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Abstract
We introduce a voltage-gated conductance model for an artificial neuron that exhibits tonic, fast,
and two types of intrinsic burst spiking. The spike generation is achieved with a single
voltage-gated channel that exploits the conductance commutation properties of a two-terminal
memristive device. Our circuit implementation is of unprecedented simplicity, using just four
electronic components, all conventional, cheap and out-of-the-shelf. Our bursting neuron is a
two-compartment model, similar to the Pinsky–Rinzel model. We obtain the full phase diagram
and discuss the origin of the different regions. We find that the spike traces of the model bare
striking similarity to experimental biological neuronal recordings. Our work may open a new way
to investigate neural pathologies, such as epilepsy and Parkinson’s disease, from the study of the
phase diagram and the transitions between spiking states of physical neuron models.

1. Introduction

The understanding of neural networks is one of the current great scientific challenges. The interest in this
problem spans a wide range of fields. From applications in artificial intelligence, such as robotics and
marketing, to neuroscience, such as elucidating the mechanism of cognitive functions in animal and human
brains.

The variety of methodological approaches to tackle the problem is equally vast and multidisciplinary. At
the core of neural networks are neuron models [1, 2] whose great variety also reflect the diversity of the field.
They range from abstract mathematical models, such as the two-state neurons in the Hopfield’s model [3], to
sets of coupled differential equations in biologically realistic Hodgkin–Huxley models [4], to digital
electronic implementations in neuromorphic chips [5, 6], or even to quantum materials with exotic
metal–insulator transition behavior such as the Mott insulators [7–10].

Here we shall focus on a novel spiking neuron model, which is at the crossroad of those approaches. An
important point to make is that the present neuron model is defined by its hardware implementation. While a
mathematical model is defined by a set of equations, here our model is defined by a circuit. Significantly, our
circuit-model emulates the simplicity of the simplest mathematical models, such as the integrate-and-fire
(IF) or Izhikevich’s [2, 11, 12]. It also shares the basic structure of all biological neuron models, where the cell
membrane is represented by a capacitor whose charge is affected by the behavior of ionic conductance
channels [2, 4, 12]. The nonlinear conductance in our neuron model is realized by amemristive device,
[13–16] which allows to resolve the apparent contradiction of complex dynamical behavior with circuit
simplicity. A memristor is a two-terminal resistive component whose value of resistance can change
depending on the applied voltage and has hysteresis, i.e. a memory effect. A simple and practical definition of
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a memristor device was provided by Chua [14]: it is a device that exhibits a ‘pinched’ hysteresis loop (see top
left panel of figure 2).

The relevance of memristive materials for neuromorphic engineering applications has been recently
acknowledged and is developing fast [17–19]. There are various proposals for the implementation of spiking
neurons based on memristive materials. Almost all of them adopt Mott insulators, which are quantum
materials that exhibit insulator-to-metal transitions. For instance, the ‘neuristor’ [8] based on the the Mott
compound NbO2, which is an approximate realization of the Hodgkin–Huxley neuron model. With a similar
neuristor model, based on the Mott compound VO2, it was demonstrated that it could capture as many as 23
different biological spiking behaviors [9]. Another type of Mott materials, the GaTa4Se8 compound that
showed a resistive collapse upon the application of a train of voltage spikes [20], was adopted to implement
the basic leaky-IF (LIF) neuron model [7]. While Mott materials show a great promise to implement
low-power neuromorphic hardware, they also face significant challenges [15, 16, 18]. Their complex
fabrication methods require improvements to achieve a reproducible sample-to-sample behavior, long-term
reliability and to function at room temperature. On the theory side, the description of the behavior of Mott
insulators out-of-equilibrium is an open problem, and the physical mechanisms of the resistive collapse are
being explored and debated [10, 21]. Those are the main reasons why the current research on spiking neuron
models using Mott materials is still at the level of the single device characterization. The integration of Mott
neurons into functional neural networks, beyond numerical simulations, remains an open challenge.

In the present work, we exploit the simplicity of thememristor concept for a spiking neuron model, while
avoiding the practical issues described above. We adopt a new type of memristor device, which is obtained by
the combination of two conventional electronic components, a resistor and a thyristor. A key insight is to
realize that this memristive device has the same qualitative I–V characteristic as it is observed in the Mott
quantum materials discussed above [8].

A main result of the present work is to introduce a voltage-gated conductance model of unprecedented
simplicity, which realizes four basic behaviors relevant to biological neurons: tonic, fast and two types of
intrinsic burst spiking. In what follows, we first provide a pedagogical description of the implementation of
an IF artificial neuron model with our memristive device. We try to keep the discussion close to the concepts
used in Neuroscience, so as to build a bridge between the different disciplines. Then, we build on that basic
model, adding a second compartment that introduces a new timescale, to obtain complex burst-spiking
behavior. Quite remarkably, we find that the voltage traces of our circuit model bare a striking resemblance
to biological ones measured in rats, including their typical time scales. We then further exploit the simplicity
of our neuron model to obtain the full phase diagram, with four regions that correspond to four different
spiking states. This phase diagram reveals the global behavior of the two-compartment model and leads to a
speculative but also exciting observation. Namely, that the systematic changes experimentally induced in rats’
bursting neurons, seem to follow paths on the phase diagram of our bursting neuron model.

2. The memristive spiking neuronmodel

In basic IF spiking neuron models the integrate function is always assured by a capacitor Cm that represents
the membrane of the neuron. Its charge is the integral of the input current Iin to the neuron, which results in
the membrane potential V= Q/Cm =

´
Iindt/Cm. On the other hand, the fire function is an electric spike,

due to the closing of a switch and the sudden discharge of the capacitor, when the potential attains a
threshold value Vth (see figures 1(a)–(c)).

In more realistic, conductance-based mathematical models [2, 12], the spike generation mechanism is
achieved by voltage-gated channels (figure 1(c) shows a single channel for simplicity), which respond
non-linearly to the applied voltage and control the charge and discharge of the Cm. Those models share a
similar mathematical structure and are defined by a set of equations of the form,

Cm
dV

dt
= Iion (t)+ Iin (t) = ΣkIk (t)+ Iin (t) (1)

Ik (t) = gk (V,Sk)V (2)

where Ik are the channel currents and gk(V,Sk) are the respective voltage-gated conductances. The variable Sk
indicates the ‘state’ of the conductance and it may also depend on time. Two notable examples are the
Hodgkin–Huxley model and its simplified version, the Morris–Lecar model [2, 12]. The conductance
channels gk are defined by dynamical equations that characterize the dependence of the conductance with the
voltage and other internal states of the channel. In order to generate an action potential spike, the multiple
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Figure 1. (a) Schematic of a biological neuron. (b) Basic integrate-and-fire model. (c) Schematic of nonlinear conductance
channel model. (d) Integrate-and-fire model using a memristor; (e) MSN model circuit showing the two-terminal memristor
obtained from the combination of a thyristor and a resistor. In the circuit we add a small load resistor Rload after theM device to
measure the spike traces by the voltage Vout.

channels need to successively open and close [2, 12]. For instance, in the basic form of the Hodgkin–Huxley
model the gated channels are two, one for sodium and one for potassium. However, adopting a memristive
channel we can reduce the number of channels to just one. The formal mathematical definition of the
memristor is rather involved and beyond the scope of the present work. Here, we shall simply call a
memristor a two terminal device, whose current value of resistance depends on its applied voltage and shows
hysteresis. In the interest to remain closest to the concepts of neuroscience models, we shall consider here the
conductance of the memristor, i.e. the inverse of its resistance.

The memristive spiking neuron (MSN) model shown in figure 1(d) shares the same form as the models
mentioned above. However, as will become clear later on, the spike generation in the MSN does not require
of multiple voltage-gated channels but just a single one. Key to this feature is that the channel’s conductance
is history-dependent ormemristive. To describe the spike generation in this model we focus on its simplest
version, with a single memristive channel, that implements a (leaky) IF model. As shown in figure 1(d), the
voltage-threshold switch of the IF model is implemented by the memristive conductanceM. As will become
clear below, depending on the applied voltage and its past history, this two-terminal device commutes from
open (low conductance glow) to closed (high conductance ghigh) states and back. Initially, the memristor is in
the open state allowing the membrane capacitor to increase its charge by integrating the applied input
current. When its potential reaches a given Vth the memristor commutes to the closed state and the capacitor
discharges emitting a spike of current. At the end of the discharge, when a low reset membrane voltage
Vres < Vth is reached, the memristor commutes back to the open state and the charging of the membrane
starts anew. Therefore, this memristive circuit realizes the basic tonic spiking mechanism of an IF model
under a constant current injection.

We now show how these qualitative considerations can be practically implemented with a memristive
conductance using conventional electronic components. We simply connect a resistor (R) between the anode
and gate electrodes of a thyristor (T), to obtain the two-terminalM device, as shown in figure 1(e).

The thyristor is a conventional electronic component, introduced in the 50s [22]. Its behavior can be
most simply described as that of a diode with a threshold. A diode is a pn-junction that conducts current for
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Figure 2. Spiking behavior of the MSN-IF model of figure 1(e) for R= 100 kΩ and Cm = 10µF, which are kept fixed for the whole
present work if not specifically indicated. (Main panel) The conductance commutation of the memristive voltage-gated channel
g(V) during the cycle of spike generation. The x-axis corresponds to the voltage between the two terminals ofM, and the y-axis to
its two-terminal conductance. The commutation is correlated by the color dots with the spike trace (right panel). The I–V
characteristic of theM device (top left panel) was obtained using the circuit shown in methods section figure 7(a). The color dots
of the I–V indicate the work-points associated to the instants along the trace and along the orbit. The small black arrows in the
I–V indicate the holding current Ihold (≈0.1mA) and the threshold voltage Vth (≈0.9mV). (Bottom left panel) The spiking
frequency as a function of applied current f(Iin). The dotted line (blue) indicates the linear ideal IF behavior. The solid line (red)
is a fit using the LIF-model type 1 excitability form f(Iin)∝−1/log(1− Imin

in /Iin) [2]. The neuron is excited in a finite range of
input currents Imin

in < Iin < Imax
in , with Imin

in = 32.3µA and Imax
in = 127.9µA. Main and right panel data were measured at Iin =

92.4µA with small Rload = 47Ω; top left panel data were measured with theM in series with a 1 kΩ resistor; bottom left panel
data were measured with a small Rload = 47Ω.

one (direct) polarity and has negligible conductance for the opposite (inverse) one. A thyristor is a
pnpn-device, so in direct has two pn junctions that conduct but has one np that is inverted, which creates a
depletion region and does not conduct. However, by injecting electrons through the thyristor gate the
depletion layer gets ‘flooded’ and the device suddenly starts to conduct between its anode and cathode.

In our two-terminal memristor device this commutation is simply achieved by the R connected between
the anode and gate of the T (figure 1(e)) by the following mechanism: when the T is non-conducting the
depletion layer is in place. Then, a small current finds a smaller resistance path, flowing through the R and
into the gate electrode. As the applied voltage increases, the small current increases and electrons entering the
gate electrode start to populate (‘flooding’) the depletion layer. When the applied voltage (or the gate
current) reaches a certain threshold, the depletion layer suddenly collapses and the two-terminal
anode–cathode conductance commutes. Importantly, this high conductive state remains self-sustained by the
relatively high current density flowing, until it falls beneath a small ‘holding’ current value Ihold (equivalent
to the Vres see above), where the depletion region forms again. At that point the two-terminal memristor
device commutes back to low conductance state.

From this description, one can readily understand the hysteretic behavior of the ‘pinched’ I–V loop of
the two-terminalM device, shown in the top left inset panel of figure 2. As the anode–cathode voltage V is
increased, the gate current injected through R also increases. When this current becomes significant, the
resistance of the T, hence of theM, suddenly collapses and the current I surges vertically (red-dot to
yellow-dot). By decreasing the applied V the hysteresis becomes apparent, until the I decreases beneath the
holding value and the high resistance state is recovered (blue-dot to green-dot). It is a key insight to realize
that the I–V characteristics of the present memristive device are qualitatively identical to the Mott
memristors, as, for instance, in the implementation of the ‘neuristor’ [8]. One word of warning is that one
should not confuse the volatilememristive behavior of the present and of Mott devices, with the more
commonplace and qualitatively different non-volatile type [15, 23, 24]. The latter is used to implement arrays
of electronic synapses [25] and resistive random access memories [26].
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We now turn to the description of the MSN-IF model of figure 1(e). Under the excitation of a constant
current Iin the circuit emits a succession the electric spikes, such as the one shown in the top right panel of
figure 2. During the spike generation, the voltage-gated conductance g(V) of theM device shows a close
periodic orbit, which is shown in the main panel of figure 2. We observe that g(V) commutes between open
and closed states (low/high conductance) that essentially correspond to the internal state variable S in
equation 2. The commutations low-to-high and high-to-low are indicated by color dots, along the orbit and
in the spike-trace (top-right inset), and are also correlated to the respective work-points on the I–V
characteristics of theM device (left top-panel). The periodic orbit of g(V) illustrates the history-dependent
behavior, which is a feature of the memristive conductance channel. The variation of g along the time-period
plays an analogous role to the dynamical equations of the channels in the conventional conductance models.

Upon excitation with a constant current Iin the membrane potential V of an ideal IF neuron increases as
V(t) = [Iin/Cm]t, and suddenly discharges with a spike when V(t) = Vth. Hence, an IF neuron model emits
spikes at a frequency f(Iin) = Iin/[CmVth], i.e. linear in the applied Iin. This behavior is qualitatively well
reproduced by our neuron, as seen in the lower left panel of figure 2.

However, there are evident departures from the simple linear behavior at both onsets of excitability, i.e. at
the ends of the range Imin

in < Iin < Imax
in . We recall that excitability refers to non-linear spiking response of the

system to a constant input. In the present model there are two onsets of excitability, denoted Imin
in and Imax

in .
Within this interval the system shows spiking behavior, otherwise the system is quiescent.

The reason for the departure from the linear behavior at Imin
in is because the conductance of theM device

in the open state is not zero as in an ideal switch, which results a leakage current. Therefore, there is a finite
input current that is needed to overcome that leak and excite the spiking. Hence, the neuron model of
figure 1(e) may be better characterized as an LIF model. Indeed, we show in the lower left panel of figure 2
that the f(Iin) is well captured by the expression derived from the LIF model, which demonstrates the type 1
excitability of the MSN [12]. We recall that type 1 excitability refers to a system that starts spiking from zero
frequency [2, 12]. The origin of the excitability onset at Imax

in is different. It follows from the fact that Iin is
higher that Ihold, therefore once the thyristor commutes to the low conductance state, it does not switch back.
Hence, instead of spiking behavior, there is a continuous high current across theM device. This high current
quiescent state, with Iin > Imax

in , is similar to the ‘depolarization’ state in biological neurons. On the other
hand, the low current quiescent state, with Iin < Imin

in is similar to the ‘hyper-polarization’ state [2].
To complete this introductory discussion it is useful to consider some orders of magnitude to realize that,

conveniently, the MSN model produces spiking behavior on timescales compatible with biological neurons.
Indeed, since the T has a Vth of the order of the volt and a holding current of the order of 100µA, then
adopting a Cm = 10µF we may estimate a spiking frequency f ∼ [100µA/(10µF1V)] ∼ 10Hz. Moreover,
the duration of the spike is given by the discharge timescale that we may estimated as τspike ∼ Cm/ghigh ∼
[10µF/10mS] ∼ 1ms, similar as in biological neurons. To choose the value of R we consider that the IF
behavior requires the leak to be relatively small and also that the charging time-constant τm ∼ RCm must be
larger than the inter-spike interval (ISI)∼ 1/f ∼ 0.1 s. Thus, in our circuit we adopt R= 100 kΩ, so
τm ∼ RCm = 1s >> ISI. The present circuit is based on the LIF model previously introduced [27–29].
However, the new MSN model achieves further conceptual and practical simplicity, providing a clear basis to
build and understand the two-compartment bursting model that we introduce below.

3. The memristive spiking bursting neuronmodel

We now introduce a novel memristive spiking bursting neuron (MSBN) model of unprecedented simplicity.
The model is obtained by equipping the basic MSN circuit figure 1(e) with a second time-constant τS = RSCS

as shown in figure 3.
In regard of the analogy made before with the conventional conductance models, the voltage of the

second capacitor VS introduces an additional dynamical variable. This increases the dimensionality of the
model, which is a necessary condition for the generation of intrinsic bursts [12]. More precisely, this second
dynamical variable introduces an additional modulation of the conductance current Iion in equation (2).
Thus, the model equations become,

Cm
dV

dt
= Iion (g, τS)+ Iin (3)

Iion = g(V,S)(V−VS) (4)

5
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Figure 3. (Top left) Schematic diagram of the Pinsky–Rinzel two-compartment model (bottom left) Schematic of the
two-compartment MSBN circuit. (Right) Samples of the different spiking behaviors: tonic spiking (top), fast spiking (second
top), intrinsic bursting 1 (bottom), and intrinsic bursting 2 (third from top). Parameter values (Cm and R are the same as in
figure 2 above): TS is obtained at (Iin, Rs, Cs)= (72.2µA, 47Ω, 0.1µF); FS at (46.7µA, 2.4 kΩ, 0.1µF); IB2 at (75.1µA, 2.4 kΩ,
0.1µF); IB1 at (38.7µA, 3 kΩ, 0.1µF).

CS
dVS

dt
= Iion −

CS

τS
VS (5)

where we observe that the last equation has the same form as the dynamical equation of [Ca]-current in
standard theoretical bursting neuron models [12].

However, there is a significant qualitative difference between those mathematical models and the MSBN
one. The second time-constant that is introduced in the former models is usually a slow one. Its role is
mainly to slowly modulate the tonic spike (TS) generation by driving the neuron in-and-out of its excitability
range. In contrast, in the MSBN model the second time-constant τ S is smaller than the tonic spiking one τm,
i.e. τS << τm. In fact, τ S is of the same order of the discharge time τ spike, which is also a very small timescale.
This feature has two main consequences: firstly, it leads to the emergence of a qualitatively different fast
spiking (FS) mode, characterized by a high frequency (∼1/τS). Secondly, two new additional spiking modes
emerge displaying bursting behavior (IB1 and IB2). Specifically, IB1 and IB2 appear to be associated to the
onsets of excitability of the FS state, at low and high Iin, respectively.

It is also worthwhile looking at the MSBN under a different light to appreciate its connection with a well
known model of bursting neurons introduced by Pinsky and Rinzel (PR) [31]. It is a two-compartment
model, where a dendrite and a soma compartment are coupled by a conductance gc, as we schematically
show in figure 3. This model is a simplified version of an earlier one introduced by Traub et al which
included 19 conductance channels [32]. These models are aimed at biological realism and can provide detail
on the specific role of individual ionic channels in the spike generation. However, this is achieved at the
expense of mathematical complexity, which also makes them impractical to use as a basis for building
functional neural networks that are numerically tractable.

Interestingly, the MSBN model can also be cast as two-compartment model, where one represents the
dendrite and the other the soma (figure 3). In the MSBN the two compartments are directly connected,
corresponding to the limit of strong electrotonic coupling (large gc) in the PR model [31] . Another
similarity between the models, interesting in the light of our discussion above, is that the second
compartment (the soma) is the one with a smaller time-constant. In contrast to the PR model, the
formulation of the MSBN is of extreme simplicity, namely, it is a circuit counting just four electronic
components (figure 3). Nevertheless, despite this simplicity the emerging dynamical behavior of the MSBN is
complex. We illustrate this point by showing the four distinct types of spiking traces in the right panel of
figure 3. Quite remarkably, these variety of dynamical behaviors allows us to qualitatively reproduce the
traces recorded in bursting biological neurons, as shown in figure 4. We should also emphasize that the
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Figure 4.Measured spiking traces of our bursting electronic neuron. We adopted the circuit parameters to qualitatively match the
traces (including timescales) obtained in nigral dopamine bursting neuron by Ping and Shepard (see [30] figure 4). The left,
middle and right columns of (a) denote TS, IB2, and TS with relatively long discharge time, respectively. The left, middle and
right columns of (b) denote TS, FS, and IB1, respectively. Parameter values: TS in (a) left is obtained at (Cm, Iin, Rs, Cs)=
(100µF, 68.8µA, 100Ω, 0.1µF); IB2 at (2000µF, 76.2µA, 2.3 kΩ, 0.1µF); the wide TS ((a) right) at (100µF, 70.1µA, 0.9 kΩ,
0.1µF); TS in (b) is obtained at (100µF, 93.8µA, 100Ω, 0.1µF); FS at (1000µF, 54.1µA, 3 kΩ, 33µF); and IB1 at (1000µF,
29.4µA, 6.8 kΩ, 0.47µF).

comparison between the MSBN traces of figures 3 and 4 demonstrate how easily one can control spiking
timescales in the MSBN. In fact, we increased them by two orders of magnitude (from ~10ms to ~s) to
match biological timescales, just increasing the value of the capacitor Cm.

The simplicity of the MSBN circuit can be further exploited to obtain the full phase diagram and explore
its global behavior, which provides further insights. In figure 5. we show the four regions of qualitatively
distinct spiking behavior, obtained as a function of the input current Iin and the soma-compartment
time-constant τ S. For convenience, we fix the capacitor value CS = 0.1µF so we can scan through τ S by
changing the resistance RS. We may note that value of CS is much smaller than the one of the
dendrite-compartment (Cm = 10µF). Thus, this choice would correspond to modeling a neuron with a
relatively large dendritic tree (i.e. with a large effective area) [33]. Interestingly, all four regions of the phase
diagram are relatively large, therefore none of the different spiking behaviors requires of fine tuning to be
realized. In the right hand side panels of figure 5. we illustrate some specific instances of spiking traces within
each of the four regions.

We may gain further insight from the phase diagram. For instance, we observe that at low τ S the MSBN
shows a region of TS. This is expected, since in this limit both CS and RS are relatively small compared to the
components of the dendrite compartment. Hence, their effect on the behavior of the system can be
considered as a small perturbation with respect to that of the basic MSN, which only produces simple TS.

Interestingly, as τ S is increased we observe that the TS boundary occurs at a fixed value
τ∗S ≈ (0.1µF)(2kΩ) = 0.2ms. This independence of the Iin value indicates that the termination mechanism
is unrelated to the TS frequency. Indeed, the instability of the TS state occurs because the timescale τ S
becomes of the order of the duration of a single spike emission τspike ∼ 1ms (see figure 2). Hence, when τ S
and τ spike become comparable one can no longer consider the the effect of the former as a small perturbation
to simple spiking, and multiple spiking modes emerge.

We describe now the transition from TS to FS states. For the sake of the argument, lets neglect the CS for
the moment. Before the spike emission, the memristor is open, hence its resistance RM = 1/glow >> RS and
the membrane potential V due to the accumulated charge on Cm mainly falls onM. When V reaches Vth, the
resistance of theM collapses, and a spike is emitted. However, that sudden change in resistance also implies a
sudden change in the voltage division (RM,RS). Since now 1/ghigh << RS, only a negligible fraction of V falls
on theM. Thus, theM should immediately commute back to the open state (see figure 2) and terminate the
spike. However, the V is still at the threshold Vth, therefore this paradoxical and seemingly unstable situation
indicates that when RS becomes sufficiently large, the system is no longer able to produce simple spike
emission. This instability can be cured by the addition of the small CS, which brings in a finite time-constant
and renders the FS state stable with a high frequency of order 1/τS = 1/(RSCS). Interestingly, this behavior is
qualitatively similar to that of the PR model, where the soma potential is the fast variable that reacts to the
excitation of the more slowly varying dendrite [12].
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Figure 5. Phase diagram of the bursting circuit obtained as a function of input current Iin versus the time-constant of the
soma-compartment τS (at fixed Cs = 0.1µF). TS: tonic spiking (red), FS: fast spiking (blue), IB1: intrinsic bursting 1 (green) and
IB2: intrinsic bursting 2 (yellow). On the right side, traces recorded in the phase diagram qualitatively demonstrate the effects on
neuronal behavior produced by changing the Iin or τs respectively. The corresponding positions of all traces in the phase diagram
are marked with numbered white squares, and (τs, Iin) are indicated in each numbered panel.

We may now qualitatively understand the origin of the intrinsic bursting states, IB1 and IB2. We may
note that they both emerge at the two boundaries of excitability, corresponding to the critical currents Imin

in

and Imax
in . As we have seen before in the simpler MSN model case, those boundaries are characterized by the

the onset of spiking behavior, which begins with long ISIs. Hence, we may think of each burst as an
individual spike-emission event where the spike becomes a short and fast spike-train due to the instability
phenomenon described above. The two different line-shapes of the IB1 and IB2 bursts, follow from the fact
that they are respectively associated to two qualitatively different onsets of excitability, namely, the
hyper-polarized and depolarized states that we discussed before.

4. Navigating the phase diagram and connection to neuroscience

As we emphasized many times already, the salient feature of the MSBN model is its simplicity. A prize to pay
is that its parameters are not directly nor obviously connected to biological ones. However, the mapping of
the full phase diagram opens an unexpected and exciting perspective. It unveils a global view of the
systematic evolution of spiking states, which may provide a new type of guidance in the understanding and
interpretation of experiments in neurobiology. More precisely, it may be interesting to search for
phenomenological correlations between the systematic behavior of a biological neural system upon changing
parameters, such as for instance applying neurotoxins or excitatory currents, and changing the parameters of
the circuit-model.

A first example to illustrate this is the above mentioned study of [30] in nigral dopamine neurons, which
shows the systematic effects on a regular spiking trace of the successive application of neurotoxins (APA, TTX
and TEA). In figure 6(a), we show how the two types of changes in the traces can be respectively located on
the phase diagram. In one case, the trace starts from regular tonic spiking, evolves to the IB2-type bursting
and then returns back to tonic spiking at a larger τ s state. In the second case, the trace starts from regular
spiking, evolves to FS, and then into IB1-type bursting.

An even more telling example is shown in figure 6(b), where the biological neuron traces (right bottom
panel) are reproduced from the study of [34]. There, a pacemaker pre-BötC neuron is first silenced and then
subject to a systematically increasing input current. The observation is that the neuron starts to emit bursts
with a decreasing inter-burst time interval as the current is increased, until eventually it reaches an FS state.
Remarkably, we can qualitatively reproduce the behavior with our model, by solely increasing the applied
current (right top panel). This follows a simple vertical path along the phase diagram shown in the left panel.
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Figure 6. The evolutionary paths in phase diagram can reproduce to some extent the evolution of biological neuronal behavior.
(a) The central panel shows the successive spiking states of the MSBN obtained by changing Iin and τ s. The numbers indicate the
respective locations, forming a path on the phase diagram, indicated by arrows on the left panel. On the right panel we indicate
the ‘neurotoxin path’ that drives the nigral dopamine neurons to evolve through those spiking states (see figure 4 and [30]). (b)
Right panel (top) shows the systematic increase of IB1 bursting to FS by increasing Iin in the MSBN. (bottom) A qualitative similar
behavior was observed in biological pre-Bötzinger respiratory neurons by increasing the input excitatory current [34]. As in panel
(a), the numbers indicate the path along the phase diagram of the MSBN. The parameter pair (Iin, Rs) for each of the shown
traces are: for panel (a), red-1 trace (89.6µA, 47Ω), yellow-2 trace (89.6µA, 2.6 kΩ), red-3 trace (82.8µA, 1.3 kΩ), blue-2 trace
(58.8 µA, 3.0 kΩ), and green-3 trace (36.5 µA, 3.0 kΩ); for panel (b), Rs is fixed at 2.5 kΩ, and Iin are increased from 26.0µA, to
36.4µA, 40.8µA, 46.5µA, until 52.6µA. Reproduced with permission from [34]. [© 1999 The American Physiological Society].

As the current increased from 26.0µA to 52.6µA, the MSBN changed from a silence state to a bursting state
and gradually decreased the inter-burst time interval, eventually changing to an FS state, just as the
pacemaker pre-BötC neuron exhibited.

As shown on the left panels, the evolutions of the traces follow paths in the phase diagram, crossing
boundaries from one region to another. Hence, we may speculate that this type of observations may one day
open the way to provide a rationale and perhaps suggest strategies to treat neural diseases associated to
abnormal burst spiking.

5. Conclusions

In this work we have introduced a minimal model for an intrinsic bursting neuron, which is defined by its
hardware implementation. The model is of unprecedented simplicity, counting just four components, two
capacitors, one resistor and a memristor device.
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The MSBN circuit, nevertheless, sustains four types of complex spiking behavior, all of them at relevant
biological time-scales and showing wave-forms of striking realism. We have illustrated this feature by
comparing spiking traces generated by the MSBN with traces measured in biological neurons.

Implementing and understanding intrinsic bursting mechanisms in simple neuron models is also
important from a broader perspective. In fact, bursting neurons are ubiquitous in animals and humans as
they are associated to motor behavior. A burst signal is more reliable to command a muscle than a single
spike [35, 36]. Well studied examples are the pre-Bötzinger respiratory neurons [34] and the lobster’s
stomatogastric ganglion [37]. Moreover, understanding the neuronal spike bursting phenomenon is also
relevant in regard to neural dysfunctions, such as in Parkinson’s disease, epilepsy, depression and forms of
autism [38–42].

Several exciting perspectives are also open by our hardware model, which is easy to implement,
understand and control; has all out-of-the-shelf components that are readily and cheaply available; and has
low-power requirements if compared with CPU-based implementations. We can make an order of
magnitude estimate: the energy per spike can be very roughly (and likely over) estimated as CV2, i.e.
~(1µF)(1V)2 ∼ 1µJ, or ~0.3 nWh. A conventional button cell battery can deliver a total energy of ~0.3Wh,
which is nine orders of magnitude larger. Hence, this would allow the MSN to spike 109 times, i.e. operating
at 1Hz it would last for about 30 years. Hence, it may be an excellent physical platform to develop
neuroprostetics, such as neuronal implants for deep brain stimulation in the treatment of Parkinson’s
disease [43], or low-cost smart pacemakers. Another exciting possibility would be to build brain–machine-
interfaces, implementing functional neural networks interfaced via optogenetics in closed-loop systems with
essentially zero-delay neuro-computation time.

6. Methods

The electrical characterization of the electronic neurons are performed on the prototypes implemented on
breadboard with out-of-the-shelf components.

The I–V curve of theM device (figure 2) is measured in a simple series circuit shown in figure 7(a),
where a loading resistor Rload = 1 kΩ is in series with theM device. The voltage drops of theM device (V0)
and the Rload (V1) are measured by an oscilloscope. Then the I–V curve are plotted from V1/Rload vs V0. The
other characteristics of the MSN (figure 2.) are measured in the circuit shown in figure 7(b). In order to
finely tuning the input current Iin, a standard gate-controlled current mirror with two P-MOS transistors and
one N-MOS transistor is applied. The input current of the neuron is measured by an ammeter A. The voltage
drop V0 of theM device and the output signals V1 (voltage drop on a loading resistor Rload = 47Ω) are
measured by an oscilloscope. As for the MSBN (figures 3–5), the measurements are carried out on a circuit
shown in figure 7(c). To control the input current, the same current mirror part is used. The input current is
measured by an ammeter A and the output signals V1 are collected on the ‘soma’ part by an oscilloscope.

All the electronic components and instruments used are easy to access. The thyristors used are from
STMicroelectonics (P0118MA 2AL3). The current mirror are implemented on dual N-channel and dual
P-channel matched MOSFET pair from advanced linear devices (ALD1105). The power sources Vsupply and
Vcontrol used for the current mirror are RS Pro RS-3005P and RSDG805 respectively. The multimeter is a
Mastech MS8217 and the oscilloscope is a PicoScope 2204A.
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Figure 7. The circuits of the measurements. (a) for I–V curve measurement; (b) for simple spiking neuron MSN measurement;
(c) for bursting neuron MSBN measurement.
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