
HAL Id: hal-04496008
https://hal.science/hal-04496008

Submitted on 8 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A high performance algorithmic variant of MATSim
road traffic simulator

Sara Moukir, Nahid Emad, Stéphane Baudelocq

To cite this version:
Sara Moukir, Nahid Emad, Stéphane Baudelocq. A high performance algorithmic variant
of MATSim road traffic simulator. IPDPSW 2023 - IEEE International Parallel and Dis-
tributed Processing Symposium Workshops, May 2023, St petersburg, United States. pp.914-922,
�10.1109/IPDPSW59300.2023.00149�. �hal-04496008�

https://hal.science/hal-04496008
https://hal.archives-ouvertes.fr

A High Performance Algorithmic Variant of
MATSim Road Trafc Simulator

Sara Moukir
LI-PaRAD and Maison de la Simulation

University of Paris Saclay / UVSQ
Eiffage Energie Systèmes

Vélizy-Villacoublay, France
sara.moukir@universite-paris-saclay.fr

sara.moukir@eiffage.com

Nahid Emad
LI-PaRAD and Maison de la Simulation

University of Paris Saclay / UVSQ
Gif-sur-Yvette, France
nahid.emad@uvsq.fr

Stéphane Baudelocq
Eiffage Energie Systèmes

Vélizy-Villacoublay, France
stephane.baudelocq@eiffage.com

Abstract—In this paper, we propose a new high-performance
computing approach to road trafc simulation. Multi-agent
road trafc simulators are the most accurate and realistic that
currently exist, however they are very resource intensive and
the data are massive when simulating a metropolis or a region.
The main contribution of this paper is the presentation of a new
concept based on the Unite and Conquer approach, allowing
to set up several parallel executions with different parameters.
Applied on MATSim, one of the most present multi-agent trafc
simulators in the literature, it allows to reduce the number of
iterations needed to converge to the optimal solution. In this
paper, we show how the Unite and Conquer approach applied to
MATSim brings a substantial gain in computing time and points
out its potential application to other multi-agent simulators.

Index Terms—road trafc simulation, big data analysis, high
performance computing, complex and heterogeneous dynamic
system, Unite and Conquer, MATSim, parallel computing

I. INTRODUCTION

The study of road trafc is similar to the study of a complex
and heterogeneous dynamic system. Actually, the individual
will of each agent combined with the diversity of the means of
transport make the simulation difcult. The microscopic and
erratic nature of this phenomenon requires a more complex
paradigm than that of a simple mathematical model. Multi-
agent simulation turns out to be a relevant paradigm to express
this phenomenon effectively. Indeed, a multi-agent simulation
offers a dynamic environment and a behavior specic to
each agent framed by a certain number of rules. It makes
it possible to obtain a co-evolutionary simulation that best
imitates the real phenomenon of road trafc. Agent-based road
trafc simulators such as MATSim [1], SimMobility [2] or
POLARIS [3] have been developed and used over the past
few years to simulate the transport systems of several different
cities. They have the ability to accurately replicate movement
patterns. Given their disaggregated representation of travel
demand and supply as well as rich spatial and temporal detail,
these agent-based transport models have the potential to enable
unprecedented detailed analysis.
MATSim is a highly customizable and exible framework
for simulating transportation systems [1]. It is specically
designed for large-scale, long-term transportation planning

studies and can simulate the interactions between individuals,
vehicles, and infrastructure. POLARIS and SimMobility are
also transportation simulation tools, but they may not have
the same level of customization and exibility as MATSim.
Additionally, MATSim has been widely used and validated in
research studies, whereas it may not be as well-established for
POLARIS and SimMobility or others agent-based trafc simu-
lators. As a consequence, we have chosen to focus on MATSim
as the object of our research. The MATSim framework consists
of several modules which can be combined or used stand-
alone. Its modularity, extensibility and performance caught
our attention. These modules support are as follows : demand
modeling, agent-based mobility simulation, Replanning, and
output analysis methods [1]. However, the computational
requirements are increasingly important. For example, from
our experiments MATSim takes about 9 minutes on average
to run an iteration for moving about 187,000 agents in its
Los Angeles scenario (MATSim Los Angeles 1%). As a
result, high performance computing approach turns out to be
relevant to have reasonable execution times. Multi-threading
is already used in some sections of MATSim, but the use of
high performance computing eld is still exploitable [4].

In this paper, we propose a parallel algorithm design based
on the Unite and Conquer [5] approach for MATSim. Unite
and Conquer is a heuristic approach to reduce computation
time by integrating a jump processing on an algorithm -
it considers a 2-step process - rst : compute a starting
set, second: merge the results and then go back to the rst
step. Providing such an iteration allows to explore a sub-
optimal solution with different methods. This approach has
no guarantee to get an optimal solution, it is a custom method
and depending on the parameters, it can bring a substantial
speed-up.

The rest of the article is organized as follows: section 2
describes the challenges of the parallelization carried out,
section 3 describes in a more optimal way the operation of
the trafc simulator MATSim, and section 4 describes our
algorithm proposal. Finally, section 5 presents our experiments
and the conditions in which they were performed our results.

914

2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-1199-0/23/$31.00 ©2023 IEEE
DOI 10.1109/IPDPSW59300.2023.00149

20
23
IE
E
E
In
te
rn
at
io
na
lP
ar
al
le
la
nd
D
is
tr
ib
ut
ed
P
ro
ce
ss
in
g
S
ym
po
si
um
W
or
ks
ho
ps
(I
P
D
P
S
W
)
|9
79
-8
-3
50
3-
11
99
-0
/2
3/
$3
1.
00
©
20
23
IE
E
E
|D
O
I:
10
.1
10
9/
IP
D
P
S
W
59
30
0.
20
23
.0
01
49

Authorized licensed use limited to: Universite de Versailles St Quentin. Downloaded on March 08,2024 at 14:10:25 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Several works have been carried out to date to try to
effectively improve the execution time of multi-agent road
trafc simulators thanks to parallel / distributed computing
techniques.

Different HPC strategies have been deployed. One of these
strategies consists in dividing the road network into several
sub-networks so as to assign each one of them to a com-
putation unit [6]. This strategy raises other issues, the main
one being that of inter-sub-network communication, which
dominates in terms of execution time. Among the microscopic
road trafc simulators using these strategies, TRANSIMS [7],
AIMSUN [7] and Paramics [7] are the most popular parallel
trafc road simulators, although they are not based on the
multi-agent paradigm.

Regarding agent-based simulators, the distribution of agents
between the different computing units is part of the strategies
used to speed up the execution [8]. The same problem of
inter-sub-network communication remains since for each time
step, all the computation units must know the state of the
whole network. Indeed, the advancement of agents on the
network depends on the movements of other agents, managed
by other hosts; hence the continuous communication between
computation unit to inform of the local dynamics of each of
them.

Other strategies have been applied to MATSim in particular,
such as the implementation of a specic library for paralleliza-
tion [9] or the modication of the operation of certain modules.
The Replanning module, for example, has been revised so
that this step executed according to other parameters, so
as to have faster convergence [10]. The simulation module
has also been modied, so that there is an “event-driven”
approach instead of the “time-step based” approach (QSIM
vs. JDEQSIM and HERMES)[11, 12]. Here we propose a new
algorithmic concept for the Replanning module based on the
use of parallelism. Our goal is to obtain a faster convergence
and then a reduced execution time.

III. MATSIM SIMULATOR

A. Overall functioning

MATSim is an open-source framework for implementing
large-scale agent-based transport simulations implemented in
Java. The traditional operation of MATSim consists in simulat-
ing each agent individually, each having a set of plans. These
agents travel on a specic road network. Response to travel
request is obtained by combining data from several different
sources, so as to generate a synthetic population representative
of the simulated geographical area. An agent in a multi-agent
simulation is a virtual representation of an entity that can
sense, reason and act in the simulated environment, with a set
of rules or behaviors that dictate how it interacts with other
agents and the environment. Agents are simulated on the road
network, executing their initial plans and interacting with each
other. The execution of a plan makes it possible to attribute a
score to it, thanks to a predened Scoring function. During the

Replanning phase, a portion of agents can randomly modify
their plans. This process generates and selects a completely
new plan for a given agent, while the rest of the agents
continue with their existing plan sets. The plan set has a nite
size nb plans: when a new plan is generated and the agent
has reached a size number of plans in its set, the plan with the
lowest score is deleted to make room for the newly generated
one.

Each agent will therefore have for the next iteration, a
different plan selected. This plan will be newly generated
or not, depending on whether the agent is part of the agent
portion authorized to modify and generate a new plan during
the Replanning phase. Plans are re-scored and new plans are
generated and selected. The loop continues in this way over
several iterations max until the agents can no longer improve
their scores and then reach an equilibrium.

These operating mechanisms of MATSim are distributed
according to three sequential phases, or modules: execution
of Mobsim, Scoring and Replanning [13]. Let us briey
recap the operation of MATSim through these modules, shown
schematically in Figure 1 :

• Input : As input, MATSim takes a number of les,
including one containing the initial plan for each agent
for the day. There is also the network, which corresponds
to the road network and the public transport network,
specic to each simulated geographical entity. There are
of course many other inputs, including some parameters
but for the sake of clarity we limit ourselves to these
elements.

• Execution module (Mobsim) : executes the daily plans
of each agent in the population. This module simulates
the way agents carry out their daily activities and move
from one place of activity to another ;

• Scoring module : uses a utility function (taking into
account both activity and movement) to evaluate the daily
plans based on the performance of each agent in the
execution module ;

• Replanning module : adjusts the plan elements (e.g.
departure time or mode of transportation) based on plan
scores, to adapt plans to trafc ow.

• Output : At the end of the execution, we get the scores
of each plan for each agent, new adjusted plans for the
portion of agents that underwent the Replanning, a le
containing the daily events (such agent arrives at such
activity planned in his schedule, or leaves it, at such
time...). There is also a set of statistics specic to the
execution in the form of text les and or graphics.

B. Replanning module

During the Replanning phase, a portion R of the agents can
randomly modify their plans, thus generating and selecting
new plan. By default, only 10% of the agents are concerned
by the Replanning phase, i.e. R = 0.1, but the user is free
to change this value. The set of plans has a nite size: the
plan with the lowest score is ”overwritten” over time. Each
with their new plan selected, agents are once again simulated

915

Authorized licensed use limited to: Universite de Versailles St Quentin. Downloaded on March 08,2024 at 14:10:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Iterative MATSim loop

on the transport network, their executed plans are scored and
new plans are generated and selected. This loop continues
for several iterations until agents can no longer improve
their scores, so achieve a balance. Generally, there are four
strategies [14]:

• Plan selector : Selection of one of the existing plans
in the agent’s set of plans (up to nb plans). There are
several strategies for the plan selector, among them :
KeepLastSelected keeps the plan selected in the previous
iteration, BestScore selects the plan with the highest
score from the previous iteration, SelectRandom performs
random selection between the plans, ChangeExpBeta
changes to a different plan, with probability dependant
on e∆score where ∆score is the score difference between
two plans. In the Los Angeles scenario we worked on, it
is the BestScore strategy that is found by default and that
we kept for our experiments. The weight of this strategy
relative to the others will be noted ρbestscore.

• Route innovation : Mutate a random existing plan by
re-routing trips. Routes are computed based on the trafc
conditions of the previous iteration. There are different
routing algorithms such as Djikstra or A*. The weight of
this strategy relative to the others will be noted ρreroute.

• Time innovation : Mutate a random existing plan by
randomly shifting all activity end times backwards or
forwards. The weight of this strategy relative to the others
will be noted ρtime.

• Mode innovation : Mutate a random existing plan by
changing the mode of transport. The weight of this strat-
egy relative to the others will be noted ρtransportmode.

Each module is given a weight determining the probability,
by which the course of action represented by the module is
taken. The strategy modules’ weights are normalized, in case
they do not sum to one.

Algorithm 1 MATSim algorithm
1: Start. Choose max, nb plans and the strategies proba-

bilities weights such as ρbestscore + ρreroute + ρtime +
ρtransportmode = 1, R ...

2: Iterate. For i =1, ... , max
Run one iteration of MATSim : Mobsim, Scoring and
Replanning only by the portion of R agents to which
the Replanning applies. The Replanning module
duplicates one plan for each agent independently
(if i < nb plans) or modies the existing
ones.

IV. A NEW VARIANT OF MATSIM ALGORITHM

We propose an approach whose goal is to reduce the
convergence time, in order to obtain a shorter execution time.
To do this, we exploit the potential offered by parallel com-
puting. Our approach consists in launching several instances
of MATSim in parallel. These instances are the same: they
relate to the same scenario, the same characteristics, except for
the variables linked to the Replanning module. The weights
are distributed differently according to the instances, which
will produce, during the Replanning phases of each instance,
different plans iteration after iteration despite the starting plans
being the same. Thus, the weight distribution allows to cover
a wider set of possible solutions.

In addition to this, our approach sets up, every step itera-
tions, a synchronous communication between the instances so
as to make an exchange of plans between them. After a given
iteration, instance i (with i ∈ 1, ..., N and N the number of
instances) will know the scores of other instances for a given
agent ak, (with k ∈ 1, ...,M and M the number of agents).

Consequently, instance i will know which instance has the
plan with the best score for agent ak. It can decide to recover
it or not, according to a very specic criterion. This criterion
is as follows: consider the instance α and the instance β (α,
β ∈ [1;N]).

For a given agent ak, instance α gets score Sk
α and instance

β gets score Sk
β , with Sk

α < Sk
β and Sk

β > Sk
i ∀i ∈ [1;N].

The α instance could then simply retrieve the plan asso-
ciated with the Sk

β score from β and run the next iteration.

916

Authorized licensed use limited to: Universite de Versailles St Quentin. Downloaded on March 08,2024 at 14:10:25 UTC from IEEE Xplore. Restrictions apply.

However, if each instance retrieves for each agent each time
the plan of the instance that made the best score, we would
have instances that would all execute the same plan for each
of the agents.

The idea is then to set up a criterion allowing the instances
to decide whether it is relevant to recover the plan of another
instance or to give it up, even if its own score is lower than
that of another instance for a given agent. We have chosen to
focus on the dispersion measure between the scores obtained
by the different instances for the same agent to dene a plan
exchange criterion. In this way, the criterion would make it
possible to rely indirectly on the performance of the plans
to validate or not the exchanges, while limiting them to the
instances having obtained the worst scores relative to those of
the other instances for each agent.

This criterion is the following: consider the vector VSk of
size N , containing the scores of all the instances for the agent
ak.

If the absolute value of the subtraction of Sk
α (α being the

instance concerned by this decision) by Sk
β is greater than the

standard deviation of VSk , then the plan exchange is favorable
and α recovers the plan associated with the score Sk

β from the
β instance.
The next iteration will run MATSim with plans that had scores
that were considered good, and this process will repeat itself
after a step number of iterations. This approach is inspired
by the Monte-Carlo method, aimed at calculating a numerical
value, and using random processes, that is to say probabilistic
techniques. Let’s summarize the essential parameters listed in
Algorithm 2:

• N : choose the number of MATSim instances that will
run in parallel

• max : MATSim stops after a predened number of
iterations. It doesn’t stop by itself when convergence is
obtained.

• M is the number of agents in the current scenario of
MATSim

• step : Choose a number of iteration steps between which
communication will take place between the different
instances

• iter processing : = max÷ step, this is the number of
times the processing and communications are performed.

• Choose the weights for probabilities associated to Re-
planning strategies. All these strategies are described
in section III.B. The assigned weights are such that
ρbestscore + ρreroute + ρtime + ρtransportmode = 1. Each
instances has a different distribution of weights.

• Set nb plans = 1. In this way, each instance will focus
on optimizing a single plan.

Figure 2 illustrates the algorithm in a very basic way, with
a single agent ak and two instances i and j. We assume that
the agent ak is ”concerned” by the Replanning module. A
certain number step of iterations of MATSim is carried out
in a parallel way between the instances i and j. MATSim
stops, or pauses its execution and performs communications
between the two instances. They communicate the plans and

Algorithm 2 Muti-MATSim
1: Start. Choose parameters
2: Iterate. For i = 1, ..., iter processing, do in parallel

Run one of the N instances of MATSim for step
iterations

Communications
Send the scores and the plans of all agents to others

N ranks / instances
Receive the scores and plans of all agents of the

others N ranks.
Compute the best score obtained among the N ranks

for each agent, and identify the associated rank. During
this step, the calculation of the standard deviation stdk
between the N scores for an agent ak∀k ∈ [1,M] is
performed.

Exchange plans
• Let agent ak and its score obtained by the current

instance i = Sk
i .

• Consider that the best score among the N scores
obtained by all instances for agent ak is Sk

best such
as : Sk

best > Sk
i ∀i ∈ [1, N]

for each agent ak∀k ∈ [1,M] :
if Sk

best − Sk
i  > stdk then get the plan

associated to Sk
best for the agent ak

the associated scores resulting from the last step iterations for
the ak agent. The best score of the plan obtained between
the instances is assigned to the value Sbest, and each instance
evaluates its own score Sk

i or Sk
j with respect to Sbest via

the comparison operation displayed on the schema. Thus,
according to the results of these comparisons, the execution
of MATSim will resume at the last iteration with a new plan
or not. This operation is repeated iter processing number of
times in total. Of course, there are actually more instances and
even more agents in reality. We have limited ourselves here to
N = 2 and M = 1 for a better understanding.

V. EXPERIMENT AND PERFORMANCE

A. Hardware resources

To perform the different experiments for this work we used
”Ruche” [15]. Ruche is a project created by two institutions,
CentraleSupélec and ENS Paris-Saclay, to pool their comput-
ing resources within the Paris-Saclay University, host them
at IDRIS and set up a common support team. a Lenovo
supercomputer with the following features:

• A Spectrum Scale GPFS parallel le system (380 Tio of
usable space, IOs rate : 9 GB/s)

• Intel OPA network 100 Gbit/s
• 192 compute nodes comprising 2 Intel Xeon Gold 6230

20 cores @ 2.1 GHz (Cascade Lake) and 192 GB of
RAM

• 14 compute nodes comprising 4 Intel Xeon Gold 6230 20
cores @ 2.1 GHz (Cascade Lake) with 1.5 TB of RAM
and 480 GB of SSD disk

917

Authorized licensed use limited to: Universite de Versailles St Quentin. Downloaded on March 08,2024 at 14:10:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Illustration of the new variant of MATSim algorithm with two ranks / instances and one agent

• 10 GPGPU nodes comprising 2 Intel Xeon Gold 6230 20
cores @ 2.1 GHz (Cascade Lake), 768 GB of RAM and
4 NVIDIA Tesla V100 PCIe graphic cards with 32 GB
of GRAM

• 5 GPGPU nodes comprising 2 Intel Xeon Gold 6230 20
cores @ 2.1 GHz (Ice Lake), 1024 GB of RAM and 4
NVIDIA Tesla A100 NVLink graphic cards with 40 GB
of GRAM

B. Scenario and setup

Several scenarios based on several metropolises are avail-
able for the simulation of road trafc with MATSim. Among
them, we nd Berlin, Paris, Seoul, New York, Los Angeles and
many others. We chose to simulate Los Angeles 0.1% initially
given the number of agents that this scenario contains, with
neither too much nor too little for a rst test of our approach
[16]. For this experiment, we decided to assign the following
values to the variables:

• The number of MATSim instances that will run in parallel
N = 4

• MATSim stops after a predened number of iterations
max = 300,

• The number of agents in the Los Angeles 0.1% MATSim
scenario M = 19123

• The number of iteration steps between which process-
ing will take place between the plans of the different
instances step = 50

• Set nb plans = 1. In this way, each instance will focus
on optimizing a single plan

Regarding the different strategies used :

• Plan Selector: given that nb plans = 1, each agent has
a unitary space and therefore only one plan. We have kept
the ChangeExpBeta strategy because it is the one used by
default in the Los Angeles scenario, but in our approach
this data is not inuential.

• Route innovation: this strategy is indeed active for this
approach, we call it here Reroute.

• Innovation mode: this strategy is also active, we will
call it ModeChoice. Among those available for this
innovation, we randomly chose the SubtourModeChoice
strategy. This allows you to use several modes of transport
on sub-tours in a single day.

• Time innovation: the TimeAllocationMutator module is
active in our approach. We’ll abbreviate it as TimeMuta-
tor.

The weights used for each of the strategies are shown in Table
I, for each instance. Since we had to compare our approach to a
classic run of MATSim Los Angeles 0.1%, the weights for the
classic version are also shown. It is possible to congure these
weights specically for each sub-population on MATSim. We
did not apply it for the freight sub-population, but only for
”persons”.

The weights change very slightly between the different
instances: we wanted to assess the impact of different settings
while maintaining correct accuracy compared to the baseline.
As specied above, we have set up four instances of MATSim
executed in parallel. This same script is used to process data
between step iterations (modication of XML les, com-

918

Authorized licensed use limited to: Universite de Versailles St Quentin. Downloaded on March 08,2024 at 14:10:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DISTRIBUTION OF WEIGHTS BETWEEN THE DIFFERENT STRATEGIES

PlanSelector Reroute ModeChoice TimeMutator
Instance 0 0.85 0.05 0.05 0.05
Instance 1 0.8 0.1 0.5 0.05
Instance 2 0.5 0.2 0.1 0.2
Instance 3 0.8 0.05 0.05 0.1
Baseline 0.85 0.05 0.05 0.05

Fig. 3. Score progress of the four instances VS. the baseline

munications between instances...). MATSim instances have
been treated as ”shells”: we haven’t changed anything except
the various editable parameters on the XML les. The four
instances were launched in parallel on four different Ruche
compute nodes, with memory set at 100GB for each instance.
Regarding communications, the Message Passing Interface
(MPI) library was used in its version for Python mpi4py.
mpi4py is implemented on top of the MPI specication and
exposes an API which grounds on the standard MPI-2 C++
bindings. The baseline version of MATSim Los Angeles 0.1%
was launched under the same conditions, sequentially on a
Ruche supercomputer compute node with 100 GB memory.

C. Discussion and results

Running the MATSim Los Angeles 0.1% baseline simula-
tion took 8 hours, while our approach consisting of the four
instances of MATSim Los Angeles 0.1% ran in 8 hours and
40 minutes. According to our proling analysis of the exe-
cution time, the extra 40 minutes correspond to synchronous
communications between instances as well as le processing
between step time steps.

Note that when MATSim is deliberately stopped before the
end at a specic iteration, there is a whole time for data
generation and shutdown to be devoted, as well as additional
time for its restart at the last iteration.

To evaluate our approach, let’s look at how the average
of the scores executed evolves over the iterations and how
it converges for each of the instances. Figure 3 shows the
evolution of the average scores of executed plans for all

agents. The ”peaks” each time represent the exchanges of plans
between the instances. Indeed, the adopted plan is associated
with a score which explains this effect. The baseline, in black,
shows convergence starting around the 200th iteration. The
sudden growth towards the 240th iteration is due to the fact
that MATSim Los Angeles 0.1% is set by default to stop all
innovation after 80% of the iterations have been completed. As
a result, for each agent, the plan with the best score is executed,
which explains this sudden and sustained increase. As a
reminder, the baseline is set with nb plans = 5, while the four
instances are set with nb plans = 1. The plan score for each
agent is then always the best score, and the trend observed
for the baseline with the sudden increase in the average of
executed plans is therefore not found. If we consider that
the convergence of the average scores is reached around the
240th iteration for the baseline, the average score associated
with it is around 105. We observe that this score is reached
earlier by all the instances executed in parallel . From the
52nd iteration, instances 0 1 and 3 reach the score considered
as the convergence score for the baseline, while instance 2
reaches this score around the 152nd iteration. The exchange
of plans between the instances seems benecial: the sudden
increase in the scores of the plans just after the exchanges
seems to decrease more or less according to the instances just
after systematically, while remaining higher than the average
score obtained before the exchange procedure. On average,
the baseline as well as the parallel instances each require
1.6 minutes per iteration. Running parallel instances requires
about 8 minutes every 50 iterations (here iter step = 50).
The convergence score, previously established at around 105
after around 6.4 hours for the baseline. For the parallel version,
this score is reached after about 1.5 hours by instance 0. Table
II shows these elements: it indicates for each instance the
iteration at which the convergence score is reached as well
as the associated necessary duration. Also, we can see the
speed-up compared to the baseline version.

TABLE II
ITERATION AND EXECUTION TIME TO REACH THE ”CONVERGENCE
SCORE” FOR EACH INSTANCE AND SPEED-UP COMPARED TO THE

BASELINE

Iteration Duration Speed-up compared to baseline
Baseline 225 6h
Instance 0 51 1.5h 4
Instance 1 51 1.5h 4
Instance 2 72 2h 3
Instance 3 160 4.6h 1.3

It is customary to check the consistency of some metrics
when providing a new approach for MATSim compared to a
baseline simulation. We have chosen here to check the shares
of each mode of transport between our parallel approach and
the baseline simulation, as well as the consistency of the road
volume between the two versions.

1) Comparison of mode shares between the two versions:
Figure 4 is generated directly by running the MATSim Los
Angeles 0.1% baseline. It makes it possible to observe the

919

Authorized licensed use limited to: Universite de Versailles St Quentin. Downloaded on March 08,2024 at 14:10:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Mode shares of the baseline MATSim Los Angeles 0.1%

distribution of the modes of transport according to the itera-
tion. Figure 5 is similar, it was generated from output data via
RStudio. It corresponds to instance 0. The distribution seems
quite similar between the two versions and the gures more or
less correspond. The car seems to be the preferred means of
transport at more than 60%, followed by public transport. The
distribution of the other modes of transport is quite similar
between the results of the baseline and those of our approach.
The other trends are also similar on the two versions. Instances
1, 2 and 3 show more or less the same results.

2) Trafc volume comparison: The volume of road links is
also an interesting indicator for comparing our approach with
the baseline and checking the consistency between the two
versions. Figure 6 compares two leg histograms. These are
les automatically generated by MATSim at each iteration. A
leg histogram depicts the number of agents arriving, departing
or en route, per time unit. There is one generated for each
mode of transport, and one confusing them all. Versions with
all modes of transport are displayed here. We have voluntarily
used the result of the 225th iteration for the baseline, and the
result of the 51st iteration for the parallel version, because
these are respectively the iterations for which the executions
reach what is considered to be the ”convergence score”. We
observe a trend and similar patterns between the two graphs.
There are admittedly very slight differences, but they can be
considered as negligible on the whole. We can easily say
that the number of agents arriving, departing or en route is
completely consistent between the two versions and this at
each hour of the day on the parallel version compared to the
baseline.

Figure 7 shows two graphs representing the volume of
vehicles by road link over the 7:00 a.m. - 8:00 a.m. time slot,
one for the baseline and the other for the parallel version. Only
10% of the road links are represented here, they were chosen
at random. We also observe here the same trend between the

Fig. 5. Mode shares of the parallel version of MATSim Los Angeles 0.1%

two versions, with slight negligible differences. We did the
same checks on a dozen other time slots with the same results.
We can say that the road volume between the two versions is
rather similar.

Although there are other metrics that could further push the
consistency checks between the two versions, those presented
in this paper conrm the idea that the results provided by
our approach maintain precision and give results that are
completely consistent with the baseline.

VI. CONCLUSION

The results obtained allow to obtain a speed-up of 4 at best,
potentially reducing the total execution time of MATSim by
several hours. Our approach certainly requires more resources,
but our analyzes allow us to afrm that the accuracy remains
correct and that the output is roughly similar in comparison
to the baseline. To go further, it may be relevant to test the
scalability, rst using a scenario with a larger volume of data
(such as MATSim Los Angeles 1% and 10% or the different
existing scenarios for Berlin). For a future study, we will
take advantage of other properties of the Unite and Conquer
approach in our experiments. For example, we will be able
to exploit the potential of multi-level parallelism. In addition,
we can consider the use of asynchronous communications and
fault tolerance. We can also consider greatly increasing the
number of parallel instances and working in shared memory.

920

Authorized licensed use limited to: Universite de Versailles St Quentin. Downloaded on March 08,2024 at 14:10:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Road volume on 10% of links from 8 a.m. to 9 a.m.

Fig. 7. Leg histogram : iter. 225 in baseline VS. iter 51 in parallel version

The modication of certain parameters, such as the iteration
steps during which processing between instances is to be
exploited. We could bring this approach to other road trafc
simulators based on multi-agent systems such as SUMO
or POLARIS for a future paper. Finally, the application of
the Unite and Conquer approach to the multi-agent trafc
simulator MATSim provides a real gain that paves the way
for a scaling effect for acceleration.

REFERENCES

[1] Horni, A, Nagel, K and Axhausen, K W. 2016. Introducing MATSim.
In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent
Transport Simulation MATSim, Pp. 3–8. London: Ubiquity Press. DOI:
http://dx.doi.org/10.5334/baw.1. License: CC-BY 4.0

[2] Adnan, M., F. C. Pereira, C. M. L. Azevedo, K. Basak, M. Lovric,
S. Raveau, Y. Zhu, J. Ferreira, C. Zegras and M. Ben-Akiva (2016)
SimMobility: A multi-scale integrated agent-based simulation platform,
paper presented at the 95th Annual Meeting of the Transportation Research
Board Forthcoming in Transportation Research Record, Washington, D.C.,
January 2016.

[3] Auld, J., M. Hope, H. Ley, V. Sokolov, B. Xu and K. Zhang (2016)
POLARIS: Agent-based modeling framework development and implemen-
tation for integrated travel demand and network and operations simulations,
Transportation Research Part C: Emerging Technologies, 64, 101-116.
101–116.

921

Authorized licensed use limited to: Universite de Versailles St Quentin. Downloaded on March 08,2024 at 14:10:25 UTC from IEEE Xplore. Restrictions apply.

[4] Nagel, K. 2016. Other Experiences with Computational Performance Im-
provements. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-
Agent Transport Simulation MATSim, Pp. 267–268. London: Ubiquity
Press. DOI: http://dx.doi.org/10.5334/baw.40. License: CC-BY 4.0 DOI:
http://dx.doi.org/10.5334/baw.52. License: CC-BY 4.0

[5] Nahid Emad, Serge Petiton. Unite and Conquer approach for high scale
numerical computing. International Journal of Computational Science and
Engineering, 2016, 14, pp.5 - 14. 〈10.1016/j.jocs.2016.01.007〉. 〈hal-
01609342〉

[6] Tomas Potuzak, ”Reduction of Inter-process communication in Dis-
tributed Simulation of Road Trafc”, 2020

[7] Johannes Nguyen, Simon T. Powers, Neil Urquhart, Thomas Farrenkopf,
Michael Guckert ”An overview of agent-based trafc simulators”, 2021

[8] Matthieu Mastio, Mahdi Zargayouna, Omer Rana, Gérard Scemama
”Méthodes de distribution pour les simulations de mobilité des voyageurs”,
2015

[9] Zhiyuan Ma, Munehiro Fukuda, ”A multiagent spatial simulation library
for parallelizing transport simulation”, 2015

[10] Chengxiang Zhuge, Mike Bithell, Chunfu Shao, Xia Li, Jian Go ”An
improvement in MATSim computing time for large-scale travel behaviour
microsimulation”, 2019

[11] Horni, A and Nagel, K. 2016. More About Conguring MATSim.
In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent
Transport Simulation MATSim, Pp. 35–44. London: Ubiquity Press. DOI:
http://dx.doi.org/10.5334/baw.4. License: CC-BY 4.0

[12] Dan Graur, Rodrigo Bruno, Joschka Bischoff, Marcel Rieser, Wolfgang
Scherr, Torsten Hoeer, Gustavo Alonso ”Hermes: Enabling efcient large-
scale simulation in MATSim”, 2021

[13] Rieser, M, Horni, A and Nagel, K. 2016. Let’s Get Started. In:
Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Trans-
port Simulation MATSim, Pp. 9–22. London: Ubiquity Press. DOI:
http://dx.doi.org/10.5334/baw.2. License: CC-BY 4.

[14] Nagel, K, Kickh ofer, B, Horni, A and Charypar, D. 2016. A Closer
Look at Scoring. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The
Multi-Agent Transport Simulation MATSim, Pp. 23–34. London: Ubiquity
Press. DOI: http://dx.doi.org/10.5334/baw.3. License: CC-BY 4.0

[15] http://mesocentre.centralesupelec.fr/
[16] https://github.com/matsim-scenarios/matsim-los-angeles (on the date of

01-20-2023)

922

Authorized licensed use limited to: Universite de Versailles St Quentin. Downloaded on March 08,2024 at 14:10:25 UTC from IEEE Xplore. Restrictions apply.

