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Abstract

This paper addresses the case of a cylinder array in axial flow at Reynolds numbers from 60 000

to 110 000. A comprehensive experimental and numerical study of the steady fluid forces arising

from a geometrical perturbation in the array arrangement is carried out and compared with a

semi-empirical model from the literature. The test rig consists of a 3x3 confined cylinder bundle

with a pitch-to-diameter ratio equal to 1.33. The central cylinder can be rotated, translated or

bent. Global forces and moments as well as pressure profiles at several sections are measured.

Velocity profiles at both sides of the cylinder are also collected. Additionally, RANS simulations

(Reynolds-averaged Navier–Stokes) are carried out. Pressure loss effects similar to the ones

occurring in hydraulic pipes are found to play a major role on the velocity field. Rotation tests

are in agreement with the literature: at low angles of incidence, the lift force is proportional to

the angle. The supporting rod at the centre of the cylinder strongly disturbs the local lift force

but does not change the global linear trend. In translation, the wake of the support generates a

fluid stiffness effect. Bending tests allow to assess all terms of the semi-empirical model from the

literature, which proves to be quite accurate at a sufficient distance from the ends and from the

supports. In addition, the investigation provides refined quantitative measurements of local and

global force coefficients of the statically deformed cylinder in rotation, translation and bending.

Keywords: cylinder array, axial flow, pressure measurement, CFD, semi-empirical model

1. Introduction

Fluid-structure interaction plays a major role in the dynamic behaviour of industrial structures

such as fuel assemblies in nuclear cores (see e.g. Moussou et al., 2017; Ricciardi, 2018). An

example of such a structure consists of a 4 m high and 20 cm wide bundle of 17x17 fuel rods tied

together by means of spacer grids. In order to extract the heat produced by the nuclear fuel, the

assemblies are submitted to an axial flow of water, from bottom to top. The industrial issue can be

simplified by considering the fuel assembly as a slender and relatively flexible structure in axial
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flow. Being able to describe the fluid forces exerted upon fuel assemblies requires understanding

those upon the simplest slender structure: the cylinder.

The contemporary model of fluid forces upon a flexible cylinder in axial flow is based on

theoretical works conducted in the 1950s and 1960s. Taylor (1952) distinguished several rough-

ness types of the cylinder surface and gave in each case an expression of the local fluid forces

upon a cylinder section depending only on the local angle of incidence. These expressions were

given in terms of normal and tangential force relatively to the deformed cylinder axis. Accord-

ing to Taylor’s own words, they were ‘entirely speculative’, since the only experimental data

available at that time gave the force upon a straight cylinder inclined by steps of 10◦ (Relf and

Powell, 1917). Lighthill (1960a) chose a different approach and derived a theoretical expression

of the inviscid fluid force in the framework of the slender body approximation. This assump-

tion greatly simplified the potential flow calculation: in the case of a uniform cross-section, it

reduces to the 2-D problem of an oscillating body in quiescent fluid, thus giving rise to an added

mass force. For a statically deformed cylinder, the local fluid force depends only on the local

curvature of the cylinder. Hawthorne (1961) combined both approaches. From Taylor (1952), he

selected the roughness case of ‘a number of long projections pointing equally in all directions’.

The linearized expression given in this case assumes that, at low angles of incidence, the force

acting upon a cylinder section reduces to the friction drag (parallel to the incident flow) due to

these protuberances. This leads to a constant tangential force and a normal force proportional

to the local angle of incidence. From Lighthill (1960b), Hawthorne selected the simplified ex-

pression proposed for a body with a uniform cross-section. He then simply added up both terms,

Lighthill’s inviscid force and Taylor’s viscous force, and established the first equation of motion

of a flexible cylinder in axial flow. Later, Païdoussis (1966a) used and developed this model, that

is denoted from now on the Taylor-Lighthill-Païdoussis (TLP) model. He explored the stability

of the equation of motion for different boundary conditions (pinned-pinned, clamped-clamped,

clamped-free). He also undertook experiments with a single cylinder in a water tunnel in low

confinement conditions (Païdoussis, 1966b). Good agreement was reported between theory and

experimental results with respect to the critical flow velocities at the onset of instabilities (buck-

ling or flutter), but the model failed to predict accurately the frequency of oscillation in the case

of flutter. The model being linear, it could neither predict the amplitude of flutter oscillations nor

the maximum displacement in buckling.

As a first step of improvement of the model, Païdoussis (1973) gave a version taking into

account confinement effects. He related the longitudinal force upon the cylinder to the pressure

losses in the channel, and introduced a confinement-dependent added mass coefficient. That ver-

sion can be used for a flexible cylinder in a cluster of cylinders, provided that the other cylinders

are rigid. Taking into account the coupling between several flexible cylinders is itself a whole

branch of the research in the field of axial flows (see e.g. Chen, 1975a,b; Chung and Chen, 1977;

Païdoussis and Suss, 1977; Païdoussis, 1979; Adjiman et al., 2016; De Ridder et al., 2017). An-

other branch of the research was focused on deriving non-linear versions of the equations of

motion, in order to enhance the predictions as compared to the linear version. Further details can

be found in the comprehensive three-part paper Païdoussis et al. (2002), Lopes et al. (2002) and

Semler et al. (2002) in the case of a clamped-free cylinder, and Modarres-Sadeghi et al. (2005)

in the pinned-pinned configuration. These works and further ones are reviewed in Païdoussis

(2016).

Until relatively recently, the force model consisting of Lighthill’s inviscid term and Taylor’s

viscous term had been assessed essentially by its ability to predict the onset of instability. The

coefficients of the model were fitted to dynamical tests in the framework of the quasi-steady as-
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Ersdal and

Faltinsen (2006)

Divaret et al.

(2014)

De Ridder et al. (2015)

geometry unconfined unconfined confined in circular channel,

Dch ' 10D

L/D 31 60 28

test facility towing tank wind tunnel CFD

angle range ±4◦ ±6◦ 0 − 1◦

angle steps 1◦ 2◦ 0.1◦

ReD 27 000–45 000 24 000 16 000

inlet turbulence

intensity

n/a < 0.3 % 0.1 % 10 % 10 %a

cL [rd−1] 0.06 0.10 ± 0.01 0.01 0.07 0.11

aThe inlet turbulence length scale is set higher in this case than in the previous one.

Table 1: Experimental and numerical studies from the literature about the lift coefficient of a slightly inclined cylinder in

axial flow. cL is the absolute value of the slope between the angle of incidence and the lift coefficient.

sumption. No comparison with direct force measurements had been carried out. This lack of

validation data began to be overcome thanks to the study of Ersdal and Faltinsen (2006). They

conducted experiments with a long straight cylinder in a towing tank and measured the normal

force at low angles of incidence. The value obtained for the normal force coefficient was sub-

stantially higher than usual values recommended in the literature. This led the authors to state

that the normal force could not be explained by skin friction alone, thus questioning Taylor’s

assumption. High values of the normal force coefficient derived from forced oscillations exper-

iments had already been reported much earlier (Chen and Wambsganss, 1972), but the direct

measurements by Ersdal and Faltinsen (2006) made this clear. Divaret et al. (2014) performed

similar experiments with a straight cylinder in a wind tunnel. Yet they first looked at their results

in terms of lift and drag instead of normal and tangential force. They noticed that the lift force

(transverse to the incident flow) was proportional to the angle of incidence, thus not behaving as

in Taylor’s assumption of zero lift at low angles of incidence. In addition, they observed that the

contribution of lift in the normal force dominated the contribution of drag, and that by a factor

of about 10. Pressure measurements along the cylinder surface helped to explain the linear be-

haviour of the lift force, thus confirming that this force did not merely originate from friction.

De Ridder et al. (2015) carried out numerical simulations with a straight cylinder in axial flow.

Their results were in agreement with the findings of Divaret et al. (2014), and they identified a

dependency of the lift coefficient to the inlet turbulence intensity. See table 1 for a review of the

results on the lift coefficient in the recent literature. De Ridder et al. (2015) also investigated the

case of a curved cylinder and found that the decomposition into an inviscid term and a viscous

term was accurate at low curvatures. To the best of the authors’ knowledge, no other reference

in the literature compares the actual fluid forces and the ones predicted by the TLP model in the

case of a curved cylinder.
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Figure 1: Experimental setup: (a) side view, (b) front view at entrance section (x = 0), (c) front view at middle section

(x̃ = 0), and (d) front view at x/Dh = 36 or any other similar section (the dotted lines represent the measurement positions

of the velocity profiles).

In the industrial application that motivated the present study, fuel assemblies stand beside

each other, with narrow gaps between them. Therefore, the case of a confined cylinder needs be

taken into account. To the authors’ knowledge, no direct measurement of the steady lift and of the

drag coefficients in the case of a slightly inclined cylinder is available in the literature in confined

conditions. Moreover, confinement raises the question of a possible translatory fluid stiffness:

does any lift force appear when the cylinder moves close to a facing wall? Furthermore, the issue

of the validity of the TLP model for a curved cylinder, whether confined or not, deserves also

some further attention.

To address these goals, a combined experimental and numerical approach is undertaken. A

specific confinement geometry is chosen, namely a deformable cylinder inside a rigid cylinder

array. The array properties (pattern and pitch-to-diameter ratio) are chosen in order to match

the ones in the industrial structure. Velocity measurements in the experiment are supported by

velocity field analyses in the computational fluid dynamics (CFD) model. They provide further

insight into the flow pattern details. Global and local force measurements are carried out and

compared to numerical results. § 2 gives all relevant details on the experimental setup and the

numerical model. The results are exposed in § 3. They are discussed with respect to the TLP

model in § 4.

2. Experimental and numerical procedure

2.1. A wind tunnel test rig

2.1.1. Fixed part of the geometry

The scheme of the experimental model is shown in figure 1 with some photographs in fig-

ure 2. It consists of a square bundle of 3x3 cylinders (figure 1a, b) with pitch-to-diameter ratio
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(a)

(b)

Figure 2: Photographs of the test rig: (a) front view (here without upper wall) and (b) side view.

P/D = 1.33 (as defined in figure 1b), length L = 2 m and width 24 cm, set up in a wind tun-

nel. The x-axis indicates the main flow direction, y and z are the transverse directions. The

x-coordinate starts at the beginning of the cylinders (excluding the tapered ends), as illustrated

in figure 1(a). For convenience, the coordinate x̃ = x − L/2 is also introduced, so that x̃ = 0 at

the cylinder centre. Both coordinates x and x̃ are used throughout the paper.

The walls of the test section are equipped with half cylinders, such that the developing bound-

ary layers at the wall mimic the ones of a larger number of surrounding cylinders. For the bundle,

thin-walled aluminium cylinders of diameter D = 4.5 cm and thickness 2 mm are chosen, in or-

der to minimise static deflection under their own weight. Their bending stiffness is high enough

to avoid their deformation during the wind tunnel tests. The eight neighbour cylinders are sup-

ported at both ends via a grid of cylindrical elements of diameter 0.8 cm as shown in figure 1(b)

and observable in the photograph in figure 2(a).

2.1.2. Mobile part of the geometry

The central cylinder is supported at its centre only, so as to enable its rotation and translation.

The supporting rod has a diameter of Dr = 2.2 cm, it is displayed in green in figures 1(a, c) and

figure 3. In order to have a symmetric geometry, a similar rod is added on the top of the cylinder,

removable and without support function.

The angle of incidence α of the cylinder is set by a rotation stage (Newport M-UTR160),

the stiffness of which being high enough to prevent noticeable deflections at the cylinder ends

due to vibration. The vernier on the side of the rotation stage allows to read the angle with

5 arcmin = 0.08◦ resolution. The angle is varied in a range of ±30 arcmin = ±0.5◦.

For the translatory displacement Z, a vertical positioner (Newport 281) is used. The position

is set with the help of a ruler of resolution 1 mm mounted on the side of the positioner. The range
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FD
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FL

α

(a)

FL

U

Z

(b)

FL

M

U

δ

δ

(c)

Figure 3: Degrees of freedom of the central cylinder, tunable parameters and relevant fluid forces: (a) rotation, (b)

translation and (c) bending. The green part of the vertical support is always present, its grey part is removable in order to

characterize its effect on the aerodynamic loading of the cylinder.

of Z is ±10 mm.

Bending is achieved by loading the central cylinder at both ends, as depicted in figure 1(a).

The deflection δ at the cylinder ends is obtained from standard beam theory:

δ =
mgL3

24EI

(
1 + 3

l

L

)
, (1)

where m is the load mass on each end, g is the gravity acceleration, E = 62 GPa is the elastic

modulus of aluminium, I = 6.26 × 10−8 m4 is the moment of inertia of the cylinder cross section,

and l = 16 cm is the distance between the end of the cylinder and the point of application of the

load on the tapered end. The deformed shape w(x̃) in z-direction reads:

w(x̃) = −
2δ

(1 + 3l/L)L3

(
3(1 + 2l/L)Lx̃2 − 2 |x̃|3

)
. (2)

Loading at both ends is carried out by steps of 0.6 kg, generating a deflection of 0.63 mm. The full

load is 6 kg at each end, reaching a theoretical deflection of 6.3 mm. The overall calibration of

the procedure is achieved by comparing the deflection with the maximal weight to its theoretical

value by tuning the displacement Z so that the cylinder ends are in contact with the lower cylinder.

In this paper, rotation (α), translation (Z) and bending (δ) are called the three degrees of

freedom of the central cylinder.

2.1.3. Force measurements

The steady fluid forces exerted upon the central cylinder are measured using an AMTI

MC3A-100 6-axis load cell. Time signals are recorded at a sample rate of 1 kHz and averaged

over 30 s. Precision tests performed with standard weights indicate an accuracy of ±20 mN of the

load cell in vertical direction (z). The measurement range of the load cell and thus its accuracy

is four times narrower in horizontal direction (x, y), hence reaching ±5 mN. Careful handle of

thermal drift and precise control of test conditions, such as room temperature, allow for even

more accurate measurements.
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Drag, lift and pitching moment are studied depending on the three degrees of freedom of the

central cylinder as shown in figure 3. The drag FD is the force in the main flow direction (x).

The lift FL is the transverse force in the plane of displacement or deformation of the cylinder.

Hence, it corresponds to the force in y-direction for rotation and in z-direction for translation and

bending (figures 1 and 3). The pitching moment M is evaluated at the cylinder centre (figure 3c).

In the following, the fluid forces are presented in terms of force coefficients according to

standard definitions:

CL =
FL

1
2
ρU2DL

and CD =
FD

1
2
ρU2DL

, (3)

where CL is the lift coefficient, CD is the drag coefficient, ρ is the fluid density and U is the

average velocity in the channel. The moment coefficient is defined as:

CM =
M

1
2
ρU2DL2

. (4)

The superscript 0 denotes the force coefficient measured in the neutral configuration (α =

0,Z = 0, δ = 0). Symmetries imply that all lateral forces are zero, C0
L
= 0. Experimentally, small

asymmetries offset the values of the lift and moment. Since the ranges of the parameters are

narrow (see § 2.1.2), these offsets are of the same order of magnitude as the ranges of the fluid

forces. For instance, C0
L
= 1.7 × 10−3 at Re = 66 000 while for α , 0 it varies from 0.5 × 10−3

to 2.8 × 10−3 for α ∈ [−0.5◦ ; 0.5◦]. To allow for comparison with the CFD results, which do

comply with the symmetries, experimental curves are translated so that they fit together at the

neutral configuration. The variation about the neutral configuration is C̃L = CL − C0
L
. In the

following, any quantity X̃ denotes the variation of X about the neutral configuration.

The influence of the supporting rod of the central cylinder on the fluid forces is unknown. In

the previous section, it was mentioned that the geometry has been made symmetric by adding a

rod on the top of the cylinder. In order to assess the influence of the support, measurements are

carried out both with and without the removable upper rod; the corresponding curves are given

here only when it leads to noticeably different results.

2.1.4. Velocity measurements

The incoming velocity upstream of the cylinders Uin (figure 1a) is measured by means of

a Pitot tube (KIMO, type L) placed at the centre of the entrance section and connected to a

manometer (KIMO C310-H0). The turbulent intensity of the incoming flow is 0.7 %. Its spatial

inhomogeneity is 1.5 % (standard deviation).

The mean velocity in the test section U is calculated by multiplying the upstream velocity

by the area ratio between the entrance square section (4P)2 and the flow section between the

cylinders (4P)2 − 16π(D/2)2 (see figure 1b): U = 1.79Uin. The Reynolds number is based on

the hydraulic diameter Dh = D
(
4(P/D)2 − π

)
/(P/D + π − 1) = 5.14 cm. In the experiment, U

can reach up to 32 m/s, which gives a maximum Reynolds number of UDh/νair ' 110 000. It is

about four times smaller than the Reynolds number in a reactor core (Re ' 400 000).

Velocity profiles along the vertical axis at both sides of the central cylinder (figure 1d) and

in different sections along the model (x-axis) are measured by means of thin Pitot-like tubes (di-

ameter 1.6 mm), using a Scanivalve DSA 3217/16Px pressure scanner at a sample rate of 100 Hz

and averaging over 10 s at each measurement point. These two tubes (one at each side of the

central cylinder) measure the total pressure, while the static pressure is recorded from pressure

taps at the surface of the cylinders. The estimated accuracy of the corresponding measurement is

about 2 %.
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U

θ

0

x

y

z

α
Z

Figure 4: Orientation of the azimuthal angle θ in pressure measurements.

2.1.5. Pressure measurements

To gain access to the fluid force distribution in the experiment, local force measurement

upon the central cylinder is also arranged. It requires the design of a specific cylinder with

a large number of pressure taps. This cylinder consists of six instrumented aluminium rings

assembled with pieces of plain aluminium tube, resulting in measurement sections at x/Dh =

3, 8, 14, 25, 31 and 36, as drawn in figure 1. Each of these rings is equipped with 16 pressure

holes of diameter 0.5 mm, which gives an azimuthal resolution of 22.5◦. Vinyl tubes of inner

diameter 1 mm and length ranging between 35 cm and 2.15 m are used to make the link between

the pressure taps and the measurement devices. Because of this design, loading the cylinder at its

ends and determining accurately its deflection is not possible. Therefore, pressure measurement

results are available only for rotation and translation of the cylinder.

All pressure taps of the first section (x/Dh = 3) as well as one pressure tap out of two of the

second (x/Dh = 8) and third (x/Dh = 14) sections are connected to a miniature pressure scanner

installed inside the cylinder (Scanivalve ZOC22b, range ±5 ′′H2O, 32 channels). The remaining

64 pressure taps are connected to two pressure scanners outside the wind tunnel (Scanivalve

DSA 3217/16Px, range ±5 ′′H2O, 16 channels each). They are measured alternately in groups

of 32. Time signals are recorded at a sample rate of 50 Hz and averaged over 30 s. To reach

the best achievable precision, an in-situ calibration of the pressure scanners is performed before

the measurements using a pressure calibrator (Furness Controls FCO560, range ±2000 Pa, itself

calibrated 16 months before the measurement campaign). The zero of the scanners is reset before

each test. The drift in warm conditions is of about 2 Pa/h, thus being negligible during a 30 s

acquisition. Therefore, unlike measurements with the load cell, pressure measurements do not

require drift compensation.

In order to obtain a non-dimensional pressure coefficient Cp at each measurement point, a

reference pressure pref must be defined, so that Cp = (p − pref)/
(
1/2ρU2

)
. Because of pressure

losses along the model, the reference pressure is chosen to be section-dependent. Hence the use

of the following definition:

Cp(x, θ) =
p(x, θ) − p̄(x)

1
2
ρU2

, (5)

where p̄ is the average over the 16 pressure taps of the section and θ is the azimuthal angle

(figure 4).

The physical quantity measured by the scanners is the difference between the pressure in each

vinyl tube and a common reference pressure. Here, the reference channel is set at atmospheric

pressure. The pressure in each vinyl tube is assumed to be equal to the pressure at the cylinder
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wall if there were no hole. Geometrical imperfections of pressure holes lead to systematic errors

on Cp of about 1 % (Tavoularis, 2005). In the narrow range of geometrical variation that is studied

here (e.g. α = ±0.5◦), this may have a significant impact on the pressure profiles. Therefore, the

results are presented in terms of differential value of Cp with regards to the neutral configuration

(α = 0,Z = 0, δ = 0):

C̃p(θ) = Cp(θ) −C0
p(θ), (6)

and this at each measurement section (x). Another processing step is carried out before looking

into the results: since a linear behaviour is expected for the rotational degree of freedom (Di-

varet et al., 2014), the pressure profiles are shown relatively to the angle of incidence. Thus,

the curves C̃p(θ)/α are displayed. For translation, a similar treatment is applied: the curves

C̃p(θ) /(Z/(P − D)) are shown. The non-dimensional displacement Z/(P−D) is 0 when the cylin-

der is in neutral configuration and ±1 when there is contact with a neighbour cylinder. Eventually,

since this is the goal of the pressure measurements, the integrated local fluid force is shown:

C̃N(α) = −
1

2

∫ 2π

0

C̃p(θ) cos θdθ, (7)

where CN denotes the normal force coefficient in rotation. For translation, the vertical lift coeffi-

cient is calculated as:

C̃L(Z) = −1

2

∫ 2π

0

C̃p(θ) sin θdθ. (8)

In early tests, tripping of the boundary layer was found to have an influence on the pressure

profiles. Tripping is achieved by means of 26 mm-wide adhesive rough strips stuck onto all nine

cylinders (x/Dh ∈ [0.6 ; 1.1]). For rotation, results are shown both with and without tripping.

For translation, pressure measurements are only shown with tripping. When not explicitly men-

tioned, force measurements using the load cell as well as velocity measurements are performed

without tripping.

2.2. RANS simulations

The numerical results presented here were obtained via RANS simulations (Reynolds-averag-

ed Navier–Stokes) performed with Code_Saturne 4.0, an EDF in-house open CFD tool based on

a collocated finite volume approach (Archambeau et al., 2004). The code uses a centred scheme

for the velocity and a SIMPLEC algorithm (semi-implicit method for pressure linked equations

– consistent) for the velocity-pressure coupling. For turbulence modelling, the k − ω SST (shear

stress transport) model with a two-scale wall law is used. This was previously found to be well-

suited to the prediction of the fluid force upon a single cylinder in near-axial flow (Divaret et al.,

2014). The k − ω SST model was also used in the past in several other studies on fluid forces

upon slender structures in axial flow (Adjiman et al., 2016; De Ridder et al., 2013, 2015, 2017;

De Santis and Shams, 2017; ter Hofstede et al., 2017; Papukchiev et al., 2018).

The fluid volume is discretized with a conform hexahedral mesh generated using the soft-

ware SALOME 7.8.0. The geometry of the numerical model is almost identical to the one of

the experiment, the only difference is that all cross-flow elements supporting the cylinders as

shown in figure 1(b, c) are not included. The resulting mesh is made up of 12.3 million cells,

see figure 5(a, b). It is refined close to the walls. Cell sizes are adjusted according to best

practice guidelines for these types of flow and turbulence model. The non-dimensional cell half-

thickness, commonly denoted by y+, should thus remain between 20 and 40. Because of the
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(a)

(b) (c)

Figure 5: Section views of the mesh: (a) side view at y = 0, (b) front view for x/Dh ∈ [0 ; 39], and (c) detailed front

view in a translation case (Z = 5 mm).
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geometrical specificities of the present mesh, y+ actually lies between 12 and 41, which is an

acceptable compromise. The mesh is generated in the neutral configuration. To deform the mesh

according to the three degrees of freedom previously described (figure 3), a solid mechanics

computation is performed on the fluid domain with Code_Aster 14.1 with an imposed displace-

ment on the central cylinder. The cells at the wall are ensured to keep their previously prescribed

size by imposing the displacement on several mesh layers around the cylinders as illustrated in

figure 5(c).

The time step was chosen such that the Courant–Friedrichs–Lewy condition CFL < 1 is met

everywhere, where CFL is the Courant number. 1.0 s of physical time is simulated with a total

of 200 000 time steps. The maximum CFL is found at the cylinder tips and its value is 0.52. A

constant and uniform velocity Uin = 10 m/s is imposed at the inlet (Re = 61 000) and a constant

static pressure at the outlet. The sides of the domain and the cylinder walls are modelled as

smooth walls.

The global fluid forces and moments are computed at each time step and then averaged over

the last 0.1 s of the simulation, when the steady flow has clearly established. Flow visualizations

are produced with ParaView at the last time step.

Other numerical simulations were performed with a coarser mesh, in neutral configuration.

Changing the cell length in streamwise direction ∆x from 3.33 mm (reference) to 5 mm led to a

reduction by 1 % of the drag coefficient CD. Another time step was also tested, for the simulations

with a rotated cylinder: increasing ∆t from 0.5 × 10−5 s to 2.0 × 10−5 s led to a reduction of

the Taylor-Divaret coefficient cL by 1.7 %. Only the results obtained in the reference case are

presented in this paper.

3. Results

This section provides the experimental and numerical results that were produced with the

geometry described in the previous section. Some insights into the velocity fields and pressure

losses in the neutral configuration are first presented. The subsequent paragraphs then detail the

results separately for each degree of freedom.

3.1. Flow characterisation in neutral configuration

Figure 6 shows profiles of the axial velocity u measured at six different cross-sections over the

vertical positions displayed in figure 1(d). The two downward peaks observed at x/Dh = 3 and

x/Dh = 8 are the momentum deficiencies in the wakes of the supporting cylindrical elements

shown in figure 1(b). They diffuse and eventually disappear downstream. Boundary layers at

the cylinders’ walls develop and merge after some 25 hydraulic diameters, leading to a quasi-

homogeneous flow in the axial direction. This recalls the concept of entrance length in a pipe.

Using the expression Le/d = 1.6Re1/4 (White, 2011) and replacing d by Dh yields Le = 24Dh in

the conditions of the experiment (Re = 54 000), which is consistent with the measurements.

The developed boundary layers lead to lower velocities in narrow regions of the cross section

and higher velocities in wide areas. The amplitude of the velocity oscillations is smaller in

the experiments than in CFD. This is likely to be produced by the additional turbulent mixing

associated with all the cross-flow elements. Also, the global flow rate is remarkably larger in

CFD. This indicates thinner boundary layers in the experiment, which is, as well, likely to be

explained by the additional mixing.

The numerical simulations can provide more detailed information on the velocity variations

within a cross-section. Figure 7 gives two examples of velocity fields at different positions along
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3 8 14 25 31 36
x/Dh

2

1

0

1

2

z/
P

exp., Re = 54 000, y/P= 0.5 exp., Re = 54 000, y/P= -0.5 CFD, Re = 61 000, y/P= ±0.5

1.00.8 1.00.8 ...
u/U

Figure 6: Axial velocity u, profiles at both sides of the cylinder and different cross-sections along the model. Experimen-

tal and numerical results.

(a) (b)

Figure 7: Axial velocity fields from CFD: (a) at the entrance of the bundle, x = 0, and (b) downstream where the flow is

homogeneous in the axial direction, x/Dh = 35. Re = 61 000.

0.00 0.25 0.50 0.75 1.00
u/umax

0.0

0.2

0.4

0.6

0.8

1.0

s

White (2011)
CFD, narrow channel (AA')
CFD, wide channel (BB')

Figure 8: Axial velocity profiles from CFD along the two paths at x/Dh = 35 (AA′ and BB′) displayed in figure 7(b), s

is the non-dimensional coordinate along the path. Re = 61 000.

12

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 
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x/Dh

0.8

0.6

0.4

0.2

0.0

(p
p r

ef
)/0

.5
U

2

Haaland (1983),
Re = 61 000
CFD, Re = 61 000
experiments,
Re = 94 000
experiments with
tripping, Re = 96 000

Figure 9: Non-dimensional pressure losses along the model. CFD values are taken from a line parallel to the x-axis at

the centre of a wide channel (y/P = z/P = 0.5). Each experimental point is obtained by averaging the values of the 16

pressure taps at the corresponding section. The reference pressure is chosen to be the one at the first section (x/Dh = 2.9).

the cylinder bundle. Figure 8 shows the non-dimensional velocity profiles between two cylinder

walls in the narrowest channel (AA’) as well as in the widest one (BB’), in the established-flow

zone (x/Dh > 24). The velocity close to the wall is not given, since the solver applies a wall

law in the first cell of the mesh at the cylinder wall. The numerical profiles are compared with a

standard log profile of the turbulent flow in a pipe (White, 2011) at the same Reynolds number

as in the simulations. A good agreement is found between these profiles, which confirms that the

flow in the present geometry can be understood by classical turbulent pipe flow considerations,

where friction losses dominate.

Figure 9 depicts the resulting pressure losses in CFD and experiments. They are compared

with an empirical law by Haaland (1983) that gives the linear pressure loss coefficient in a pipe,

λc, as a function of the Reynolds number only (based on the hydraulic diameter):

1
√
λc

= −1.8 log10

(
6.9

ReDh

)
. (9)

The dashed line of figure 9 is then obtained through the definition of the linear pressure loss

coefficient:
p − pref

1/2ρU2
=

x − xref

Dh

λc. (10)

There is a very good overall agreement between all the results presented in figure 9. The pressure

losses in the simulations are very regularly distributed except for the regions close to the cylinder

ends. Experimental pressure losses are less perfectly linear. This is likely to be produced by the

geometrical inhomogeneities of the test rig in the streamwise direction. The use of a tripping

rough strip does not seem to have a significant influence (the circles and the stars can hardly be

distinguished).

3.2. Rotation

3.2.1. Global forces

Figure 10 shows the experimental drag measurements of the central cylinder with small incli-

nations. The variations of the drag as a function of the angle of incidence do not display any clear

trend. In the experiments without tripping, CD = (41.0 ± 0.7) × 10−3 over the range of Reynolds

number considered (here the error is simply computed as twice the standard deviation). Tripping
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0.4 0.2 0.0 0.2 0.4
 [°]

36

37

38

39

40

41

42

43

44

C D

×10 3

w/o rough strip, Re = 66 000
w/o rough strip, Re = 88 000
w/o rough strip, Re = 110 000
with rough strip, Re = 97 000
w/o rough strip, Re = 110 000,
upper rod removed

Figure 10: Cylinder in rotation: drag coefficient of a slightly inclined cylinder in axial flow, experimental results.

source tripping supporting rod tapered ends Re CD × 103

experiments no upper and lower part included 110 000 41.3

experiments no lower part only included 110 000 36.6

experiments no no support included 31.9

experiments yes upper and lower part included 97 000 43.1

experiments yes no support included 33.7

CFD yes no support included 61 000 33.3

CFD yes no support excluded 61 000 15.8

TLP: Haaland (1983) n/a (friction drag) n/a 61 000 15.6

Table 2: Drag coefficient of a cylinder in axial flow: comparison between experimental and numerical results. The exper-

imental drag without support is calculated from the measured values with and without the upper part of the supporting

rod. Tripping in CFD is included in the turbulence model.
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0.4 0.2 0.0 0.2 0.4
 [°]

1.5

1.0

0.5

0.0

0.5

1.0

1.5
C L

×10 3

TLP model
experiments, Re = 66 000
experiments, Re = 88 000
experiments, Re = 110 000
experiments with rough strip,
Re = 97 000
CFD, Re = 61 000

Figure 11: Cylinder in rotation: lift coefficient of a slightly inclined cylinder in axial flow. Filled symbols: experimental

results; empty symbols: numerical results. Dashed line: TLP model (see discussion in § 4).

the boundary layer does not change this statement; the presence of the rough strip manifests itself

in a slight drag increase: CD = (43.1 ± 0.2) × 10−3 (5 % increase). This observation is consistent

with theory, since a turbulent boundary layer has steeper velocity gradients than a laminar one,

thus leading to stronger wall shear stress.

Further values of the drag coefficient in different configurations are given in table 2. Remov-

ing the upper part of the supporting rod in the experimental model leads to a reduced drag of

CD = 36.6 × 10−3 (also shown in figure 10, green triangles). Since there is no support in the

simulations, the expected CFD drag should be yet again smaller, by the same difference, hence

the predicted value of CD = 31.9 × 10−3 in table 2. There is no rough strip in the computations,

but the turbulence model does simulate a turbulent boundary layer. Therefore, to better compare

CFD and experimental results, one last corrective step is applied: the difference between drag

with and without rough strip is added to the latter value. This eventually leads to the following

calculated support-free drag coefficient from the experiments: CD = 33.7 × 10−3. The computed

drag coefficient from CFD is CD = 33.3 × 10−3 at Re = 61 000, which is very close to the

prediction.

In CFD, the contribution of the tapered ends of the cylinder can be ignored in order to obtain

the friction drag along the cylinder, which reduces to CD = 15.8 × 10−3. The comparison with

the TLP model, for drag in rotation as well as for further results, is addressed in the discussion.

Figure 11 shows the lift force upon the cylinder in near-axial flow. All four experimental

curves display a linear relationship between the lift and the angle of incidence, which is consistent

with the recent literature (Divaret et al., 2014; De Ridder et al., 2015). The absolute value of

the slope between the angle of incidence and the lift coefficient is called the Taylor-Divaret

coefficient and denoted by cL (a capital C is used for actual force coefficients and a small c for

slopes). It is deduced from the curves by means of a least squares fit and shown in table 3, the

uncertainty being determined statistically from the quality of the linear regression. There is no

clear influence of the Reynolds number in the explored range. This low sensitivity to Re was also

found for the other degrees of freedom. For clarity, only the results at highest Reynolds number

will be shown in the following for translation and bending. Tripping the boundary layer with

a rough strip does not have an influence on the value of cL either. The numerical simulations

exhibit a similar behaviour as the experiments, however with a slightly higher value of cL (0.15
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geometry confined in square array of cylinders, P/D = 1.33

L/D 44

test facility wind tunnel CFD

angle range ±0.5◦ 0 − 0.3◦

angle steps 0.08◦ 0.3◦

ReDh
66 000 88 000 97 000a 110 000 61 000

inlet turbulence

intensity

0.7 % 8 %

cL [rd−1] 0.11 0.09 0.10 0.10 0.15

uncertainty ±0.02 ±0.01 ±0.01 ±0.01 n/a

aWith tripping rough strip.

Table 3: Values of the Taylor-Divaret coefficient cL in the present experiments and simulations. See table 1 for compari-

son with the literature.

vs. about 0.10).

When comparing with existing references (table 1), it appears that the present experimental

values of cL are fairly similar to the one from Divaret et al. (2014), despite the different confine-

ment conditions, Reynolds numbers and angle ranges. The Taylor-Divaret coefficient retrieved

from Ersdal and Faltinsen (2006) is slightly smaller (0.06), but the order of magnitude is the

same. The numerical results of De Ridder et al. (2015), which are obtained from the central part

of the cylinder only (integration over approximately half the length of the cylinder), exhibit a

strong sensitivity to the inlet turbulence conditions.

3.2.2. Velocity, pressure and local force distribution

The drag force distribution along the cylinder, which is obtained from CFD and shown in fig-

ure 12(a), displays an almost uniform behaviour, except in the vicinity of the cylinder ends: for

2x̃/L ∈ [−0.75 ; 0.75], the local drag coefficient does not deviate from its average by more than

3 %. The force distribution is only plotted along the cylindrical part of the cylinder. The contri-

bution of the tapered ends is estimated by subtracting the integral of the curve in figure 12(a) to

the total drag as given in table 2. This way, the tapered ends are estimated to account for slightly

more than half of the total drag of the central cylinder. The drag upon the tapered ends is likely

to be mainly a pressure drag, while the drag upon the cylindrical part is essentially a shear drag.

Figure 12(b) displays the spatial distribution of the lift force along the cylinder as obtained

from CFD. The force per unit length f retrieved from the numerical results is made non-dimen-

sional so that the curve gives a direct representation of the local value of cL. It can be seen that this

coefficient has strong variations close to the cylinder ends and varies relatively slowly between

the values 0.11 and 0.16 in the central part of the cylinder. This trend agrees qualitatively with

the observations of De Ridder et al. (2015), who noted a slight increase in cL from the upstream

half of the cylinder to the downstream half.

Axial velocity fields and pressure fields from numerical simulations are shown in figure 13,

for the section at x/Dh = 29. At this section, the velocity field looks very similar to that of
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2x/L
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C D

×10 3 TLP
CFD

0 3 8 14 25 31 36 39
x/Dh

(a)

1.0 0.5 0.0 0.5 1.0
2x/L

0.00
0.02
0.04
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0.10
0.12
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0.18

C L
/
=
c L

TLP
CFD

0 3 8 14 25 31 36 39
x/Dh

(b)

Figure 12: Cylinder in rotation: (a) drag and (b) lift force distribution along the cylinder, simulation at α = 0.29◦ and

Re = 61 000. The local lift force is given in terms of slope relatively to the angle of incidence (Taylor-Divaret coefficient

cL).

(a) (b)

Figure 13: Cylinder in rotation: CFD results for α = 0.29◦ and Re = 61 000 in a cross-section at x/Dh = 29, (a) axial

velocity field and (b) pressure coefficient: Cp(x, y, z) = (p(x, y, z) − p̄(x))/
(
1/2ρU2

)
.
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the neutral configuration in figure 7, while the pressure field is polarized, leading to the Taylor-

Divaret lift.

Figure 14 (left) shows experimental results on the differential pressure coefficients relatively

to the angle of incidence C̃p/α, as defined in § 2.1.5, in both cases of tripping of the boundary

layer or not. Tripping has a dramatic organizing effect on the first upstream measurement sections

(x/Dh = 3, 8 and 14), while it is not significant to the downstream half of the cylinder. Laminar

to turbulent boundary layer transition triggered by the pressure holes are thus suspected to occur

on the cylinders in the first part of the bundle without tripping. Further comments focus on the

profiles with tripping. The three sections of the upstream part as well as the last section display

pressure profiles with essentially a mode 1 shape as expected by the symmetry breaking produced

by the cylinder rotation α , 0. As observed in CFD in figure 13(b), it corresponds to a higher

pressure upon the side facing the flow (θ = 0 when α > 0) and a lower pressure upon the opposite

side (θ = π). The section at x/Dh = 14 displays a slight asymmetry but does comply with the

main idea of that statement. The central supporting rod (shown in figure 1b) is responsible for

the mode 2 shape observed in the profiles at x/Dh = 25 and 31, with two maxima at about π/2

and 3π/2 consistent with the wakes produced by its upper and lower part. The relative pressure

profiles C̃p/α overlap very well for all values of α in the upstream half of the cylinder, except for

some specific measurement points. Thus, the linear behaviour previously observed from global

force measurements is also to be seen in local pressure measurements. In the downstream half of

the cylinder, there is a relatively clear distinction between the profiles for α < 0 (red colour) and

those for α > 0 (blue colour). This asymmetric behaviour after the supporting rod is retrieved in

additional measurements at several Reynolds numbers, but with slight variations of the profiles.

This could be related to the complex reattachment of the flow separated from the supporting rod

onto the central cylinder.

Figure 14 (right) shows the resulting local normal force coefficient C̃N (7) at each mea-

surement section. As previously observed, tripping has a great organizing influence on the two

upstream sections. On the other sections, the results are relatively similar whether the bound-

ary layer is tripped or not. Now focusing on the results with tripping, a similar behaviour is

observed in the upstream half of the cylinder and in the downstream-most section: the normal

force is a linear function of the angle of incidence, with cN ranging from 0.14 to 0.23. In the

two sections downstream of the central supporting rod, the linear regression yields much lower

slopes: cN ∈ [0.03 ; 0.05]. The weighted average slope over the cylinder is cN = 0.12. The

Taylor-Divaret coefficient is then retrieved from cL = cN/ cosα − CD tanα/α ' cN − CD, where

the value of the friction drag CD is taken from the numerical simulations (table 2). The result is

cL = 0.11, which is consistent with the force measurements of § 3.2.1 (see table 3).

Figure 15 compares one of the present pressure profiles with examples from the literature

(Divaret et al., 2014; Heenan and Morrison, 2002) and with the present CFD results. The geo-

metrical configuration in those two references is unconfined. Also, the angles of incidence are

much higher (α = 3.6◦ and 6◦), leading to the characteristic shape of the pressure profile on a

cylinder with separated flow: two symmetric minima (here at π/2 and 3π/2) and a higher plateau

between them. In the present case, with very low angles of incidence (α < 0.7◦), the shape is

simpler, going from the maximum at θ = 0 to the minimum at θ = π. The values of the maxi-

mum and minimum are coherent between all experimental data. The CFD profile is a bit flatter,

although it displays the same shape as in the present measurements.
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Figure 14: Cylinder in rotation, pressure measurements at different positions along the cylinder, with and without trip-

ping: relative pressure coefficient C̃p/α (left) and integrated normal force coefficient C̃N (right). Re = 96 000. The

colour of each curve C̃p/α (left) is chosen according to the value of α. The colour scale is given in the right part of the

figure (C̃N curves).
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Figure 15: Cylinder in rotation: relative pressure coefficient C̃p/α, comparison with CFD and literature references.
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Figure 16: Cylinder in translation: comparison of lift coefficients obtained in the experiments, the numerical simulations

and the TLP model (see discussion in § 4).

3.3. Translation

Drag measurements for a translated cylinder are very similar to those obtained in rotation.

They are not shown here, but are available in Joly (2018, p. 58).

3.3.1. Global forces: lift

Figure 16 shows the lift as a function of the non-dimensional displacement Z/(P − D). In

the tests where both sides of the supporting rod are present (as illustrated in figure 3), the results

display a positive fluid stiffness effect (purple circles in figure 16b): the force is a linear function

of the displacement and it is opposed to it. The non-dimensional stiffness is defined as:

ck = −
C̃L

Z/(P − D)
. (11)

A linear fit gives ck = (4.6 ± 0.2) × 10−3. At the maximal displacement, the lift coefficient C̃L

grossly reaches 3 × 10−3. This is about three times the maximal value of the lift coefficient in

rotation (figure 11). Thus, the positive fluid stiffness is not negligible.

However, removing the upper rod (green triangles) considerably reduces the stiffness for

Z < 0. In CFD (empty circles), the fluid stiffness is hardly noticeable. It completely disappears
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Figure 17: Cylinder in translation: lift force distribution along the cylinder, simulation at Z/(P − D) = 0.33 and Re =

61 000.

(a) (b)

Figure 18: Cylinder in translation: CFD results for Z/(P − D) = 0.33 and Re = 61 000 in a cross-section at x/Dh = 29,

(a) axial velocity field and (b) pressure coefficient Cp. The coulour scales are the same as in figure 13.

when the contribution of the tapered ends is excluded (squares). Accordingly, it can be concluded

that the positive fluid stiffness observed in the experiments is caused by the wake confinement of

the vertical support.

3.3.2. Velocity, pressure and local force distribution

Figure 17 shows the lift force distribution along the cylinder translated by Z/(P − D) = 0.33

computed with the numerical simulations, where no supporting part is modelled. Except for

the regions close to the cylinder ends, the force upon the cylinder sections is negligible. This

confirms that the fluid stiffness identified in the experiments is induced by the support.

Similarly to what has been done in the rotational degree of freedom, figure 18 shows axial

velocity and pressure fields from numerical simulations, for the section at x/Dh = 29 and in

the case of a translated cylinder. Experimental velocity profiles are also available in that case,

see figure 19. It appears that bringing the cylinder closer to one of its neighbours reduces the

velocity in the narrowed region between them. This happens without any noticeable impact on

the pressure, which remains uniform, as expected from the results on the fluid forces.

Figure 20 shows the results of the pressure measurements for translation, in terms of relative

differential pressure coefficients C̃p/(Z/(P − D)) (6) and local lift coefficient C̃L (8). Only the
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U

Figure 19: Axial velocity profiles for a translated cylinder. Experimental results, Re = 54 000.

results where the boundary layer is tripped are shown. The pressure profiles are relatively flat

in the upstream part. In the downstream part, they show a sine-like shape with maximum at

θ = π/2. This pattern is the most pronounced at the section directly downstream of the central

support. This translates into a strong fluid stiffness trend on this portion of the cylinder. On the

upstream sections, the fluid stiffness is rather slightly negative, but not significant. The weighted

average gives ck = 1.7 × 10−3, which is lower by a factor 3 than what was measured with the load

cell (ck = 4.6 × 10−3). The local fluid stiffness might thus be even stronger directly downstream

of the support (the measurement section lies 6 hydraulic diameters downstream of it). This tends

to confirm the confinement effect produced from above and below by the neighbour cylinders on

the wake of the supporting rod.

3.4. Bending

3.4.1. Global lift and moment

Figure 21(a) presents the global lift of a bent cylinder as a function of the non-dimensional

deflection 2δ/L. This parameter is given in degrees, since it can be understood as an angle; doing

this allows for comparison with the results in rotation (e.g. with figure 11). The experiments

as well as the numerical simulations show a slight negative trend of the lift with increasing

deflection. Removing the contribution of the tapered ends yields the opposite behaviour. This

emphasizes that the local fluid forces at the cylinder ends can have a non-negligible influence on

the global force. As for the moment (figure 21b), experiments and simulations agree well with

each other. Here, the contribution of the tapered ends does not make a significant difference.

3.4.2. Local lift force distribution

Figure 22 presents the lift force distribution along the cylinder from CFD. Away from the

regions close to the cylinder ends, the following trend is observed: relatively steady increase of

the lift force in the upstream half, slope discontinuity in the middle and a much flatter evolution

in the downstream half.

4. Discussion

The Taylor-Lighthill-Païdoussis model of fluid forces upon a flexible cylinder in axial and

confined flow was already mentioned in the introduction. For each force investigated in the

previous section, the expression of the force is now given according to this model in the specific

case of a statically deformed cylinder, and compared with the results. The version of the model
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Figure 20: Cylinder in translation: relative pressure coefficient C̃p/(Z/(P − D)) and integrated lift force coefficient C̃L,

with tripping. Re = 98 000. The colour of each curve C̃p/(Z/(P − D)) (left) is chosen according to the value of Z. The

colour scale is given in the right part of the figure (C̃L curves).
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Figure 21: Cylinder in bending: (a) lift coefficient and (b) non-dimensional pitching moment. Filled symbols: ex-

perimental results (Re = 110 000); empty symbols: numerical results (Re = 61 000). Dashed line: TLP model (see

discussion in § 4).
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Figure 22: Cylinder in bending: lift force distribution along the cylinder, simulation at 2δ/L = 0.29◦. Two sets of

coefficients are shown for the TLP model (see discussion in § 4).
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that is examined here is inspired by Païdoussis (1973) and includes the results of Divaret et al.

(2014) about the non-zero viscous lift force.

4.1. Drag

The TLP model assumes a constant and uniform local drag:

f TLP
D =

1

2
ρU2DCD. (12)

In the confined case, Païdoussis (1973) suggests to calculate the friction drag from the pressure

losses by writing the equilibrium between friction forces and pressure forces in the channel:

CD =
π

4
λc. (13)

The pressure loss coefficient λc can in turn be estimated from empirical pressure loss formula,

such as those given in Haaland (1983). Using (9) with Re = 61 000 (value used in CFD simula-

tions) yields CD = 15.6 × 10−3.

In the measurements, the drag is indeed found to undergo negligible variations when slightly

perturbing the geometry of the cylinder bundle (§ 3.2.1, figure 10 for rotation). Retrieving the

friction drag coefficient from CFD leads to a value which is very close to the one predicted from

pressure losses (15.8 × 10−3 vs. 15.6 × 10−3, see table 2), and this despite the entrance length

phenomenon mentioned in § 3.1. Moreover, when considering portions of the cylinder that are

not close to the cylinder ends, the drag is found to abide relatively well by the uniform behaviour

predicted in the TLP model (figure 12a). Also, the good agreement found on the drag value

between the experiments and the simulations indicates that the wakes of the cross-flow elements

do not substantially influence the global friction drag. The ends of the cylinders do have a non-

negligible contribution to the total drag (slightly over 50 %, as deduced from table 2). This is

usually taken into account when using the TLP model for instability predictions. Expressions of

the forces at the ends can be found e.g. in de Langre et al. (2007) for the tip of a clamped–free

cylinder, or in Rinaldi and Païdoussis (2020) for the head of a free–clamped cylinder.

4.2. Lift

In the TLP model, the local lift force is expanded into two terms: an inviscid term (Lighthill),

proportional to the local curvature and to the added mass, and a viscous term (Taylor-Divaret),

proportional to the local angle:

f TLP
L = −χρS U2w′′ −

1

2
ρU2DcLw′, (14)

where χ is the added mass coefficient and S is the cylinder cross-section. The superscript ′

denotes the spatial derivative, so that w′ is the local angle and w′′ is the local curvature. The added

mass coefficient can be evaluated from tests in quiescent fluid or 2–D potential flow calculations.

Moretti and Lowery (1976) performed tests in quiescent water with an unconfined bundle of 3x3

cylinders where the central cylinder was excited and the forces were measured. For the pitch-to-

diameter ratio 1.33, they obtained χ = 1.38. Despite the increased confinement in the present

case, that value is used for comparison with the results. The Taylor-Divaret coefficient cL can be

measured via experiments with a long and straight cylinder slightly inclined in axial flow. As a

reference for comparison, the value of Divaret et al. (2014) with an unconfined cylinder is taken:

cL = 0.10.
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Rotation

For a rotated cylinder with angle of incidence α, there is no curvature and the local lift force

reduces to the following uniform expression:

f TLP
L = −1

2
ρU2DcLα. (15)

The global lift force is then:

FTLP
L = −

1

2
ρU2DLcLα, (16)

where the contribution of the cylinder ends has been ignored.

For the global lift force, the expected linear relationship with the angle of incidence appears

very clearly in the results (§ 3.2.1, figure 11). The slope taken from Divaret et al. (2014) is

very similar to the ones obtained experimentally in the present study (table 3), despite several

differences of setup. In particular, the confinement does not seem to have a significant effect on

the value of the Taylor-Divaret coefficient cL.

For the local lift force, the assumption of a uniform distribution is not completely valid, as

can be seen from the CFD results (figure 12b) for a geometry without supports. The experimen-

tal investigation of the normal force distribution by means of pressure measurements (figure 14)

shows that a real geometry including supports will lead to even stronger inhomogeneities, espe-

cially in the wake of the supports. Yet the linear relationship between the local normal force and

the angle of incidence persists at all measurement cross sections, which on the whole induces a

linear behaviour of the global force. Untripped ends generate highly uneven pressure profiles in

the upstream sections, which does not significantly affect the overall lift measurement. Tripping

the boundary layer has a dramatic and beneficial influence on pressure measurements in the first

upstream sections, whereas no noticeable effect is observed upon global lift measurements. From

the authors’ experience, it is highly advisable to arrange a tripping strip at the upstream end of

the cylinder when performing such pressure measurements.

Translation

The TLP model predicts no variation of the forces when the cylinder is translated closer to

one of its neighbours, refer to (14) with w , 0 but w′,w′′ = 0. A similar conclusion is obtained

by numerical simulations, despite the fact that the velocity in the x–direction is no more uniform

(figure 18). In the experiments, a considerable fluid stiffness effect is observed: the lift force is

about three times higher in translation than in rotation, in the range of angle and displacement

that is investigated here. Thanks to the pressure measurements (figure 20), it is suggested that the

stiffness originates from the confinement of the wakes of the supporting rod by the two neighbour

cylinders above and below the central cylinder. It is known that end plates with a distance h

apart placed on a circular cylinder of diameter D in cross-flow modify the mean base pressure

in the near wake. Szepessy and Bearman (1992) have shown that, for aspect ratios h/D < 1

and Reynolds numbers ReD < 50 000, the mean pressure increases as h/D decreases. In the

present case, the aspect ratio in neutral configuration is (P − D)/Dr = 0.7 and it varies between

0.2 and 1.1 when the cylinder is translated ; the maximum Reynolds number is ReDr
= 47 000.

It is then likely that the pressure increases in the smaller gap and decreases in the larger gap

produced by the cylinder translation from its initial position, thus introducing the positive fluid

stiffness. Therefore, the zero fluid stiffness property of the TLP model is valid only provided

that no significant cross-flow body is present. This might seriously limit the applicability of this

version of the TLP model to industrial structures.
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Figure 23: Three terms of the TLP model for a bent cylinder. The same scale is used for both lift forces (with cL = 0.10

and χ = 1.38), another scale is used for the drag.

Bending

Introducing the deformed shape of the cylinder from (2) into the expression of the TLP local

forces, (12) and (14), then integrating over the cylinder span yields the following global force

and moment coefficients:

CL = χ
3π

2

2η − 1

λ

D

L
(2δ/L),

CM = −
(
cL

8η − 3

16λ
+CD

4η − 1

16λ

)
(2δ/L),

(17)

with the parameters λ = 1 + 3l/L = 1.24 and η = 1 + 2l/L = 1.16 for the present geometry.

As illustrated in figure 23, the global lift consists of Lighthill’s term only (of the three coeffi-

cients of the TLP model, only χ appears in the expression of CL). This term does not contribute

to the global pitching moment coefficient CM . The dominant contribution in CM is the one from

the Taylor-Divaret lift (identified by the coefficient cL), which is about ten times greater than the

contribution of the friction drag (CD).

While experimental and numerical results agree on the global lift force (figure 21a), they

do not comply with the predictions of the TLP model, which presents an increased lift with

bending. However, excluding the contribution of the tapered ends of the cylinder in CFD restores

the expected behaviour from the TLP model. This emphasizes that the local fluid forces at

the cylinder ends can have a non-negligible influence on the global force. As for the pitching

moment (figure 21b), all curves show a behaviour compatible with the TLP model, although

with a slightly steeper absolute slope.

As previously mentioned, no pressure measurements could be carried out with a bending

cylinder because of design constraints. However, experimental and numerical results agree quite

well on the global fluid loadings, so that reliable information on the local forces can be retrieved

from CFD. The dashed blue line in figure 22 illustrates the lift distribution along the cylinder

according to the TLP model with the coefficients chosen in the introduction of the present section.

For the specific case of a statically bent cylinder having an Euler-Bernoulli beam behaviour, the

model predicts a steady increase of the lift in the upstream half, a slope discontinuity in the

middle and a much flatter evolution in the downstream half. The CFD results agree qualitatively

with those three features, though with strong differences in the regions close to the cylinder ends.

The green dashed-dotted line shows that the TLP model can be partially fitted to the CFD results

with not so drastic updating of its coefficients (χ = 1.50 and cL = 0.17). Actually, the best

fit would require a lower value of cL in the upstream half than in the downstream half. The
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asymmetric distribution of the viscous contribution to the lift force upon a curved cylinder was

also observed numerically by De Ridder et al. (2015).

On the whole, the TLP model is supported by the experimental and numerical investigations

undertaken in the present study. Yet it is worth highlighting the fact that, when performing similar

experiments as the present ones, special attention must be given to sections of the cylinder that

are close to its ends or to supporting elements.

5. Conclusions

In this paper, an extensive experimental and numerical study has been carried out on the

steady fluid forces exerted upon a cylinder in axial flow and confined in a cylinder array. The

influence of three basic static perturbations (rotation, translation, bending) has been thoroughly

investigated. The results have been compared with a semi-empirical model from the literature,

identified here as the Taylor-Lighthill-Païdoussis (TLP) model. This model is traditionally used

for studying instabilities of slender structures in axial flow, and its governing coefficients are

usually fitted on the dynamic behaviour instead of being measured directly. It was found that the

model is quite accurate in the case of an ideal axial-flow structure: describing the friction drag

as uniform and constant, and the local lift as depending on the local inclination and curvature,

seems to give a satisfying picture of the fluid forces, as long as the cylinder section considered

is not too close to geometrical singularities. However, in the presence of cross-flow supports,

two main features that are not described by the model were identified. In rotation, the local lift

force in the wake of the support is much weaker than outside of it. Since the trend remains linear

everywhere, the average lift coefficient upon the whole cylinder does exhibit the predicted linear

relationship with respect to the angle of inclination, yet the coefficient of proportionality can

vary in a not so narrow range. In translation, a considerable fluid stiffness effect was measured

and could be qualitatively attributed to specific wake characteristics of cross-flow cylinders at

low aspect ratios. These effects should be kept in mind when analysing results on industrial

structures in axial flow, where cross-flow elements are most likely to be present.

This study focused on steady forces in the case of static perturbations. In the limit of slow

oscillations, it is reasonable to assume that force coefficients identified in steady conditions can

be safely used in dynamic conditions. Such an idea can be applied to industrial issues, as in e.g.

Moussou et al. (2017).
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