6 −0.59 (17.2) −0.26 (33.0) 0.76 (24.4) −0.72 (24.7) −0.01 (95.9) −0.80 (20.1)
250 0.1 342.5 −0.70 (2.9) −0.41 (3.0) 0.96 (4.3) −0.89 (7.8) −0.22 (27.0) −0.96 (5.1)
250 0.2 449 −0.70 (2.6) −0.40 (2.3) 0.97 (3.8) −0.93 (3.6) −0.23 (22.1) −0.96 (5.2)
500 0.1 730 −0.71 (1.1) −0.37 (6.5) 0.99 (1.7) −0.91 (5.2) −0.28 (5.0) −1.02 (1.2)
500 0.2 968 −0.72 (0.1) −0.38 (4.8) 1.01 (0.3) −0.92 (4.3) −0.30 (2.8) −1.03 (2.6)

Reference 27600 −0.72 −0.39 1.00 −0.96 −0.30 −1.01

Table 5: Diffusion problem: posterior means of few KL eigenmodes.
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(a) Reference (b) K0 = 250, Kt/K0 = 0.1

Figure 13: Diffusion problem: posterior univariate and bivariate marginal PDF of the six first KL eigenmodes

√
Var[ζi|d] K0 Kt/K0 E[Nc] ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

BUS-PCK 100 0.1 127 0.45 (69.5) 0.71 (59.0) 0.87 (59.1) 0.98 (38.9) 1.13 (43.2) 1.07 (28.0)
100 0.2 159.6 0.38 (44.5) 0.62 (40.3) 0.77 (39.6) 0.86 (22.8) 1.00 (26.6) 1.04 (24.1)
250 0.1 342.5 0.29 (8.9) 0.49 (10.7) 0.60 (9.1) 0.74 (4.8) 0.82 (3.9) 0.84 (0.7)
250 0.2 449 0.28 (5.5) 0.48 (7.1) 0.58 (6.3) 0.72 (2.7) 0.81 (3.3) 0.85 (1.3)
500 0.1 730 0.26 (0.2) 0.45 (1.4) 0.55 (0.2) 0.69 (1.3) 0.79 (0.2) 0.85 (1.8)
500 0.2 968 0.26 (0.4) 0.45 (0.4) 0.55 (0.3) 0.70 (1.0) 0.77 (2.1) 0.83 (0.4)

Reference 27600 0.26 0.44 0.55 0.70 0.79 0.84

Table 6: Diffusion problem: posterior standard deviations of few KL eigenmodes.

K0 Kt/K0 E[Nc] Z
BUS-PCK 100 0.1 127 87.09 (254.1)

100 0.2 159.6 29.41 (19.6)
250 0.1 342.5 22.73 (7.6)
250 0.2 449 23.36 (5.0)
500 0.1 730 23.75 (3.4)
500 0.2 968 24.77 (0.7)

Reference 27600 24.59

Table 7: Diffusion problem: model evidence values.

Next, a comparison between the true log-diffusivity field, the reference posterior log-diffusivity field and that603

obtained with the proposed approach for K0 ∈ {250, 500} and κ = 0.2 is given in Fig. 14. As a validation of604

the reference results, one observes that the posterior log-diffusivity field obtained from SuS procedure matches605

well with the realization used for generating the synthetic data. Furthermore, the proposed approach provides606

a fair approximation of the posterior log-diffusivity when K0 = 250 and κ = 0.2, with a slight overestimation of607

the variance, though (see Fig.14a). Then, the posterior log-diffusivity field is well approximated when K0 = 500608

and κ = 0.2 (see Fig. 14b).609

Then, contours of the reference posterior covariance kernel of the log-diffusivity field and its approximations610
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(a) K0 = 250, Kt/K0 = 0.2 (b) K0 = 500, Kt/K0 = 0.2

Figure 14: Diffusion problem: posterior log-diffusivity field.

provided by the proposed approach for K0 ∈ {250, 500} and κ = 0.2 are shown in Fig. 15. Approximately611

450 model calls are sufficient to provide a quite accurate approximation of the covariance kernel, in its positive612

correlation zones (see Fig.15a). The case K0 = 500 and κ = 0.2 presents a sensibly accurate approximation of613

the posterior covariance kernel, even in the zones which exhibit negative correlations (see Fig.15b).614

(a) K0 = 250, Kt/K0 = 0.2 (b) K0 = 500, Kt/K0 = 0.2

Figure 15: Diffusion problem: posterior covariance kernel of the log-diffusivity field. Continuous lines refer to reference results,
whereas dashed lines refer to ones provided by the proposed approach.

Lastly, it is worth noting that a satisfactory approximation of the posterior PDF is obtained with an average615

number of model calls of E[Nc] = 730, which represents a reduction of about 97.4% of the total cost of 2.76 · 104616

required by an inversion using the full likelihood (see Tab. 5 & 6).617

6. Conclusion618

In this paper, a Bayesian inversion method using adaptive surrogate models has been presented, based on619

the BUS framework [25, 26], which aims at reformulating the classical Bayesian inference into the estimation of620
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a rare event. In this framework, the method combines a well-known Structural Reliability (SR) method known621

as Subset Simulation (SuS) [29, 30] and adaptive Polynomial Chaos Kriging (PCK) [42, 43], which provides622

powerful surrogate models able to approximate both global and local behaviors of computational models. In623

this context, a PCK surrogate model is firstly built in order to catch the global trend of the log-likelihood on624

the prior support. This surrogate model is subsequently enriched throughout the SuS sampling procedure by625

selecting points in informative regions, based on principles taken from active learning SR methods [39, 78, 41].626

The Kriging part of the surrogate model then enables to better catch local variations of log-likelihood, as well627

as provide an local error measure which can be used for enriching the surrogate model.628

The proposed approach has been applied to three cases studies of increasing complexity, involving a one-629

dimensional analytical function, a two degrees-of-freedom structure and a diffusion problem with moderate630

active dimensionality. It appears from numerical investigations that the proposed approach provides accurate631

approximations of the posterior distributions, even in the case of likelihood functions with localized behavior, or632

multi-modal distributions, which are usually difficult to sample for many existing Bayesian inversion algorithms.633

Moreover, such approximations have been obtained for a quite limited amount of model calls (i.e. ≈ 50− 500),634

which makes the proposed approach suitable for computationally demanding models. For each test case studied,635

the proposed approach has provided a reduction of at least 97.5% of the total number of model calls required by636

aBUS-SuS inversions using the full likelihood function. Furthermore, classical MCMC-based Bayesian inversion637

approaches do not enable to assess the performance of several models against observed data, since the compu-638

tation of the model evidence is avoided [6]. A particular advantage provided by the BUS framework is that the639

proposed approach enables to estimate the model evidence, as a by-product of the rare event estimation through640

the SuS procedure. Therefore, the proposed method would be suitable for model selection [88].641

Then, the proposed approach presents several shortcomings, which may be addressed in further works.642

Firstly, the updating step of the BUS scaling constant is based on the computation of the convex hull of643

the current experimental design of the PCK surrogate model, in order to filter points whose surrogate model644

predictions are too uncertain. This is done for limiting the risk of making a wrong estimation of the maximal645

likelihood value needed for updating the BUS scaling constant. As mentioned in [75], the Quickhull algorithm646

[76] used for computing convex hulls significantly suffers from the so-called curse of dimensionality. Indeed,647

for dimensions larger than ≈ 15, the number of facets of the computed convex hull grows fast with dimension,648

which considerably slows the overall procedure. Then, it would be necessary to define an alternative filter for649

updating the BUS scaling constant, based on the distance to the current points of experimental design, and the650

uncertainties associated to predictions of likelihood values. Moreover, the optimization problem involved in the651

training of Kriging parameters may be difficult to solve in high dimensions [75, 38]. This is in line with results652

from a recent survey and benchmark on surrogate-based active learning SR methods [84], which suggest that653

PCK surrogate models are well suited for parameter dimensions d < 20, whereas PCE surrogates perform well654

in higher dimensions d ≥ 20. Thus, the proposed approach may be adapted to PCE for tackling problems with655

higher dimensions, provided a local error estimate adapted to PCE is used. In this context, the Fraction of656

Boostrap Replicates (FBR) introduced in [73] could be used in the framework of the proposed adaptive point657

32



enrichment scheme. Such guidelines might be considered in further work for tackling problems with higher658

dimensions. Lastly, it appears from test cases results that the stopping criterion of the point enrichment step659

has been rarely reached during calculations. This may be due to the fact that the adopted threshold value for660

the misclassification probability (see Section 4.3) is too conservative, as underlined in [41]. Therefore, a more661

precise stopping criterion may be defined in order to avoid unnecessary model calls throughout the Bayesian662

updating scheme.663
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[50] A. Nataf, Détermination des distributions dont les marges sont données, C. R. Acad. Sci. 225 (1962) 42–43.800

[51] R. Lebrun, A. Dutfoy, An innovating analysis of the Nataf transformation from the copula viewpoint, Prob-801

abilistic Engineering Mechanics 24 (3) (2009) 312–320. doi:https://doi.org/10.1016/j.probengmech.802

2008.08.001.803

URL https://www.sciencedirect.com/science/article/pii/S0266892008000660804

[52] M. Rosenblatt, Remarks on a Multivariate Transformation, The Annals of Mathematical Statistics 23 (3)805

(1952) 470 – 472. doi:10.1214/aoms/1177729394.806

URL https://doi.org/10.1214/aoms/1177729394807

[53] W. Betz, J. L. Beck, I. Papaioannou, D. Straub, Bayesian inference with reliability methods without knowing808

the maximum of the likelihood function, Probabilistic Engineering Mechanics 53 (2018) 14–22. doi:https:809

//doi.org/10.1016/j.probengmech.2018.03.004.810

URL https://www.sciencedirect.com/science/article/pii/S026689201730190X811

[54] F. DiazDelaO, A. Garbuno-Inigo, S. Au, I. Yoshida, Bayesian updating and model class selection with812

Subset Simulation, Computer Methods in Applied Mechanics and Engineering 317 (2017) 1102–1121. doi:813

https://doi.org/10.1016/j.cma.2017.01.006.814

URL https://www.sciencedirect.com/science/article/pii/S0045782516308283815

[55] G. Blatman, B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic816

finite element analysis, Prob. Eng. Mech. 25 (2010) 183–197. doi:10.1016/j.probengmech.2009.10.003.817

[56] J. D. Jakeman, F. Franzelin, A. Narayan, M. Eldred, D. Plfüger, Polynomial chaos expansions for dependent818

random variables, Computer Methods in Applied Mechanics and Engineering 351 (2019) 643 – 666. doi:819

https://doi.org/10.1016/j.cma.2019.03.049.820

URL http://www.sciencedirect.com/science/article/pii/S0045782519301884821

37



[57] R. Ghanem, P. Spanos, Stochastic finite elements - A spectral approach, Springer Verlag, 1991. doi:822

10.1007/978-1-4612-3094-6.823

[58] D. Xiu, G. E. Karniadakis, The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations,824

SIAM Journal on Scientific Computing 24 (2002) 619–644. doi:10.1137/S1064827501387826.825

[59] N. Wiener, The homogeneous chaos, Am. J. Math. 60 (1938) 897–936. doi:10.2307/2371268.826

[60] C. Soize, R. Ghanem, Physical Systems with Random Uncertainties: Chaos Representations with Ar-827

bitrary Probability Measure, SIAM Journal on Scientific Computing 26 (2) (2004) 395–410. doi:828

10.1137/s1064827503424505.829

URL http://dx.doi.org/10.1137/S1064827503424505830

[61] O. G. Ernst, A. Mugler, H.-J. Starkloff, E. Ullmann, On the convergence of generalized polynomial chaos831

expansions, ESAIM: Mathematical Modelling and Numerical Analysis 46 (2) (2012) 317–339. doi:10.832

1051/m2an/2011045.833

URL https://www.esaim-m2an.org/articles/m2an/abs/2012/02/m2an110045/m2an110045.html834

[62] D. Ghiocel, R. Ghanem, Stochastic finite element analysis of seismic soil-structure interaction, Journal of835

Engineering Mechanics 128 (2002) 66–77. doi:10.1061/(asce)0733-9399(2002)128:1(66).836
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Ph.D. thesis, Univertisté Clermont-Ferrand 2 (2011).871

URL http://www.theses.fr/2011CLF22184872

[75] P. Angelikopoulos, C. Papadimitriou, P. Koumoutsakos, X-TMCMC: Adaptive kriging for Bayesian inverse873

modeling, Computer Methods in Applied Mechanics and Engineering 289 (2015) 409–428. doi:https:874

//doi.org/10.1016/j.cma.2015.01.015.875

URL https://www.sciencedirect.com/science/article/pii/S0045782515000353876

[76] C. B. Barber, D. P. Dobkin, H. Huhdanpaa, The Quickhull Algorithm for Convex Hulls, ACM Trans. Math.877

Softw. 22 (4) (1996) 469–483. doi:10.1145/235815.235821.878

URL https://doi.org/10.1145/235815.235821879

[77] B. J. Bichon, M. S. Eldred, L. P. Swiler, S. Mahadevan, J. M. McFarland, Efficient Global Reliability880

Analysis for Nonlinear Implicit Performance Functions, AIAA Journal 46 (10) (2008) 2459–2468. arXiv:881

https://doi.org/10.2514/1.34321, doi:10.2514/1.34321.882

URL https://doi.org/10.2514/1.34321883

[78] M. Moustapha, B. Sudret, Surrogate-assisted reliability-based design optimization: a survey and a unified884

modular framework, Structural and Multidisciplinary Optimization 60 (5) (2019) 2157–2176. doi:10.1007/885

s00158-019-02290-y.886

URL https://doi.org/10.1007/s00158-019-02290-y887

39



[79] J. Bect, D. Ginsbourger, L. Li, V. Picheny, E. Vazquez, Sequential design of computer experiments for888

the estimation of a probability of failure, Statistics and Computing 22 (3) (2011) 773–793. doi:10.1007/889

s11222-011-9241-4.890

URL http://dx.doi.org/10.1007/s11222-011-9241-4891

[80] R. Teixeira, M. Nogal, A. O’Connor, B. Martinez-Pastor, Reliability assessment with density scanned892

adaptive Kriging, Reliability Engineering & System Safety 199 (2020) 106908. doi:https://doi.org/10.893

1016/j.ress.2020.106908.894

URL https://www.sciencedirect.com/science/article/pii/S0951832019307434895

[81] S. Marelli, B. Sudret, UQLab: A framework for uncertainty quantification in Matlab, in: Proc. 2nd Int.896

Conf. onVulnerability, Risk Analysis and Management (ICVRAM2014), Liverpool, United Kingdom, 2014,897

pp. 2554–2563.898

[82] S. Kullback, R. Leibler, On information and sufficiency, Annals of Mathematical Statistics 22 (1951) 79–86.899

doi:10.1214/aoms/1177729694.900

[83] J. Lin, Divergence measures based on the Shannon entropy, IEEE Transactions on Information Theory901

37 (1) (1991) 145–151. doi:10.1109/18.61115.902

[84] M. Moustapha, S. Marelli, B. Sudret, A generalized framework for active learning reliability: survey and903

benchmark, arXiv:2106.01713 [stat]ArXiv: 2106.01713.904

URL http://arxiv.org/abs/2106.01713905

[85] J. L. Beck, S.-K. Au, Bayesian Updating of Structural Models and Reliability using Markov Chain906

Monte Carlo Simulation, Journal of Engineering Mechanics 128 (4) (2002) 380–391. doi:10.1061/(ASCE)907

0733-9399(2002)128:4(380).908

[86] J. L. Beck, K. M. Zuev, Asymptotically independent Markov sampling: a new Markov Chain Monte Carlo909

scheme for Bayesian inference, International Journal for Uncertainty Quantification 3 (5) (2013) 445–474.910

doi:10.1615/Int.J.UncertaintyQuantification.2012004713.911
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