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Development of a population balance model for analysing a reactive 
fluidization process 

Florent BOURGEOIS*, Nathalie GARAPIN, Mehrdji HEMATI 
Laboratoire de Génie Chimique – UMR 5503 

5, rue Paulin Talabot – BP 1301 – 31106 Toulouse Cedex 01 – France 

Abstract 
The article presents the detailed workings of a population balance model by mass developed for studying 
a shrinking-core dissolution process that occurs inside the fluidized bed. The behaviour of the model is 
discussed through examination of model predictions for monodispersed and polydispersed size 
distributions. The model is then applied for estimating the shrinking-core dissolution rate constant from 
measured conversion data. Finally, the model is used to predict the change in particle size distribution 
during reaction, which is pivotal for optimization of fluidized bed performance. 
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1. Introduction 
Fluidized bed reactors are used throughout the chemical industry for conducting heterogeneous reactions. 
Their outstanding mixing and isothermal properties guarantee high conversions even with very large 
reacting volumes and masses (Kunii and Levenspiel, 1991). When solid particles are being consumed 
through surface reactions between the solid phase and the surrounding gases, the problem of changing 
particle size is a significant process parameter that one must control in order to optimize the throughput 
and the performance of the fluidized reactor (Harshe and al., 2004). Indeed, the extent of reaction is 
related to the changes in size distribution, which impact both the hydrodynamics of the reactor and its 
overall performance.  
 
By predicting the evolution of particle size distribution during reaction through modelling, one may be 
able to understand the actual impact of particle size distribution on fluidized bed performance, which may 
lead to more efficient operation in practice. The population balance model (PBM) is one of the best tools 
available for investigating complex particulate systems. PBMs have been used extensively for describing 
the evolution of many types of particulate systems as they provide a mathematically rigorous framework 
capable of tracking the behaviour of individual particles within large populations of particles (Hounslow, 
2002). Originating back to the 1960’s (Hulburt and Katz, 1964), population balance models have been 
applied to virtually all particulate processes and are widely documented in the metallurgical, chemical and 
biological engineering literature (Herbst, 1979; Randolph and Larsen, 1988; Ramkrishna, 2000). In 
particular, population balances have been used to investigate fluidization processes. In recent years, many 
researchers have developed PBM solutions by number to their problems, essentially based on the 
discretization technique developed by (Hounslow and al., 1998). For example, (Saleh and al., 2003) 
applied the PBM as a diagnostic tool to investigate the coating of monosized particles in a fluidized bed. 
More recently, (Peglow and al., 2006 ; Peglow and al., 2007) analysed the mass distribution of a tracer in 
a fluidized bed reactor, from which they predicted the size distribution, the moisture content and the 
temperature of particles during drying and agglomeration. (Harshe and al., 2004) clearly demonstrated the 
value of coupling the population balance model with reaction kinetics models, accounting for material 
and energy balances in a gas/solid reaction. In particular, they used the coupled approach to study the 
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influence of operating parameters such as gas feed temperature and catalyst feed rate on polymer 
properties and particle size distribution in the case of polypropylene reactor.  
 
The details of the chemical reactive fluidization process investigated by the authors cannot be disclosed 
for confidentiality reasons. Nevertheless, results presented are readily applicable to similar problems. The 
behaviour of the dense section of the fluidized bed is here within taken as a surface-controlled dissolution 
process that consumes reacting particles inside the fluidized bed. Detailed analyses of solids consumption 
mechanisms at the particle scale have revealed that particle dissolution follows a shrinking-core 
behaviour (Szekely and al., 1976). 

2. Derivation of a population balance model by mass 
This section presents the detailed workings of a discretized PBM by mass applicable to a surface-
controlled dissolution process that occurs inside the fluidized bed. Assuming that the fluidized bed 
provides well-mixed conditions (Kunii and Levenspiel, 1991), it is not necessary to consider the 
distribution of particles within the geometrical space, such that only internal coordinates are relevant. 
Under such conditions, geometric averaged property distribution is all that is required to describe the 
process. Since the process depends on particle size only, particle size x is the only internal coordinate that 
must be considered. Finally, the dissolution process is a process whereby particles undergo gradual 
changes only, meaning that there are no sudden changes in particle properties. Consequently, death and 
birth processes can be neglected from the population balance formulation. With these assumptions, the 
PBM can be formulated as follows (Herbst, 1979): 
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where ψ(x,t) represents the volume averaged number density distribution of particles. It is assumed that 
the number density distribution ψout(x,t) of particles that leave the fluidized bed is not equal to ψ(x,t), 
since discharge from the bed is dictated by disengagement mechanisms (bubbles roofs exploding at 
reaching the surface, entrainment of the wake solids contained in the surface bubble or in the trailing 
bubble) (Kunii and Levenspiel, 1991). It is noted that Equation (1) does not make any particular 
assumption about the total volume VT of the fluidized bed, which is expected to vary over time. Although 
Equation (1) can be solved analytically in special cases e.g. (Leblanc and Fogler, 1987), the system can 
only be solved analytically under more general assumptions. Solving the PBM numerically with number 
density distributions as per Equation (1) can lead to uncontrollable numerical oscillations caused by huge 
numbers of particles flowing in and out of fine particle size classes. (Hounslow and al., 1988) have 
reported this problem and proposed very sound solutions that permit solving the PBM by number with a 
high degree of reliability. Nevertheless, since the dissolution process is expected to produce very large 
quantities of fine particles, this work proposes a solution for solving the population balance by m ass 
instead, which has been recognised by many as a particularly favourable and meaningful option (Scarlett, 
2002). 
Let us define m(x,t) such that m(x)dx is the mass in kilograms of particles of size x to x+dx per unit 
volume of the system. One worthy advantage of using particle size distribution by mass in the PBM is 
that it can be determined experimentally with accuracy. Introducing m(x,t) into Equation (1) yields an 
equation for the population balance by mass. 
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In Equation (2), all terms are homogeneous to a mass per unit time per unit volume of the system. The 
shrinking core velocity ν(x) will need to be specified. In general, one may use a dissolution velocity 

in order to have a dissolution rate that depends on particle size. Bed voidage ε is a 
function of time as bed volume may vary during the process. In order to solve Equation (2), one may 
consider size-continuous and size-discretized models. In this work, a size-discretized solution was 
selected. This choice was motivated by the fact that experimental size distributions are measured in 
discrete size intervals, so that the measured size distribution information is not necessarily sufficient to 
convert to continuous density function. Particle size is discretized by dividing the size interval of interest 
into a finite number N of size classes. Class i is bounded by Li and Li+1 as shown in Figure 1. In order to 
describe a wide range of sizes, the width of the size classes follow a geometric progression with common 
ratio Li+1/Li = r. 
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Figure 1. Convention for discretization of the particle size domain 

Even though experimental size distributions may not necessarily follow a geometric progression, 
measured distributions will have to be converted to such a distribution by interpolation so that the 
proposed model can be applied. With the above discretization scheme for particle size, one would have to 
apply a numerical scheme that can be used with a nonuniform grid, since the particle size increment  
Δx = xi+1 – xi is not constant. For sake of accuracy and reliability of the numerical results, it is sound to 
modify Equation (2) further so that a uniform grid can be used with both time and size. Typically, one 
may chose the representative size xi of size class i to be either the arithmetic mean diameter or the 

geometric mean diameter. In both cases, the value of the ratio 
x
Δx = r - 1. Let us now introduce a variable 

y such that y = ln(x). It is then simple to show that ( )rln1
x
Δxlny =⎟

⎠
⎞

⎜
⎝
⎛ +=Δ . Therefore, y can be 

discretized along a uniform grid with constant step Δy=ln(r). Substituting variable y into Equation (2) 
gives: 
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Depending on the numerical scheme selected for solving Equation (3), it may not be always possible to 
guarantee that the unknown vector m(y,t) takes positive values only. In order to eliminate this problem, a 
new variable w(y,t) such that m(y,t) = w2(y,t) is introduced into Equation (3). This yields the final PBM 
equation proposed by the authors. 
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A number of numerical algorithms can be used to solve Equation (4). In this work, Equation (4) was 
discretized on a uniform (Δt, Δy) grid with the Crank-Nicholson scheme (Patankar, 1980), which is 
second-order accurate in time and unconditionally stable (Press and Teukolsky, 1982). This scheme 
evaluates all the terms of Equation (2) at time t + Δt/2, where Δt is the time increment used to propagate 
the solution in time. The overall discretized PBM is given in Equation (5), where the indices i and n refer 
to size variable y and time t respectively. 
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In Equation (5), the term 
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3. Population balance model testing 
Equation (5) is a system of N nonlinear equations that must be solved simultaneously at every time step. 
In this work, Equation (5) was implemented in MATLAB (The Mathworks Inc., 1992). The system of 
nonlinear equations was solved using the fsolve() function with the Levenberg-Marquardt algorithm. It is 
worth noting that no additional equation besides Equation (5) was used for calculating the results 
presented hereafter, thereby confirming that the proposed solution is numerically robust.  
Equation (5) was tested in batch mode ( ) with a constant bed porosity. Under such 
conditions, the 3rd line of Equation (5) vanishes altogether. Figure 2 shows the predicted evolution of a 
nearly monodispersed size distribution and a polydispersed size distribution, noting that the polydispersed 
distribution is taken from the industrial process itself. The shrinking-core dissolution rate was set to  
ν0 = -9.8×10-10 m.s-1, which is realistic for the process. Figure 6 shows the initial and simulated mass 
distributions, which correspond to the value of the variable m(x,t) in each size class rather than the mass 
frequency distribution. This mode of representation is interesting as it shows both the shift in particle size 
distribution that takes place during the process and the actual mass of solids that remains in the system, 
which is the integral under the curve. It appears clearly the solution is numerically stable up until the 
entire mass has been consumed. This confirms that the choice of computational scheme is suited for the 
problem at hand. Not surprisingly, the behaviour of the dissolution is completely different between the 
two size distributions. The monodispersed case clearly shows the appearance of fine particles and 
disappearance of coarser particles, which is what one would expect during a shrinking-core process. This 
behaviour is not so obvious with the polydispersed case, which already contains large amount of fine 
particles, hence surface area, at the start of the process. Because of the presence of fine particles right 
from the start, the model predicts that the rate of conversion is higher with the polydispersed particles at 
the start of the reaction, as shown in Figure 3. Nevertheless, it appears that the gradual increase in fines 
with the monodispersed size distribution eventually become larger after several hours. 
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Figure 2. Results from Equation (5) with monodispersed (top) and polydispersed (bottom) particle size distributions  
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Figure 3. Predicted conversion for monodispersed and polydispersed particle size distributions 

Quantitatively, these results must be treated with caution as they apply only to the dissolution rate and 
size distributions used in the simulations. Nevertheless, the drastically different behaviour between the 
two size distributions emphasizes that size distribution inside the reactive bed is a critical parameter that 
must be controlled precisely in order to optimize the production rate. 
Contrary to other situations such as agglomeration for example (Hounslow and al., 1988), it is not simple 
to test the validity of the simulated outputs by examining moments. Indeed, neither the mass nor the 
number of particles is conserved during the dissolution problem, unless the population balance is coupled 
with an overall material balance. A given size class with representative size x must become empty after a 

time equal to ( )xv2
x

− , which is the time it takes to completely dissolve a particle of size x. It was 

verified that individual size classes would become empty precisely at the expected time for a given 
dissolution rate, thereby confirming that particle mass propagates at the correct rate. Moreover, Equation 
(5) proved very stable, even with large time increments. The largest time step used during this work was 
Δt = 60 seconds. Figure 4 shows the predicted evolution of the Sauter mean diameter x32 that corresponds 
to the previous figures. The model predicts that the specific surface area increases for the monodispersed 
case and decreases for the polydispersed case, which has also been reported by (Leblanc and Fogler, 

 



 

1987). However, a simulation over 4 days shows that x32 reaches a maximum after 40 hours with the 
polydispersed size distribution, then decreases monotonically until the entire mass is dissolved. A 
conversion rate of 97% is predicted after 4 days with the polydispersed distribution. 
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Figure 4. Predicted variation of Sauter mean diameter for monodispersed and polydispersed size distributions 

The results that have been presented above all seem to validate the model. In order to further test its 
validity, the authors are currently planning numerical tests to compare the solution proposed in Equations 
(5) and (6) with analytical results such as those published by (Leblanc and Fogler, 1987), who derived 
analytical solutions to the population balance for particle dissolution under specific conditions. These 
results will be presented in a forthcoming publication.  

4. Application of the PBM as a tool for studying a reactive fluidization process 
The full-scale plant consists in a large fluidized bed reactor that holds several tons of solids and operates 
at elevated temperature under highly corrosive atmosphere. Hence, it is not feasible to run any types of 
tests on such a large unit operation. Over the years, plant engineers have developed a small semi-
continuous agitated reactor to help them study and improve the process. The reactor was designed such 
that its behaviour closely approximates that of the dense phase inside the full scale reactor as far as 
reaction kinetics are concerned. With this reactor, it is possible to measure the evolution of the conversion 
rate during the reaction. The data points in Figure 5 show the measured evolution of the conversion rate 
over a 12.5 hour period. It is noted that this information is the only reliable piece of information that can 
be obtained from the pilot fluidization reactor at present. The shape of the measured variation is typical of 
solids consumption by a shrinking-core reaction (Szekely and al., 1976), which is what is expected for the 
reaction under study. Consequently, the rate of consumption of solid particles was assumed to be size 
independent, so that v(x)=v0. The PBM was used to determine the dissolution velocity v0. By varying the 
dissolution rate v0 in Equation (5), it was found that the value v0=-18.3×10-10 m.s-1 would yield the 58% 
conversion measured at the end of the experiment. Figure 5 shows the predicted evolution of conversion 
during and beyond the duration of the experiment with v0=-18.3×10-10 m.s-1.  
With the dissolution constant determined by matching the measured conversion and that calculated with 
the PBM, the latter was used to simulate the evolution of the size distribution during the reaction, which 
is plotted in Figure 6. It is first pointed out that the proposed PBM solution is capable of simulating the 
evolution in particle size distribution without any numerical difficulty until all particles present in the feed 
have dissolved. Noting that the initial size distribution is bimodal, with a large quantity of fines, the 
model predicts that x32 increases initially. This is understandable as fine particles, which present the 
largest surface area, dissolve at a fast rate initially. Once this “excess” fines is dissolved, x32 decreases 
monotonically as the specific surface area increases. Such a simulated behaviour will eventually have to 
be compared with experimental measurements. 
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Figure 5. Measured (symbols) and fitted (solid line) conversion  
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Figure 6. Simulation of particle size distribution (top) and Sauter mean diameter (bottom) variation with the PBM  

The PBM model that has been presented is capable of simulating the evolution of particle size distribution 
and Sauter mean diameter. These variables govern hydrodynamic parameters such as minimal fluidization 
velocity and terminal settling velocity in the fluidized bed, which dictate bed height and elutriation from 
the bed. This model will eventually be used in a continuous mode in order to investigate continuous 
operation of the fluidized bed, and assist plant engineers with optimisation of operating parameters 
including gas flow, bed height, feed particle size distribution, recycled flow and throughput. 

5. Conclusions 
This work aimed to develop a reliable population balance model solution as a companion tool for 
investigating a shrinking-core reaction process inside a fluidized bed reactor. To this end, a population 
balance model by m ass was proposed. Although the model requires a particle size distribution that 
follows a geometric progression in order to cover a broad range of particle size, the proposed model can 
be discretized on a uniform time-size grid. This makes the proposed solution attractive and simple to 
implement. The model was discretized using the Crank-Nicholson scheme. Initial testing and analysis of 
the predictions indicate that the proposed model and its implementation are reliable. 
The PBM was successfully used to estimate the dissolution rate of a shrinking-core reaction that occurs in 
a pilot fluidized bed reactor. With the estimated dissolution rate, the evolution of a particle size 
distribution used in the industrial process was simulated, confirming the value of such a model.  

 



 

 

A test series is currently underway in order to better quantify the reaction kinetics. It is believed that the 
PBM will be of great assistance with analysis of experimental data, as for example with identification of 
unreliable measurements or with analysis of hypothesized reaction mechanisms. Moreover, the PBM is 
bound to be useful for planning experiments, which is of great value considering that recourse to 
experimentation must be reduced to a minimum due to safety and cost constraints. 

Nomenclature 
M&   Solids mass flowrate (kg.s-1) 
Ms  Mass of solids in fluidized bed (kg) 
Q&   Volumetric flowrate (m3.s-1) 
VT  Fluidized bed volume (m3) 
m(x,t)dx  Mass of particles in size range [x:x+dx] per unit volume (kg.m-3) 
r   ratio between size class boundaries  
x   Particle size (m) 
x32  Sauter mean diameter (m)  
y   Modified particle size = ln(x) 
Δ  increment 
ε  Bed or stream voidage (fraction) 

ν(x)  Size-dependent dissolution rate: ( ) 0n
0 xνxν ×=  (m/s)  

ψ()  Volume averaged number density distribution function (fraction.m-3) 
i   Size class index 
in   inlet streams 
n   Time index 
out   outlet streams 

References 
Harshe, Y. M., Utikar, R. P., Ranade, V. V., 2004. Dynamic model for polypropylene fluidized bed reactor: PoRE. 

Chemical Engineering Science 59, 5145. 
Herbst, J.A., 1979. Rate processes in multiparticle metallurgical systems, in Rate processes of extractive metallurgy. 

Eds. H.Y. Sohn, M.E. Wadsworth, Plenum Press, 53. 
Hounslow, M.J., 2002. Introduction – Population balance modelling of particle systems. Chem. Eng. Sci. 57, 2123. 
Hounslow, M.J., Ryall, R.L., Marshall, V.R., 1988. A Discretized Population Balance for Nucleation, Growth and 

Aggregation. AIChE Journal 34(11), 1821. 
Hulburt, H.M., Katz, S., 1964. Some problems in particle technology – A statistical mechanical formulation. Chem. 

Eng. Sci 19, 555. 
Kunii, D., Levenspiel, O., 1991. Fluidization Engineering. 2nd Edition, Stoneham, Butterworth-Heinemann. 
Leblanc, S.E., Fogler, H.S., 1987. Population Balance Modelling of the Dissolution of Poly-Disperse Solids: Rate 

Limiting Regimes. AIChE Journal 33(1), 54. 
Patankar, S. V., 1980. Numerical Heat Transfer and Fluid Flow, in Series in Computational Methods in Mechanics 

and Thermal Sciences. W.J. Minkowycz, E.M. Sparrow Eds., Hemisphere Publishing Company, London. 
Peglow, M., Kumar, J., Warnecke, G., Heinrich, S., Tsotsas, E., Mörl, L., Hounslow, M.J., 2006. Improved 

discretized tracer mass distribution of Hounslow. AIChE Journal 52, 1326. 
Peglow, M., Kumar, J., Heinrich, S., Warnecke, G., Tsotsas, E., Mörl, L., Wolf, B., 2007. A generic population 

balance model for simultaneous agglomeration and drying in fluidized beds. Chem. Eng. Sci. 62(1-2), 513. 
Press, W.H., Teulosky, S.A., 1992. Numerical Recipes in C- the art of scientific computing. Cambridge University 

Press. 
Ramkrishna, D., 2000. Population Balances: Theory and Applications to Particulate Systems in Engineering. 

Academic Press, San Diego. 
Saleh, K, Steinmetz, D., Hemati, M. 2003. Experimental study and modelling of fluidized bed coating and 

agglomeration. Powder Technology 130, 116. 
Scarlett, B., 2002. Particle Population – to balance or not to balance, that is the question! Powder Technologys 125, 1. 
Selçuk, N., Oymak, O., Deģirmenci, E., 1996. Basic requirement for modelling fluidized beds: fast computation of 

particle size distributions (PSDs). Powder Technology 87(3), 269. 
Szekely, J., Evans, J., Sohn, H.Y., 1976. Gas-Solid Reactions, 1st Edition, Academic Press, New York. 
The Mathworks Inc., 1992. Matlab Reference Guide. Natick Mass.  


