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Abstract
Past studies on end-to-end meeting transcription have focused
on model architecture and have mostly been evaluated on sim-
ulated meeting data. We present a novel study aiming to op-
timize the use of a Speaker-Attributed ASR (SA-ASR) system
in real-life scenarios, such as the AMI meeting corpus, for im-
proved speaker assignment of speech segments. First, we pro-
pose a pipeline tailored to real-life applications involving Voice
Activity Detection (VAD), Speaker Diarization (SD), and SA-
ASR. Second, we advocate using VAD output segments to fine-
tune the SA-ASR model, considering that it is also applied to
VAD segments during test, and show that this results in a rela-
tive reduction of Speaker Error Rate (SER) up to 28%. Finally,
we explore strategies to enhance the extraction of the reference
speaker embeddings used as inputs by the SA-ASR system. We
show that extracting them from SD output rather than annotated
speaker segments results in a relative SER reduction up to 16%.

1. Introduction
Multi-speaker meeting transcription has recently become a vi-
brant and active research topic [1–4]. This task poses various
challenges, including distant microphones, overlapped speech,
and ambient noise. The earliest works on end-to-end (E2E)
models for this task [5, 6] had demonstrated the advantages of
an E2E model over a traditional system wherein different com-
ponents address different subtasks. Recent research primarily
concentrates on enhancing the E2E model architectures [7–9].
The work in [7] introduced a Transformer-based E2E Speaker-
Attributed ASR (SA-ASR) system for simultaneous recognition
of speech and speaker identities. Thereafter, SA-ASR was ex-
tended to accommodate diverse scenarios [10], address an un-
limited number of speakers [11], and cater to streaming appli-
cations [12]. Moreover, non-autoregressive models for multi-
speaker ASR [13] have been proposed.

While the model architecture is undoubtedly crucial, the ap-
plication of the E2E model to real-life data has not received
much attention. Due to the lack of significant amounts of
real meeting-style training data, training of multi-speaker ASR
models relies on simulated multi-speaker overlapped distant
speech data. To improve performance on real test data, these
models are adapted or fine-tuned on real training data. A few
studies [14–16] have discussed training and evaluation on real
recorded multi-speaker datasets, such as the AMI meeting cor-
pus [17] which still remains a challenging multi-speaker speech
transcription task.

Training and inference on real long-length multi-speaker
audio recordings is a non-trivial issue due to computational and
memory requirements. One approach to address this issue is to

segment the long recording at silence positions into disjoint seg-
ments [14]. Another approach is to segment it into fixed-sized
chunks and adjust the start/end times to non-overlapped word
boundaries [15]. Both approaches rely on ground-truth annota-
tions of the test set. In real-life applications, this information
is not available and a Voice Activity Detection (VAD) system
becomes essential for obtaining speech segments.

A second problem with training and inference on real multi-
speaker audio is how to obtain the reference speaker embed-
dings (a.k.a. speaker profiles) used as inputs by the SA-ASR
system. In real-life applications, front-end Speaker Diariza-
tion (SD) becomes essential for this purpose. While studies on
VAD [18, 19] and SD [20, 21] exist independently, there is little
discussion on how to optimally integrate them into an SA-ASR
pipeline to create a ready-to-use meeting transcription system.
Speaker assignment in SA-ASR is typically performed using an
x-vector-based speaker embedding model [22]. Preparation of a
representative template for each speaker typically involves av-
eraging the embeddings of candidate segments [7, 8, 15]. How-
ever, the selection of segments for better representing each
speaker remains a question.

The contributions of this paper include: (a) a VAD-SD-SA-
ASR pipeline for real meeting transcription; (b) fine-tuning of
SA-ASR on VAD output segments instead of ground-truth or
fixed-sized segments to better fit the test conditions; (c) a dis-
cussion on strategies to improve speaker assignment in SA-ASR
by leveraging various attributes related to VAD and SD, such as
the number and length of segments used to obtain speaker pro-
files. Experiments show that our proposed fine-tuning method
reduces the SER by up to 28% relative and that extracting
speaker profiles from SD output rather than annotated speaker
segments results further reduces it by up to 16% relative. To
the best of our knowledge, this is the first study that investigates
how attributes such as the number and the length of segments
impact the accuracy of the speaker profiles and the resulting
SA-ASR performance.

The rest of the paper is organized as follows. Section 2
presents the individual modules in our pipeline, including the
segmentation methods for raw meeting audio. Section 3 de-
scribes our pipeline approach and the preparation of the train-
ing, development, and test data. Section 4 presents our exper-
imental settings, followed by the discussion of results in Sec-
tion 5. Finally, Section 6 provides a conclusion.

2. Background
2.1. Voice Activity Detection: CRDNN

A Voice Activity Detection (VAD) system identifies speech and
non-speech segments in an audio signal, which is crucial for



applications like speech recognition. Neural network-based
models for VAD often include architectures like Convolutional
Neural Networks [23], Recurrent Neural Networks [24], Long
Short-Term Memory networks [25], etc. One of the common
architectures is CRDNN (Convolutional, Recurrent, and Dense
Neural Network) [26, 27]. It combines convolutional layers for
frequency variations, recurrent layers for temporal modeling,
and dense layers for feature mapping, which have succeeded in
various speech-related tasks.

2.2. Speaker Diarization: ECAPA-TDNN

Classical Speaker Diarization (SD) systems commonly rely on
clustering speaker embeddings [20] such as i-vectors [28], d-
vectors [29], and x-vectors [22]. Specifically, ECAPA-TDNN
(Emphasized Channel Attention, Propagation, and Aggregation
in Time-Delay Neural Network) [30] is a model used for com-
puting x-vectors, which are widely employed for speaker rep-
resentation in SD tasks. It enhances the traditional Time-Delay
Neural Network (TDNN) architecture by integrating channel at-
tention mechanisms, which dynamically emphasize relevant in-
formation and suppress noise, resulting in more robust speaker
embeddings. ECAPA-TDNN utilizes both forward and back-
ward information propagation to capture long-term dependen-
cies and context in input sequences, ensuring effective model-
ing of temporal relationships for speaker verification. Addition-
ally, it employs aggregation techniques to combine information
across multiple frames, creating a comprehensive representa-
tion of speaker characteristics. Our SD system utilizes Spec-
tral Clustering [31] as clustering algorithm, and the overlapped
speech segments are split equally among the adjacent segments
with different speakers.

2.3. End-to-end Speaker-Attributed ASR

A Transformer-based end-to-end Speaker-Attributed ASR (SA-
ASR) system was proposed in [7]. Following the Serialized
Output Training (SOT) principle [32], the output is the con-
catenation of all speakers’ sentences in first-in-first-out order,
where each token is associated with one speaker ID and dis-
tinct speakers are separated by an <sc> token. As shown in
Figure 1, the inputs to the model consist of an acoustic feature
sequence and a set of reference speaker embeddings obtained
from enrollment data. A Conformer-based ASR Encoder first
encodes acoustic information, along with a Speaker Encoder to
encode speaker information. Subsequently, the Transformer-
based ASR Decoder and Speaker Decoder modules decode text
and speaker information, respectively. The ASR block and the
speaker block mutually share information through the ASR De-
coder and the Speaker Decoder, enabling mutual assistance be-
tween text recognition and speaker identification. In addition
to the ASR decoder’s output, which consists of tokens corre-
sponding to different speakers, the Speaker Decoder computes

Figure 1: Diagram of SA-ASR [7].

a speaker representation corresponding to each ASR output to-
ken. This representation is used to assign speakers by comput-
ing a dot product with the speaker embedding templates.

2.4. AMI segmentation

2.4.1. Based on fixed-sized chunks

The AMI corpus has been recently segmented using fixed chunk
and hop sizes [15]. If the start/end time of a segment is within
an overlapped speech region, it is modified to be 2 s outside
of the overlap region. If the start/end time of a segment falls
within a word, it is adjusted to the start/end time of that word us-
ing AMI’s word boundary annotations. This approach simulates
how to process meeting audio in situations where ground-truth
silence/non-speech positions between utterances are not avail-
able at test time. However, speaker overlap and word boundary
annotations are still required.

2.4.2. Based on ground-truth silence positions

Multi-speaker ASR systems applied on the AMI corpus typi-
cally use ground-truth segment annotations for fine-tuning and
test [14, 16]. More specifically, in [14], the concept of an “ut-
terance group” is introduced by segmenting the recording at
silence/non-speech positions between utterances. This allows
the model to transcribe text and speaker information more ef-
fectively using the first-in-first-out principle.

3. Proposed methods
3.1. Overall system

Our proposed system consists of VAD, SD, and SA-ASR mod-
ules. Figure 2 illustrates the overall pipeline, which starts with
VAD to divide the entire meeting into speech and non-speech
segments. The VAD system takes as input the single-channel
signal obtained by delay-and-sum (DAS) beamforming [33,34]
applied to the AMI 8-channel Multiple Distant Microphone
(MDM) signal. Since SA-ASR requires speaker profiles as in-
puts, as mentioned in Section 2.3, we need an SD model to de-
termine the number of speakers in the entire meeting and iden-
tify the speech segments for each speaker. We use the results of
VAD to perform SD on speech segments. Subsequently, based
on the SD results, we use the non-overlapped portions of speech
from each speaker to compute an average speaker embedding
for that speaker. Finally, the segments obtained by VAD and
the speaker profiles obtained through SD serve as input to SA-
ASR, allowing us to retrieve the speech content of all differ-

Figure 2: Pipeline of the proposed system.



Figure 3: Preparation of the AMI corpus for the training, development, and test sets.

ent speakers in a first-in-first-out order. The SA-ASR system
is single-channel and operates on the first channel of the AMI
MDM signal.

3.2. Data preparation

In real-life applications, ground-truth silence positions and ut-
terance/word boundaries are not available at test time, so testing
requires the use of VAD for segmentation. In [15], the SA-
ASR model fine-tuned on fixed-sized segments and tested on
VAD segments was found to yield poor results, which can be
attributed to mismatched fine-tuning and test segment lengths.
To adapt the model to the length of VAD segments during test,
we also utilize VAD segments during the training phase. The
following outlines the preparation of training, development, and
test data on the AMI corpus.

3.2.1. Preparation of training, development, and test sets

The process of obtaining speech segments, speaker, and text la-
bels is the same for training, development, and test data. As
shown in Figure 3, all meeting data is segmented into variable-
sized speech segments using VAD. We merge adjacent speech
segments separated by a silence shorter than a given duration
threshold, resulting in an average segment length which de-
pends on the specified threshold. Using AMI’s annotation files
with information about speaker segments and word boundaries,
we assign text and speaker sequences to each segment in a first-
in-first-out order.

The process of obtaining speaker profiles differs for training
and development vs. test. For the training and validation sets,
we extract all speech segments for each speaker in each meet-
ing based on the ground-truth annotated speaker segments, and
select the n longest segments for each speaker. We use a pre-
trained speaker embedding model to embed all n segments and
calculate the average embedding as the template for the associ-
ated speaker. The process for the test set is different because, in
real test scenarios, the number of speakers is not known a priori.
To solve this issue, we apply the SD model to the VAD segments
to estimate the number of speakers and the speech segments for
each speaker. The speaker profiles for all speakers are then de-
rived in the same way as for the training and validation sets.

3.2.2. Remapping of speaker IDs on the test set

When computing speaker profiles for the training and develop-
ment sets, the speaker IDs align with the labels used for speaker
identification, as they both rely on the same speaker segment an-
notation file. However, during test, the SD results may predict a
different number of speakers and assign new IDs to the recog-
nized speakers. This necessitates remapping SD speaker IDs to
ground-truth speaker IDs for evaluation purposes. This remap-
ping process involves using the Hungarian algorithm [35], as
implemented by [34], during the calculation of the diarization
error rate.1

4. Experimental settings
4.1. Dataset and metrics

4.1.1. Simulated multi-speaker LibriSpeech corpus

To achieve optimal performance in AMI, it is imperative to
undergo pretraining with a larger and cleaner dataset [14–16].
We pretrained the SA-ASR model on distant-microphone multi-
speaker data simulated using the LibriSpeech corpus [36]. We
utilized the train-960 and dev-clean subsets to construct our
training and development datasets, creating a far-field micro-
phone and multi-speaker set with 960 hours for training and 20
hours for development. We generate Room impulse responses
(RIRs) using the gpuRIR toolkit [37]. The length, width and the
height of the room are randomly drawn in the range of 3 to 8 m
and 2.4 to 3 m, respectively. The microphone and speaker posi-
tions are randomly sampled with the constraints that the micro-
phone is at most 0.5 m away from the room center, the speakers
are at least 0.5 m away from the walls, and their heights are 0.6
to 0.8 m above the middle plane. The RT60 value is randomly
drawn in the range of 0.4 to 1 s. Each multi-speaker signal
is generated by randomly drawing one utterance from each of
1 to 3 speakers, mixing these utterances convolved by RIRs,
and concatenating the corresponding transcripts separated by
the <sc> token. The start time of each utterance is shifted rela-
tive to the previous one, with a delay ranging from 0.5 seconds
to the maximum duration of the previous utterance. This realis-
tic choice also guarantees the first-in-first-out principle behind

1https://github.com/speechbrain/speechbrain/
blob/develop/tools/der_eval/md-eval.pl



SOT. Each multi-speaker signal is linked to 8 speaker profiles2,
encompassing both the actual speakers in the signal and tem-
plates from randomly selected speakers out of the 2,484 Lib-
riSpeech speakers. Speaker embeddings are computed as the
average of two random enrollment sentences for each speaker.

4.1.2. AMI meeting corpus

We conducted fine-tuning and testing on the AMI corpus, which
consists of approximately 100 h of multiple distant microphone
(MDM) recordings with 3 to 5 speakers. In this paper, the
VAD module takes the DAS beamformed signal obtained from
8 MDM channels as input, while the SA-ASR module takes
only the first MDM channel. We assessed three alternative
segmentation methods. The first method, following [15], in-
volves fixed-sized segmentation with a chunk size of 5 s and a
2 s hop size, followed by adjusting the start/end times to non-
overlapped word boundaries as described in Section 2.4.1. The
second method, following [14, 16], involves segmenting based
on ground-truth silence/non-speech positions between utter-
ances: we extracted segments for all speakers from the ground-
truth speaker and utterance boundary annotations, merged over-
lapped segments, and discarded the resulting segments which
were longer than 100 s.

The third segmentation method described in Section 3.2
uses VAD to extract the segments. We fused adjacent segments
based on silence duration thresholds of 0.1, 0.3, 0.5, 0.7, and
0.9 s, resulting in datasets with different numbers of segments
and different average segment lengths. Table 1 provides the
statistics and average lengths for the training set under all seg-
mentation methods.

4.1.3. Metrics

We evaluate the SA-ASR system’s ASR and speaker assignment
performance using the word error rate (WER) and the token-
level speaker error rate (SER)3, respectively. Furthermore, we
compute the speaker counting accuracy [15,38] in terms of con-
fusion scores calculated as

Confusion score(i, k) =
N i

k

Nk
, (1)

where N i
k is the number of test signals where the estimate indi-

cates i speakers when the ground truth has k speakers, and Nk

represents the number of test signals where the ground truth has
k speakers.

4.2. Model and training setup

Our experiments were implemented using the SpeechBrain
toolkit [34]. For VAD, we used the CRDNN model4 pretrained
on Libriparty [39]. For SD, we use x-vectors as speaker em-
beddings and the Spectral Clustering [31] method. The SD and
SA-ASR systems share a common speaker embedding model,
ECAPA-TDNN5, which is pretrained on the VoxCeleb1 [40]
and VoxCeleb2 [41] training datasets, yielding 192-dimensional
embeddings. Our text tokenizer is a SentencePiece model [42]

2We chose a higher number to train a robust model, as real-life di-
arization results may identify more speakers than actually present.

3The token-level SER is calculated from sequences of estimated and
ground-truth token-level speaker labels, in the same way as the WER.

4Available at https://huggingface.co/speechbrain/
vad-crdnn-libriparty

5Available at https://huggingface.co/speechbrain/
spkrec-ecapa-voxceleb

with a vocabulary of 5,000 tokens. In SA-ASR, the Conformer-
based encoder, the Transformer-based decoder, and the speaker
decoder have 12, 6, and 2 layers, respectively. All multi-head
attention mechanisms have 4 heads, the model dimension is set
to 256, and the size of the feedforward layer is 2,048. The num-
ber of parameters of the employed CRDNN, ECAPA-TDNN,
and SA-ASR models is 0.1M, 22.15M and 61.1M, respectively.

The ASR module in SA-ASR was pretrained on simulated
multi-speaker Librispeech data for 360k iterations using the
Adam optimizer with a learning rate of 5 × 10−4. The ASR
and speaker modules in SA-ASR were then further pretrained
for 300k iterations using a learning rate of 2.5× 10−4. Finally,
we fine-tuned the model on real AMI single distant microphone
(SDM) data for 20k iterations, using the Adam optimizer with a
learning rate of 3 × 10−4. We tuned only the ASR module for
the first 10k iterations and performed joint tuning of the ASR
and speaker modules in the last 15k iterations. Those numbers
of iterations were fixed in preliminary experiments based on the
development set WER.

5. Discussion of results
5.1. Effectiveness of fine-tuning on VAD segments

In practical applications, it is necessary to divide long contin-
uous meeting audio into smaller-sized segments. As detailed
in Section 4.1.2, our experiments involve three alternative seg-
mentation methods. When fine-tuning the SA-ASR system, we
employed different training data segmented using these three
distinct methods. To emulate real-life test conditions, the pri-
mary focus is on testing all models using VAD output segments.
The results presented in Table 1 showcase the results on VAD
segments with 0.5 s silence threshold, consistent with the sub-
sequent tables. To gain a more comprehensive understanding
of the model’s capabilities across various speaker counts, we
report the results on subsets comprising 1 to 3 speakers. For
comparison, we also report the performance of each model on a
matched test segmented in the same way as the training set.

Looking at the last column in Table 1, models fine-tuned on
VAD segments consistently exhibit superior performance when
tested on VAD segments compared to models fine-tuned on
fixed-sized or ground-truth segments. The relative WER reduc-
tion can be up to 19% (from 55.91% to 45.09%), and the relative
SER reduction can be as high as 28% (from 34.94% to 25.04%).
However, this difference is not as pronounced when models are
tested on their respective matched test sets. This underscores
the significance of training on data that closely aligns with the
test data type. For real-life applications relying on VAD seg-
ments, it is advisable to fine-tune on VAD segments, even when
speaker segment annotations are available in the training set. It
is noteworthy to highlight that, even with comparable average
segment lengths (10.19 s and 10.33 s), fine-tuning on VAD seg-
ments can result in a 15% (from 54% to 46.13%) lower relative
WER and a 13% (from 31.02% to 27.02%) lower relative SER
compared to the model fine-tuned on ground-truth segments.

Focusing on the models fine-tuned on VAD segments in
Table 1, it can be seen that the model fine-tuned on segments
with 0.5 s VAD silence threshold exhibits a lower WER, which
can be attributed to the matched fine-tuning and test segment
lengths. However, the SER shows a different trend. Specifically,
as the average fine-tuning segment length becomes longer, the
corresponding SER decreases. The SER exhibits a relative re-
duction of 22% (from 17.12% to 13.35%), 23% (from 29.15%
to 22.31%), and 28% (from 38.07% to 27.30%) for 1, 2, and 3



Table 1: WER and SER (%) on the AMI test set using different segmentation methods for SA-ASR fine-tuning and testing. The speaker
profiles are computed by averaging the embeddings obtained from the 3 longest annotated segments.

Train/dev
seg method

Train set statistics Test (matched seg method) Test (VAD seg with 0.5 s silence threshold)

1,2,3,4-spk mix 1-spk 2-spk mix 3-spk mix 1,2,3,4-spk mix

Sil. thresh # Seg Avg dur # Seg Avg dur WER SER WER SER WER SER WER SER # Seg Avg dur WER SER

Fixed-size (5 s) - 90,426 6.59 s 10,234 6.63 s 44.54 28.54 49.41 28.92 50.91 29.78 57.48 36.29 3,586 6.96 s 55.91 34.94
Ground-truth - 21,917 10.19 s 2,504 8.67 s 43.42 21.81 44.47 23.08 50.74 28.21 56.77 31.47 3,586 6.96 s 54.00 31.02

VAD

0.1 s 93,150 1.59 s 10,605 1.59 s 44.62 29.03 30.53 17.12 45.67 29.15 53.04 38.07

3,586 6.96 s

47.02 30.19
0.3 s 57,589 3.40 s 6,095 3.71 s 44.50 28.85 31.95 16.17 43.54 28.99 52.38 35.69 46.33 28.99
0.5 s 35,091 6.18 s 3,586 6.96 s 45.09 27.46 31.25 15.53 42.05 23.21 50.57 30.54 45.09 27.46
0.7 s 22,027 10.33 s 2,265 10.24 s 45.80 24.82 32.13 13.51 41.74 22.17 49.82 27.00 46.13 27.02
0.9 s 14,460 15.65 s 1,519 13.15 s 47.08 24.95 33.05 13.35 42.52 22.31 51.39 27.30 46.27 25.04

Note: For all the tables, we employed the SCTK toolkit [43] to conduct significance tests, specifically the Matched Pair Sentence Segment test. We
highlight in bold the best WER/SER result and the results statistically equivalent to it at a 0.05 significance level.

Table 2: Speaker counting accuracy (%) on the AMI test set
with 0.5 s VAD silence threshold. We mapped the speaker num-
ber from SD output to have an evaluation without SA-ASR.

Method # Speakers Estimated # speakers

1 2 3 4 >4

W
ith

ou
t

SA
-A

SR

SD

1 89.20 10.27 0.53 0.00 0.00
2 59.18 35.37 5.34 0.11 0.00
3 29.73 48.65 19.46 2.16 0.00
4 10.24 39.37 33.07 14.57 2.76

SA
-A

SR
Tr

ai
n/

de
v

se
g

m
et

ho
d Fixed-size (5 s)

1 80.04 17.28 2.29 0.32 0.05
2 14.09 69.01 16.28 0.54 0.00
3 0.73 38.93 50.04 9.18 0.91
4 0.40 15.98 56.96 20.90 4.50

Ground-truth

1 89.00 9.66 1.22 0.10 0.00
2 20.41 63.53 15.28 0.54 0.10
3 2.54 35.39 48.63 12.15 0.90
4 0.00 11.47 54.50 29.50 3.27
1 94.76 4.91 0.26 0.05 0.00

VAD 2 21.24 67.68 10.07 0.87 0.00
(0.5 s sil. thresh) 3 2.72 40.29 47.00 8.89 0.72

4 0.00 11.57 59.91 23.55 3.71

speakers, respectively, when transitioning from an average fine-
tuning length of 1.59 s to 15.65 s. This indicates that, as the
training segments become longer, SA-ASR demonstrates im-
proved capability in assigning speaker identities.

Table 2 reports the speaker counting accuracy of the three
systems. First of all, the assignment of speaker labels solely
based on SD is not accurate, particularly for multi-speaker sce-
narios. This underscores the critical role of SA-ASR systems.
For the comparison of SA-ASR models, on the 1-speaker test
subset, the model fine-tuned on VAD segments exhibits the
highest accuracy at 94.76%, compared 80.01% for the model
fine-tuned on fixed-sized segments. However, the latter sys-
tem demonstrates slightly higher accuracy when the number of
speakers is 2 (69.01%) or 3 (50.04%). The model fine-tuned
on ground-truth segments performs better when the number of
speakers is as high as 4 (29.50%). Future studies can explore
how to employ different training techniques for datasets with
specific numbers of speakers.

5.2. Extraction of speaker profiles from SD output

So far, we have used annotated speaker segments to extract the
speaker profiles in the training, development, and test sets. In

a real-life situation, using SD segments to extract the speaker
profiles in the test set is desirable. However, this leads to sta-
tistical differences between the fine-tuning and test phases. To
understand how this affects the SER, we evaluate both types of
templates in the test set. The resulting performance when fine-
tuning and testing on VAD output segments with 0.5 s silence
threshold is presented in Table 3.

Surprisingly, while the model is fine-tuned on speaker pro-
files extracted from annotated speaker segments, extracting
speaker profiles from SD segments during test reduces the SER
by up to 16% relative (from 15.53% to 12.97%). We attribute
this to the fact that human segmentation is partly inaccurate, es-
pecially when marking the boundaries of each speaker’s speech
segments. By contrast, SD can offer more precise speech
boundaries, especially for the longest non-overlapped segments
which are utilized to compute the speaker profiles.

Surprisingly too, these improved speaker profiles do not
affect the WER, despite the fact that the derived token-level
weighted speaker profiles are improved and fed back to the ASR
Decoder (see Figure 2). This suggests that this feedback mech-
anism proposed in [7] may not fulfil its goal of enabling the
Speaker Decoder to assist the ASR Decoder.

5.3. Extraction of speaker profiles from different segment
lengths

Finally, we explored the extraction of speaker profiles from
varying segment lengths and with different numbers of candi-
date segments. To begin with, the impact of using VAD with
0.1 s to 0.9 s silence threshold as input segments to the SD
system is analyzed in Table 4. For each SD result, we filtered
candidate segments for each speaker by considering different
length intervals. The mean embedding for each speaker was

Table 3: SER (%) on the AMI test set with 0.5 s VAD si-
lence threshold as a function of the speaker profiles used for
fine-tuning and testing. Ref: templates extracted from anno-
tated speaker segments. Test: templates extracted from SD out-
put. The WER is unaffected and equal to that in Table 1 (1-spk
31.25%, 2-spk mix 42.05%, 3-spk mix 50.57%, total 45.09%).

Train/dev Test 1-spk 2-spk mix 3-spk mix Total

Ref Ref 15.53 23.21 30.54 27.46
Ref Test 12.97 20.76 27.43 26.54



Table 4: SER (%) on the AMI test set with 0.5 s VAD silence threshold as a function of the VAD silence threshold and the length of
candidate segments used to extract non-overlapped speaker profiles. The WER is unaffected and equal to that in Table 1.

VAD segments Using all 2–5 s segments Using all 5–10 s segments Using all 6–50 s segments

Sil. thresh Avg dur 1-spk 2-spk mix 3-spk mix 1-spk 2-spk mix 3-spk mix 1-spk 2-spk mix 3-spk mix

0.1 s 1.59 s 12.79 20.62 27.44 60.53 ✝ 54.96 ✝ ✝ ✝ ✝ ✝
0.3 s 3.40 s 13.09 20.85 27.04 14.16 21.76 28.08 19.03 ✝ 26.18 ✝ 32.48 ✝
0.5 s 6.18 s 12.83 20.93 27.59 13.88 21.82 27.97 12.97 20.76 27.43
0.7 s 10.33 s 14.26 22.46 27.71 14.17 22.53 27.83 12.76 20.98 27.71
0.9 s 15.65 s 14.58 22.16 27.84 12.94 21.53 27.49 14.11 21.75 27.81

✝: The VAD output segments with 0.1 s or 0.3 s silence threshold are inadequate for obtaining enough candidate segments with the
specified length, resulting in unavailable or abnormal speaker assignment results.

then calculated from all segments in that length interval. The
results showcased in Table 4 reveal several good solutions with
either short or long candidate segment lengths. When candidate
segment lengths fall within the range of 2 to 5 s, VAD silence
thresholds below 0.5 s are preferable to longer ones, with a rela-
tive SER reduction of up to 12% (12.79% compared to 14.58%).
On the contrary, when using longer candidate segments ranging
from 6 to 50 s, short VAD silence thresholds are inadequate and
VAD silence thresholds above 0.5 s are preferable.

We further examined how different configurations, includ-
ing the presence of overlapping segments, the number of can-
didate segments, and the length of candidate segments, impact
the speaker profiles and the resulting SER. Table 5 illustrates
the influence of these attributes using VAD segments with 0.5 s
silence threshold as inputs to SD. Using all candidate segments
instead of the 2 or 10 longest leads to an enhanced speaker rep-
resentation irrespective of the segment length, as evidenced by a
lower SER up to 15% relative (from 15.02% to 12.83%). More-
over, shorter candidate segments exhibit a greater sensitivity to
the number of segments. This can be attributed to the fact that a
larger number of segments enables a more robust and compre-
hensive representation of each speaker. The presence of over-
lapping segments among the candidate segments does not ap-
pear to have a significant impact. Using segment annotations,
we compute the number of overlapping clips involving varying
numbers of speakers. Subsequently, for each speaker count, we
calculate the quantity of overlapping clips across different du-
rations of overlap. Figure 4 presents statistical findings across
the complete AMI corpus, revealing a minimal occurrence of 2,
3, and 4 overlapping speaker regions.

Figure 4: Histograms of speaker overlaps on the AMI corpus.
Only clips shorter than 10 s are shown.

Figure 5 depicts the cosine similarity between the speaker
embeddings of the candidate segments in one meeting for the
three specified segment lengths. Segments in the range of 6 to
50 s exhibit a higher similarity compared to those in the range of
2 to 5 s, leading to a slightly lower SER (19.62% vs. 19.88%).

Finally, note that here again the various speaker profiles ex-

Table 5: SER (%) on the AMI test set with 0.5 s VAD silence
threshold as a function of the number and the length of can-
didate segments used to extract speaker profiles. The WER is
unaffected and equal to that in Table 1.

Candidate segments SER

Overlap # seg Dur 1-spk 2-spk mix 3-spk mix

no 2 2–5 s 15.02 23.72 29.75
no 10 2–5 s 14.44 21.92 27.82
no all 2–5 s 12.83 20.93 27.59
yes all 2–5 s 12.80 20.81 27.28
no 2 5–10 s 13.09 21.29 28.00
no 10 5–10 s 14.03 21.69 27.76
no all 5–10 s 13.88 21.82 27.97
yes all 5–10 s 13.93 21.72 27.92
no 2 6–50 s 13.04 21.42 27.53
no 10 6–50 s 13.33 21.08 27.13
no all 6–50 s 12.97 20.76 27.43
yes all 6–50 s 13.06 20.81 27.41

Figure 5: Similarity matrices between the speaker embeddings
of the candidate segments in meeting ES2004c. With the three
specified segment lengths, the number of candidate segments
is 154, 81, and 96, and the resulting SER for that meeting is
19.88%, 19.65%, and 19.62%, respectively.

plored in Tables 4 and 5 do not affect the WER.

6. Conclusion
We focused on enhancing speaker assignment in SA-ASR for
real-life meetings. We proposed a VAD-SD-SA-ASR pipeline
and advocated for fine-tuning on VAD segments instead of
fixed-size segments. We showed that this can lead to relative
SER reduction up to 28%. We then explored strategies for ex-
tracting speaker profiles by varying the VAD and SD configu-
rations. Our results reveal that extracting them from SD output



rather than annotated speaker segments results reduces the SER
by up to 16% relative. Moreover, while extracting speaker pro-
files from short or long segments can yield a similar SER, the
latter results in improved speaker representation and speaker
similarity across segments and is less sensitive to the number
of segments averaged to obtain the template. Finally, we have
found that improved speaker profiles do not affect the WER;
this suggests that an effective feedback mechanism enabling the
Speaker Decoder to assist the ASR Decoder is still to be found.
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