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1Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
2Vivoka, Metz, France

1firstname.lastname@inria.fr,2firstname.lastname@vivoka.com

Abstract
Past studies on end-to-end meeting transcription have focused
on model architecture and have mostly been evaluated on simu-
lated meeting data. We present a novel study aiming to optimize
the use of a Speaker-Attributed ASR (SA-ASR) system in real-
life scenarios, such as the AMI meeting corpus, for improved
speaker assignment of speech segments. First, we propose a
pipeline tailored to real-life applications involving Voice Activ-
ity Detection (VAD), Speaker Diarization (SD), and SA-ASR.
Second, we advocate using VAD output segments to fine-tune
the SA-ASR model, considering that it is also applied to VAD
segments during test, and show that this results in a relative re-
duction of Speaker Error Rate (SER) up to 28%. Finally, we
explore strategies to enhance the extraction of the speaker em-
bedding templates used as inputs by the SA-ASR system. We
show that extracting them from SD output rather than annotated
speaker segments results in a relative SER reduction up to 20%.

1. Introduction
Multi-speaker meeting transcription has recently become a vi-
brant and active research topic [1–4]. This task poses various
challenges, including distant microphones, overlapped speech,
and ambient noise. The earliest works on end-to-end (E2E)
models for this task [5, 6] had demonstrated the advantages of
an E2E model over a traditional system wherein different com-
ponents address different subtasks. Recent research primarily
concentrates on enhancing the E2E model architectures [7–9].
The work in [7] introduced a Transformer-based E2E Speaker-
Attributed ASR (SA-ASR) system for simultaneous recognition
of speech and speaker identities. Thereafter, SA-ASR was ex-
tended to accommodate diverse scenarios [10], address an un-
limited number of speakers [11], and cater to streaming appli-
cations [12]. Moreover, non-autoregressive models for multi-
speaker ASR [13] have been proposed.

While the model architecture is undoubtedly crucial, the
application of the E2E model to real-world data has not re-
ceived much attention. Due to the lack of significant amounts
of real meeting-style training data, training of multi-speaker
ASR models relies on simulated multi-speaker overlapped dis-
tant speech data. To improve performance on real test data,
these models are adapted or fine-tuned on real training data.
A few studies [14–16] have discussed training and evaluation
on real recorded multi-speaker datasets, such as the AMI meet-
ing corpus [17] which still remains a challenging multi-speaker
speech transcription task.

Training and inference on real long-length multi-speaker
audio recordings is a non-trivial issue due to computational and
memory requirements. One approach to address this issue is to

segment the long recording at silence positions into disjoint seg-
ments [14]. Another approach is to segment it into fixed-sized
chunks and adjust the start/end times to non-overlapped word
boundaries [15]. Both approaches rely on the ground-truth ut-
terance or word boundaries. In real-life applications, this infor-
mation is not available and a Voice Activity Detection (VAD)
system becomes essential for obtaining speech segments.

A second problem with training and inference on real multi-
speaker audio is how to obtain the speaker embedding templates
used as inputs by the SA-ASR system. In real-life applications,
front-end Speaker Diarization (SD) becomes essential for this
purpose. While studies on VAD [18, 19] and SD [20, 21] exist
independently, there is little discussion on how to optimally in-
tegrate them into an SA-ASR pipeline to create a ready-to-use
meeting transcription system. Speaker assignment in SA-ASR
is typically performed using an x-vector-based speaker embed-
ding model [22]. Preparation of a representative template for
each speaker typically involves averaging the embeddings of
candidate segments [7, 8, 15]. However, the selection of seg-
ments for better representing each speaker remains a question.

The contributions of this paper include: (a) a VAD-SD-SA-
ASR pipeline for real meeting transcription; (b) fine-tuning of
SA-ASR on VAD output segments instead of ground-truth or
fixed-sized segments to better fit the test conditions; (c) a dis-
cussion on strategies to improve speaker assignment in SA-ASR
by leveraging various attributes related to VAD and SD, such as
the number and length of segments used to obtain speaker em-
bedding templates. Experiments show that our proposed fine-
tuning method reduces the SER by up to 28% relative and that
extracting speaker embedding templates from SD output rather
than annotated speaker segments results further reduces it by
up to 20% relative. To the best of our knowledge, this is the
first study that investigates how attributes such as the number
and the length of segments impact the accuracy of the speaker
embedding templates and the resulting SA-ASR performance.

The rest of the paper is organized as follows. Section 2
presents the individual modules in our pipeline, including the
segmentation methods for row meeting audio. Section 3 de-
scribes our pipeline approach and the preparation of the train-
ing, development, and test data. Section 4 presents our exper-
imental settings, followed by the discussion of results in Sec-
tion 5. Finally, Section 6 provides a conclusion.

2. Background
2.1. Voice Activity Detection: CRDNN

A Voice Activity Detection (VAD) system identifies speech and
non-speech segments in an audio signal, which is crucial for
applications like speech recognition. Neural network-based



models for VAD often include architectures like Convolutional
Neural Networks [23], Recurrent Neural Networks [24], Long
Short-Term Memory networks [25], etc. One of the common
architectures is CRDNN (Convolutional, Recurrent, and Dense
Neural Network) [26, 27]. It combines convolutional layers for
frequency variations, recurrent layers for temporal modeling,
and dense layers for feature mapping, which have succeeded in
various speech-related tasks.

2.2. Speaker Diarization: ECAPA-TDNN

Classical Speaker Diarization (SD) systems commonly rely on
clustering speaker embeddings [20] such as i-vectors [28], d-
vectors [29], and x-vectors [22]. Specifically, ECAPA-TDNN
(Emphasized Channel Attention, Propagation, and Aggregation
in Time-Delay Neural Network) [30] is a model used for com-
puting x-vectors, which are widely employed for speaker rep-
resentation in SD tasks. It enhances the traditional Time-Delay
Neural Network (TDNN) architecture by integrating channel at-
tention mechanisms, which dynamically emphasize relevant in-
formation and suppress noise, resulting in more robust speaker
embeddings. ECAPA-TDNN utilizes both forward and back-
ward information propagation to capture long-term dependen-
cies and context in input sequences, ensuring effective model-
ing of temporal relationships for speaker verification. Addition-
ally, it employs aggregation techniques to combine information
across multiple frames, creating a comprehensive representa-
tion of speaker characteristics.

2.3. End-to-end Speaker-Attributed ASR

A Transformer-based end-to-end Speaker-Attributed ASR (SA-
ASR) system was proposed in [7]. Following the Serialized
Output Training (SOT) principle [31], the output is the concate-
nation of all speakers’ sentences in first-in-first-out order, where
each token is associated with one speaker ID and distinct speak-
ers are separated by an <sc> token. As shown in Figure 1, the
inputs to the model consist of an acoustic feature sequence and
a set of reference speaker embeddings (a.k.a. speaker embed-
ding templates) obtained from enrollment data. A Conformer-
based ASR Encoder first encodes acoustic information, along
with a Speaker Encoder to encode speaker information. Sub-
sequently, the Transformer-based ASR Decoder and Speaker
Decoder modules decode text and speaker information, respec-
tively. The ASR block and the speaker block mutually share
information through the ASR Decoder and the Speaker De-
coder, enabling mutual assistance between text recognition and
speaker identification. In addition to the ASR decoder’s output,
which consists of tokens corresponding to different speakers,
the Speaker Decoder computes a speaker representation corre-
sponding to each ASR output token. This representation is used
to assign speakers by computing a dot product with the speaker
embedding templates.

Figure 1: Diagram of SA-ASR [7].

2.4. AMI segmentation

2.4.1. Based on fixed-sized chunks

The AMI corpus has been recently segmented using fixed chunk
and hop sizes [15]. If the start/end time of a segment is within
an overlapped speech region, it is modified to be 2 s outside
of the overlap region. If the start/end time of a segment falls
within a word, it is adjusted to the start/end time of that word us-
ing AMI’s word boundary annotations. This approach simulates
how to process meeting audio in situations where ground-truth
silence/non-speech positions between utterances are not avail-
able at test time. However, speaker overlap and word boundary
annotations are still required.

2.4.2. Based on ground-truth silence positions

Multi-speaker ASR systems applied on the AMI corpus typi-
cally use ground-truth segment annotations for fine-tuning and
test [14, 16]. More specifically, in [14], the concept of an “ut-
terance group” is introduced by segmenting the recording at
silence/non-speech positions between utterances. This allows
the model to transcribe text and speaker information more ef-
fectively using the first-in-first-out principle.

3. Proposed methods
3.1. Overall system

Our proposed system consists of VAD, SD, and SA-ASR mod-
ules. Figure 2 illustrates the overall pipeline, which starts with
VAD to divide the entire meeting into speech and non-speech
segments. The VAD system takes as input the single-channel
signal obtained by delay-and-sum beamforming applied to the
AMI 8-channel Multiple Distant Microphone (MDM) signal.
Since SA-ASR requires speaker embedding templates as inputs,
as mentioned in Section 2.3, we need an SD model to deter-
mine the number of speakers in the entire meeting and identify
the speech segments for each speaker. We use the results of
VAD to perform SD on speech segments. Subsequently, based
on the diarization results, we use the non-overlapped portions
of speech from each speaker to compute an average speaker
embedding for that speaker. Finally, the segments obtained
through VAD and the speaker embedding templates obtained
through SD serve as input to SA-ASR, allowing us to retrieve
the speech content of all different speakers in a first-in-first-out
order. The SA-ASR system is single-channel and operates on
the first channel of the AMI MDM signal.

Figure 2: Pipeline of the proposed system.



Figure 3: Preparation of the AMI corpus for the training, development, and test sets.

3.2. Data preparation

In real-life applications, ground-truth silence positions and ut-
terance/word boundaries are not available at test time, so testing
requires the use of VAD for segmentation. In [15], the SA-
ASR model fine-tuned on fixed-sized segments and tested on
VAD segments was found to yield poor results, which can be
attributed to mismatched fine-tuning and test segment lengths.
To adapt the model to the length of VAD segments during test,
we also utilize VAD segments during the training phase. The
following outlines the preparation of training, development, and
test data on the AMI corpus.

3.2.1. Preparation of training, development, and test sets

The process of obtaining speech segments, speaker, and text la-
bels is the same for training, development, and test data. As
shown in Figure 3, all meeting data is segmented into variable-
sized speech segments using VAD. We merge adjacent speech
segments separated by a silence shorter than a given duration
threshold, resulting in an average segment length which de-
pends on the specified threshold. Using AMI’s annotation files
with information about speaker segments and word boundaries,
we assign text and speaker sequences to each segment in a first-
in-first-out order.

The process of obtaining speaker embedding templates dif-
fers for training and development vs. test. For the training and
validation sets, we extract all speech segments for each speaker
in each meeting based on the ground-truth annotated speaker
segments, and select the n longest segments for each speaker.
We use a pretrained speaker embedding model to embed all n
segments and calculate the average embedding as the template
for the associated speaker. The process for the test set is dif-
ferent because, in real test scenarios, the number of speakers is
not known a priori. To solve this issue, we apply the SD model
to the VAD segments to estimate the number of speakers and
the speech segments for each speaker. The speaker embedding
templates for all speakers are then derived in the same way as
for the training and validation sets.

3.2.2. Remapping of speaker IDs on the test set

When computing speaker embedding templates for the training
and development sets, the speaker IDs align with the labels used

for speaker identification, as they both rely on the same speaker
segment annotation file. However, during test, the SD results
may assign a new ID to the recognized speakers, causing a mis-
match with the ground-truth speaker IDs from the original anno-
tation file (Figure 4). This necessitates remapping SD speaker
IDs to ground-truth speaker IDs for evaluation purposes.

Figure 4: Mismatch of SD and ground-truth speaker IDs on the
test set.

As shown in Figure 5, to remap two sets of IDs, assuming
SD estimates with I speakers and ground truth with K speakers,
we extract a list of non-overlapped speech segments for each
speaker i from the SD output, denoted si, and a list of individ-
ual speech segments for each speaker k from the ground truth,
denoted sk. For each of the I speakers, we calculate the In-
tersection over Union (IoU) values between the lists of speech
segments for each si and sk. IoU is a measure commonly used
to evaluate the overlap between two sets. It is defined as the
size of the intersection divided by the size of the union of the
two sets. For si and sk representing speaker segments, IoU can
be applied as follows:

IoU(si, sk) =
|si ∩ sk|
|si ∪ sk|

, (1)

where |si ∩ sk| is the size (i.e., the total duration) of the inter-
section of lists si and sk, and |si ∪ sk| is the size of the union
of lists si and sk. We then assign the IDs from the list with the
highest IoU value as the corresponding ID for that speaker.



 EN2002d  19.48 2.245  EN2002d_3 
 EN2002d  21.725 1.5  EN2002d_0 
 EN2002d  23.225 5.435  EN2002d_1 
 EN2002d  29.17 7.87 EN2002d_1 

 EN2002d_0 ...  
 EN2002d_1 ...
 EN2002d_2 ...  
 EN2002d_3 ...

 EN2002d  20.639 4.474 EN2002d.A 
 EN2002d  23.124 2.536 EN2002d.B 
 EN2002d  29.376 3.634 EN2002d.B 
 EN2002d  34.912 0.618 EN2002d.B 

Calculate the intersection over 
union (IoU) for each 2 sets

For ref / hyp, for each 
speaker, get segs lists

 EN2002d.A   [[20.639, 25.113], ...]
 EN2002d.B  [[23.124, 25.66], ...] 
 EN2002d.C ... 
 EN2002d.D ...

 

EN2002d_1 -->  EN2002d.A
EN2002d_0 -->  EN2002d.B
EN2002d_2 -->  EN2002d.D
EN2002d_3 -->  EN2002d.C

Figure 5: Remapping of SD speaker IDs to ground-truth speaker
IDs on the test set.

4. Experimental settings
4.1. Dataset and metrics

4.1.1. Simulated multi-speaker LibriSpeech corpus

To achieve optimal performance in AMI, it is imperative to
undergo pretraining with a larger and cleaner dataset [14–16].
We pretrained the SA-ASR model on distant-microphone multi-
speaker data simulated using the LibriSpeech corpus [32]. We
utilized the train-960 and dev-clean subsets to construct our
training and development datasets, creating a far-field micro-
phone and multi-speaker set with 960 hours for training and 20
hours for development. We generate Room impulse responses
(RIRs) using the gpuRIR toolkit [33]. The length, width and the
height of the room are randomly drawn in the range of 3 to 8 m
and 2.4 to 3 m, respectively. The microphone and speaker posi-
tions are randomly sampled with the constraints that the micro-
phone is at most 0.5 m away from the room center, the speakers
are at least 0.5 m away from the walls, and their heights are
0.6 to 0.8 m above the middle plane. The RT60 value is ran-
domly drawn in the range of 0.4 to 1 s. A multi-speaker signal
is generated by randomly drawing one utterance from each of
1 to 3 speakers, mixing these utterances convolved by RIRs,
and concatenating the corresponding transcripts separated by
the <sc> token. The start time of each utterance is shifted rela-
tive to the previous one, with a delay ranging from 0.5 seconds
to the maximum duration of the previous utterance. This realis-
tic choice also guarantees the first-in-first-out principle behind
SOT. Each multi-speaker signal is linked to 8 speaker embed-
ding templates, encompassing both the actual speakers in the
signal and templates from randomly selected speakers out of
the 2,484 LibriSpeech speakers. Speaker embeddings are com-
puted as the average of two random enrollment sentences for
each speaker.

4.1.2. AMI meeting corpus

We conducted fine-tuning and testing on the AMI corpus, which
consists of approximately 100 h of multiple distant microphone
(MDM) recordings with 3 to 5 speakers. In this paper, the VAD
module takes all 8 MDM channels as inputs, while the SA-ASR
module takes only the first MDM channel. We assessed three
alternative segmentation methods. The first method, follow-
ing [15], involves fixed-sized segmentation with a chunk size
of 5 s and a 2 s hop size, followed by adjusting the start/end
times to non-overlapped word boundaries as described in Sec-
tion 2.4.1. The second method, following [14,16], involves seg-
menting based on ground-truth silence/non-speech positions be-
tween utterances: we extracted segments for all speakers from
the ground-truth speaker and utterance boundary annotations,
merged overlapped segments, and discarded the resulting seg-
ments which were longer than 100 s.

The third segmentation method described in Section 3.2

uses VAD to extract the segments. We fused adjacent segments
based on silence duration thresholds of 0.1, 0.3, 0.5, 0.7, and
0.9 s, resulting in datasets with different numbers of segments
and different average segment lengths. Table 1 provides the
statistics and average lengths for the training set under all seg-
mentation methods.

4.1.3. Metrics

We evaluate the SA-ASR system’s ASR and speaker assignment
performance using the word error rate (WER) and the token-
level speaker error rate (SER)1, respectively. Furthermore, we
compute the speaker counting accuracy [15, 34]. For a test set
with a count of k speakers (with k − 1 speaker change tokens
<sc>), we calculate

Speaker Counting Accuracy =
N i

k

Nk
, (2)

where N i
k is the number of test signals where the estimate indi-

cates i speakers when the ground truth has k speakers, and Nk

represents the number of test signals where the ground truth has
k speakers.

4.2. Model and training setup

Our experiments were implemented using the SpeechBrain
toolkit [35]. For VAD, we used the CRDNN model2 pretrained
on Libriparty [36]. For SD, we use x-vectors as speaker em-
beddings and the Spectral Clustering [37] method. The SD and
SA-ASR systems share a common speaker embedding model,
ECAPA-TDNN3, which is pretrained on the VoxCeleb1 [38]
and VoxCeleb2 [39] training datasets, yielding 192-dimensional
embeddings. Our text tokenizer is a SentencePiece model [40]
with a vocabulary of 5,000 tokens. In SA-ASR, the Conformer-
based encoder, the Transformer-based decoder, and the speaker
decoder have 12, 6, and 2 layers, respectively. All multi-head
attention mechanisms have 4 heads, the model dimension is set
to 256, and the size of the feedforward layer is 2,048. The num-
ber of parameters of the employed CRDNN, ECAPA-TDNN,
and SA-ASR models is 0.1M, 22.15M and 61.1M, respectively.

The ASR module in SA-ASR was pretrained on simulated
multi-speaker Librispeech data for 360k iterations using the
Adam optimizer with a learning rate of 5 × 10−4. The ASR
and speaker modules in SA-ASR were then further pretrained
for 300k iterations using a learning rate of 2.5× 10−4. Finally,
we fine-tuned the model on real AMI single distant microphone
(SDM) data for 20k iterations, using the Adam optimizer with a
learning rate of 3 × 10−4. We tuned only the ASR module for
the first 10k iterations and performed joint tuning of the ASR
and speaker modules in the last 15k iterations. Those numbers
of iterations were fixed in preliminary experiments based on the
development set WER.

5. Discussion of results
5.1. Effectiveness of fine-tuning on VAD segments

In practical applications, it is necessary to divide long contin-
uous meeting audio into smaller-sized segments. As detailed

1The token-level SER is calculated from sequences of estimated and
ground-truth token-level speaker labels, in the same way as the WER.

2Available at https://huggingface.co/speechbrain/
vad-crdnn-libriparty

3Available at https://huggingface.co/speechbrain/
spkrec-ecapa-voxceleb



Table 1: WER and SER (%) on the AMI test set using different segmentation methods for SA-ASR fine-tuning and testing. The speaker
embedding templates are computed by averaging the embeddings obtained from the 3 longest annotated segments.

Train/dev
seg method

Train set statistics Test (matched seg method) Test (VAD seg with 0.5 s silence threshold)

1,2,3,4-spk mix 1-spk 2-spk mix 3-spk mix 1,2,3,4-spk mix

Sil. thresh # Seg Avg dur # Seg Avg dur WER SER WER SER WER SER WER SER # Seg Avg dur WER SER

Fixed-size (5 s) - 90,426 6.59 s 10,234 6.63 s 44.54 28.54 49.41 28.92 50.91 29.78 57.48 36.29 3,586 6.96 s 55.91 34.94
Ground-truth - 21,917 10.19 s 2,504 8.67 s 43.42 21.81 44.47 23.08 50.74 28.21 56.77 31.47 3,586 6.96 s 54.00 31.02

VAD

0.1 s 93,150 1.59 s 10,605 1.59 s 44.62 29.03 30.53 17.12 45.67 29.15 53.04 38.07

3,586 6.96 s

47.02 30.19
0.3 s 57,589 3.40 s 6,095 3.71 s 44.50 28.85 31.95 16.17 43.54 28.99 52.38 35.69 46.33 28.99
0.5 s 35,091 6.18 s 3,586 6.96 s 45.09 27.46 31.25 15.53 42.05 23.21 50.57 30.54 45.09 27.46
0.7 s 22,027 10.33 s 2,265 10.24 s 45.80 24.82 32.13 13.51 41.74 22.17 49.82 27.00 46.13 27.02
0.9 s 14,460 15.65 s 1,519 13.15 s 47.08 24.95 33.05 13.35 42.52 22.31 51.39 27.30 46.27 25.04

Note: For all the tables, we employed the SCTK toolkit [41] to conduct significance tests, specifically the Matched Pair Sentence Segment test. We
highlight in bold the best WER/SER result and the results statistically equivalent to it at a 0.05 significance level.

in Section 4.1.2, our experiments involve three alternative seg-
mentation methods. When fine-tuning the SA-ASR system, we
employed different training data segmented using these three
distinct methods. To emulate real-world test conditions, the pri-
mary focus is on testing all models using VAD output segments.
The results presented in Table 1 showcase the results on VAD
segments with 0.5 s silence threshold, consistent with the sub-
sequent tables. To gain a more comprehensive understanding
of the model’s capabilities across various speaker counts, we
report the results on subsets comprising 1 to 3 speakers. For
comparison, we also report the performance of each model on a
matched test segmented in the same way as the training set.

Looking at the last column in Table 1, models fine-tuned on
VAD segments consistently exhibit superior performance when
tested on VAD segments compared to models fine-tuned on
fixed-sized or ground-truth segments. The relative WER reduc-
tion can be up to 19% (from 55.91% to 45.09%), and the relative
SER reduction can be as high as 28% (from 34.94% to 25.04%).
However, this difference is not as pronounced when models are
tested on their respective matched test sets. This underscores
the significance of training on data that closely aligns with the
test data type. For real-life applications relying on VAD seg-
ments, it is advisable to fine-tune on VAD segments, even when
speaker segment annotations are available in the training set. It
is noteworthy to highlight that, even with comparable average
segment lengths (10.19 s and 10.33 s), fine-tuning on VAD seg-
ments can result in a 15% (from 54% to 46.13%) lower relative
WER and a 13% (from 31.02% to 27.02%) lower relative SER
compared to the model fine-tuned on ground-truth segments.

Focusing on the models fine-tuned on VAD segments in
Table 1, it can be seen that the model fine-tuned on segments
with 0.5 s VAD silence threshold exhibits a lower WER, which
can be attributed to the matched fine-tuning and test segment
lengths. However, the SER shows a different trend. Specifically,
as the average fine-tuning segment length becomes longer, the
corresponding SER decreases. The SER exhibits a relative re-
duction of 22% (from 17.12% to 13.35%), 23% (from 29.15%
to 22.31%), and 28% (from 38.07% to 27.30%) for 1, 2, and 3
speakers, respectively, when transitioning from an average fine-
tuning length of 1.59 s to 15.65 s. This indicates that, as the
training segments become longer, SA-ASR demonstrates im-
proved capability in assigning speaker identities.

Table 2 reports the speaker counting accuracy of the three
systems. On the 1-speaker test subset, the model fine-tuned on
VAD segments exhibits the highest accuracy at 94.76%, com-
pared 80.01% for the model fine-tuned on fixed-sized segments.

Table 2: Speaker counting accuracy (%) on the AMI test set
with 0.5 s VAD silence threshold.

Train/dev
seg method

# Speakers Estimated # speakers

1 2 3 4 >4

Fixed-size (5 s)

1 80.04 17.28 2.29 0.32 0.05
2 14.09 69.01 16.28 0.54 0.00
3 0.73 38.93 50.04 9.18 0.91
4 0.40 15.98 56.96 20.90 4.50

Ground-truth

1 89.00 9.66 1.22 0.10 0.00
2 20.41 63.53 15.28 0.54 0.10
3 2.54 35.39 48.63 12.15 0.90
4 0.00 11.47 54.50 29.50 3.27
1 94.76 4.91 0.26 0.05 0.00

VAD 2 21.24 67.68 10.07 0.87 0.00
(0.5 s sil. thresh) 3 2.72 40.29 47.00 8.89 0.72

4 0.00 11.57 59.91 23.55 3.71

However, the latter system demonstrates slightly higher accu-
racy when the number of speakers is 2 (69.01%) or 3 (50.04%).
The model fine-tuned on ground-truth segments performs better
when the number of speakers is as high as 4 (29.50%). Future
studies can explore how to employ different training techniques
for datasets with specific numbers of speakers.

5.2. Extraction of speaker embedding templates from SD
output

So far, we have used annotated speaker segments to extract the
speaker embedding templates in the training, development, and
test sets. In a real-world situation, using SD segments to extract
the speaker embedding templates in the test set is desirable.

Table 3: SER (%) on the AMI test set with 0.5 s VAD silence
threshold as a function of the speaker embedding templates used
for fine-tuning and testing. Ref: templates extracted from anno-
tated speaker segments. Test: templates extracted from SD out-
put. The WER is unaffected and equal to that in Table 1 (1-spk
31.25%, 2-spk mix 42.05%, 3-spk mix 50.57%, total 45.09%).

Train/dev Test 1-spk 2-spk mix 3-spk mix Total

Ref Ref 15.53 23.21 30.54 27.46
Ref Test 12.59 21.17 27.43 26.54



Table 4: SER (%) on the AMI test set with 0.5 s VAD silence threshold as a function of the VAD silence threshold and the length of
candidate segments used to extract non-overlapped speaker embedding templates. The WER is unaffected and equal to that in Table 1.

VAD segments Using all 2–5 s segments Using all 5–10 s segments Using all 6–50 s segments

Sil. thresh Avg dur 1-spk 2-spk mix 3-spk mix 1-spk 2-spk mix 3-spk mix 1-spk 2-spk mix 3-spk mix

0.1 s 1.59 s 13.05 20.88 27.55 60.55 ✝ 54.95 ✝ ✝ ✝ ✝ ✝
0.3 s 3.40 s 13.22 21.16 27.24 13.98 21.80 27.93 19.09 ✝ 26.51 ✝ 32.40 ✝
0.5 s 6.18 s 12.81 20.71 27.50 13.87 22.04 27.95 12.96 20.80 27.48
0.7 s 10.33 s 14.30 22.75 27.82 14.05 23.21 27.99 12.89 21.35 28.04
0.9 s 15.65 s 14.67 22.41 28.13 13.03 21.80 27.62 13.86 21.68 27.82

✝: The VAD output segments with 0.1 s or 0.3 s silence threshold are inadequate for obtaining enough candidate segments with the
specified length, resulting in unavailable or abnormal speaker assignment results.

However, this leads to statistical differences between the fine-
tuning and test phases. To understand how this affects the SER,
we evaluate both types of templates in the test set. The result-
ing performance when fine-tuning and testing on VAD output
segments with 0.5 s silence threshold is presented in Table 3.

Surprisingly, while the model is fine-tuned on speaker em-
bedding templates extracted from annotated speaker segments,
extracting speaker embedding templates from SD segments dur-
ing test reduces the SER by up to 20% relative (from 15.53% to
12.59%). We attribute this to the fact that human segmentation
is partly inaccurate, especially when marking the boundaries
of each speaker’s speech segments. By contrast, SD can offer
more precise speech boundaries, especially for the longest non-
overlapped segments which are utilized to compute the speaker
embedding templates.

Surprisingly too, these improved speaker embedding tem-
plates do not affect the WER, despite the fact that the derived
token-level weighted speaker templates are improved and fed
back to the ASR Decoder (see Figure 2). This suggests that this
feedback mechanism proposed in [7] may not fulfil its goal of
enabling the Speaker Decoder to assist the ASR Decoder.

5.3. Extraction of speaker embedding templates from dif-
ferent segment lengths

Finally, we explored the extraction of speaker embedding tem-
plates from varying segment lengths and with different numbers
of candidate segments. To begin with, the impact of using VAD
with 0.1 s to 0.9 s silence threshold as input segments to the SD
system is analyzed in Table 4. For each SD result, we filtered
candidate segments for each speaker by considering different
length intervals. The mean embedding for each speaker was
then calculated from all segments in that length interval. The
results showcased in Table 4 reveal several good solutions with
either short or long candidate segment lengths. When candidate
segment lengths fall within the range of 2 to 5 s, VAD silence
thresholds below 0.5 s are preferable to longer ones, with a rela-
tive SER reduction of up to 10% (12.81% compared to 14.67%).
On the contrary, when using longer candidate segments ranging
from 6 to 50 s, short VAD silence thresholds are inadequate and
VAD silence thresholds above 0.5 s are preferable.

We further examined how different configurations, includ-
ing the presence of overlapping segments, the number of candi-
date segments, and the length of candidate segments, impact the
speaker embedding templates and the resulting SER. Table 5 il-
lustrates the influence of these attributes using VAD segments
with 0.5 s silence threshold as inputs to SD. Using all candidate
segments instead of the 2 or 10 longest leads to an enhanced
speaker representation irrespective of the segment length, as

Table 5: SER (%) on the AMI test set with 0.5 s VAD silence
threshold as a function of the number and the length of can-
didate segments used to extract speaker embedding templates.
The WER is unaffected and equal to that in Table 1.

Candidate segments SER

Overlap # seg Dur 1-spk 2-spk mix 3-spk mix

no 2 2–5 s 15.12 23.34 29.35
no 10 2–5 s 14.41 21.96 28.14
no all 2–5 s 12.81 20.71 27.50
yes all 2–5 s 12.81 20.77 27.27
no 2 5–10 s 13.30 21.98 29.27
no 10 5–10 s 14.13 21.95 27.81
no all 5–10 s 13.87 22.04 27.95
yes all 5–10 s 13.92 21.92 27.92
no 2 6–50 s 13.12 21.48 27.62
no 10 6–50 s 13.33 21.06 27.27
no all 6–50 s 12.96 20.80 27.48
yes all 6–50 s 13.04 20.82 27.44

evidenced by a lower SER up to 15% relative (from 15.12%
to 12.81%). Moreover, shorter candidate segments exhibit a
greater sensitivity to the number of segments. This can be at-
tributed to the fact that a larger number of segments enables a
more robust and comprehensive representation of each speaker.
The presence of overlapping segments among the candidate seg-
ments does not appear to have a significant impact. Using seg-
ment annotations, we compute the number of overlapping clips
involving varying numbers of speakers. Subsequently, for each
speaker count, we calculate the quantity of overlapping clips
across different durations of overlap. Figure 6 presents statisti-
cal findings across the complete AMI corpus, revealing a mini-
mal occurrence of 2, 3, and 4 overlapping speaker regions.

Figure 6: Histograms of speaker overlaps on the AMI corpus.
Only clips shorter than 10 s are shown.

Figure 7 depicts the cosine similarity between the speaker
embeddings of the candidate segments in one meeting for the
three specified segment lengths. Segments in the range of 6 to



Figure 7: Similarity matrices between the speaker embeddings
of the candidate segments in meeting ES2004c. With the three
specified segment lengths, the number of candidate segments
is 154, 81, and 96, and the resulting SER for that meeting is
19.91%, 19.66%, and 19.64%, respectively.

50 s exhibit a higher similarity compared to those in the range of
2 to 5 s, leading to a slightly lower SER (19.64% vs. 19.91%).

Finally, note that here again the various speaker embedding
templates explored in Tables 4 and 5 do not affect the WER.

6. Conclusion
We focused on enhancing speaker assignment in SA-ASR for
real-life meetings. We proposed a VAD-SD-SA-ASR pipeline
and advocated for fine-tuning on VAD segments instead of
fixed-size segments. We showed that this can lead to relative
SER reduction up to 28%. We then explored strategies for ex-
tracting speaker embedding templates by varying the VAD and
SD configurations. Our results reveal that extracting them from
SD output rather than annotated speaker segments results re-
duces the SER by up to 20% relative. Moreover, while ex-
tracting speaker embedding templates from short or long seg-
ments can yield a similar SER, the latter results in improved
speaker representation and speaker similarity across segments
and is less sensitive to the number of segments averaged to ob-
tain the template. Finally, we have found that improved speaker
embedding templates do not affect the WER; this suggests that
an effective feeback mechanism enabling the Speaker Decoder
to assist the ASR Decoder is still to be found.
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