Electronic Supplementary Information

for the article

Hybrid catalysis for enantioselective Baeyer-Villiger oxidation and epoxidation: A Cp*Ir complex to fuel FMN and FAD reduction for flavoprotein monooxygenase modules.

Robert Röllig, * Caroline E. Paul, ^b Pierre Rousselot-Pailley, ^a Selin Kara, * c, ^d Véronique Alphand * a

Table of content

Synthesis of [Cp*Ir(bpy-OMe)SO ₄]1							
Mechanism of the activated complex							
Gas chromatography analyses	. 2						
Enantioselective BV oxidation by 2,5-DKCMO	. 3						
Biotranformation of ketone 2a	. 3						
• pH effect	. 4						
Formic acid concentration effect	. 5						
Alternative hydride sources	. 5						
NADH as the hydride source	. 6						

Synthesis of [Cp*Ir(bpy-OMe)SO₄]

Fig. S1 ¹H NMR spectrum of the **1**-(SO₄). The NMR was performed at a 300 MHz field with deuterated methanol. The chemical shifts are expressed using the residual of the deuterated solvent as the reference.

¹H NMR (300 Mhz, D3COD): δ 8.93 (d, 2H, 6 Hz),8.07 (d, 2H, 3 Hz), 7,34 (dd, 2H, 3 Hz, 6 Hz), 4.10 (s, 6H),1.70 (s,15H)

Mechanism of the activated complex

Fig. S2 Proposed mechanism for the formation of the hydride species $1-(H^+)$ in the presence of formate ions from its $1-(SO_4)$ precursor as well as for the regioselective, catalytic reduction of flavins by $1-(H^+)$, the first electron mediator of the reaction system. After flavin reduction the reactive hydrido-complex $1-(H^+)$ is regenerated from the inactive aquo-precursor $1-(H_2O)$ by formic acid oxidation.

Gas chromatography analyses

Gas chromatography (GC) analyses for substrate **2a** and the corresponding products **2b** and **2c** were performed with a FID detector and H₂ as the carrier gas. Injector and detector temperatures were set at 250 °C. Compounds assigments were determined by comparison with authentic samples. The two enantiomers of **2a** and the four lactone isomers **2b** and **2c** were separated using a 25 m x 0.25 mm CP-Chirasil Dex CB capillary column (Agilent Technologies). At an oven temperature of 120 °C, the retention times were 6.5 min for (-)-(1*S*,5*R*)-**2a**, 6.7 min for (+)-(1*R*,5*S*)-**2a**, 15.6 min for tridecane, 26.0 min for (+)-(1*R*,5*S*)-**2b**, 27.0 min for (+)-(1*S*,5*R*)-**2c**, 28.0 min for (-)-(1*S*,5*R*)-**2b**. Styrene, styrene oxide and their derivatives were separated in a 25 m x 0.25 mm β -Dex 120 column (Sigma-Aldrich). The parameters of GC analyses are reported **Table S1**.

oven	substrates / RT [min]		products / RT [min]		RT [min]	RT [min]
temperature					DMSO	dodecane
	styrene 3a	11	(R)-(+)-styrene oxide 3b	39.2		
100 °C		0	(<i>S</i>)-(-)-styrene oxide 3b	40.6	15.3	30.0
		3	phenyl ethylene glycol*	41.5		
		10	(2 <i>R,</i> 3 <i>S</i>)-2-methyl-3-			
110 °C	4a	13. 9	phenyloxirane 4b	32.2	11.7	20.5
			phenylpropane-1,2-diol*	42.4		
	<i>trans-в-</i> methylstyrene 5a	10	(2 <i>S,</i> 3 <i>S</i>)-2-methyl-3-			
120 °C		12. 4	phenyloxirane 5b	21.9	9.4	14.6
			phenylpropane-1,2-diol*	28.3		
110 °C	4-fluorostyrene 6a	9.6	(S)-4-fluorostyrene oxide	20 C		
			6b	20.0	11.7	20.5
			fluoro-phenylethylene	21.2		
			glycol*	31.2		

Table S1. Oven temperature and retention times (RT) of styrene and the derivatives.

* products from hydrolysis of the corresponding epoxides

Enantioselective BV oxidation by 2,5-DKCMO

Biotranformation of ketone 2a with 100 mM of HCO₂H and 100mM of Ir complex

Fig. S3 Time course of ketone 2a biotransformation by 2,5-DKCMO. A : % of each residual ketone 2a enantiomers and yields of each lactone 2b and 2c enantiomers B : Enantiomeric excesses of ketone 2a and regioisomeric lactones 2b and 2c

*Experimental conditions: rac-***2a** [5 mM], lyophilized 2,5-DKCMO [312 μ g mL⁻¹], catalase [400 – 1000 units mL⁻¹], FMN [10 μ M], **1**-(SO₄) [100 μ M], formic acid [100mM], K₂HPO₄ [0.225M] pH 6.7. Experiments in duplicates.

pH effect

pHª	7	.4	7.3		6.7		5.8		4.0		
НСООН	5 r	nМ	10 mM		25 mM		50	50 mM		75 mM	
	yield [%] ^b	<i>ee</i> [%] ^c									
2 h	6 ± 2	5 ± 1	9 ± 0	8 ± 0	14 ± 2	13 ± 1	5 ± 2	4 ± 1	1 ± 0	0 ± 0	
4 h	9 ± 2	6 ± 2	13 ± 1	11 ± 0	20 ± 1	20 ± 1	6 ± 2	5 ± 2	2 ± 0	0 ± 0	
8 h	10 ± 2	8 ± 2	16 ± 1	15 ± 1	28 ± 0	29 ± 1	6 ± 1	5 ± 1	2 ± 0	0 ± 0	
24 h	11 ± 2	10 ± 1	20 ± 0	20 ± 1	35 ± 1	39 ± 1	8 ± 2	5 ± 2	6 ± 1	0 ± 0	
reaction at 24 h								Carl Carl			

Table S2. Effect of pH and formic acid.

^a initial pH after addition of various concentrations of formic acid (5 – 75 mM) to potassium phosphate-buffered reactions.

^b yield of the total (normal **2b** + abnormal **2c**) lactones.

^c enantiomeric excess of the ketone substrate **2a**.

Experimental conditions: various concentrations of formic acid [5 mM, 10 mM, 25 mM, 50 mM, 75 mM] in potassium phosphate [100 mM, initial pH 7.5], lyophilized 2,5-DKCMO [312 μ g mL⁻¹], catalase [400 – 1000 units mL⁻¹], FMN [10 μ M], **1**-(SO₄) [100 μ M], 5 mM *rac*-**2a** added in an ethanol solution (final ethanol concentration 5% (v/v)). Experiments in duplicates.

Fig. S4 Time course of the reaction at various pH and formic acid concentrations (from Table S2 data).

Formic acid concentration effect

рН	7.4	7.4		7.4		6.7		6.7	
HCO₂H	100 mM		200 r	тM	100 r	тM	200 r	nM	
	yield [%] ^a	<i>ee</i> [%] ^b							
2 h	12 ± 1	10 ± 1	12 ± 1	9±1	18 ± 0	20 ± 0	14 ± 1	14 ± 0	
4 h	17 ± 1	15 ± 1	19 ± 1	14 ± 1	27 ± 0	33 ± 0	20 ± 0	22 ± 1	
8 h	20 ± 1	20 ± 1	22 ± 1	18 ± 1	39 ± 1	50 ± 3	30 ± 1	31 ± 1	
24 h	26 ± 1	26 ± 1	27 ± 1	23 ± 1	48 ± 4	71 ± 9	34 ± 1	38 ± 0	

Table S3. Effect of the hydride donor concentration (HCO₂H) at constant pH.

^a yield of the total (normal **2b** and abnormal **2c**) lactones.

^b enantiomeric excess of the ketone substrate **2a**.

Experimental conditions: At pH 7.4 – 100 mM, respectively 200 mM of formic acid was added to 0.5 M, respectively 1 M K₂HPO₄ solution. At pH 6.7 – 100 mM, respectively 200 mM formic acid was added to 0.23 M, respectively 0.45 M K₂HPO₄ solution. Lyophilized 2,5-DKCMO [312 μ g mL⁻¹], catalase [400 – 1000 units mL⁻¹], FMN [10 μ M], **1**-(SO₄) [100 μ M], 5 mM *rac*-**2a** added in an ethanol solution (final ethanol concentration 5% v/v)). Experiments in duplicates.

Fig. S5 Time course of the reaction at pH 6.7 and 7.4, and various HCO₂H concentrations (from **Table S3** and other data).

Alternative hydride sources

Deep Eutectic Solvents	Carbonic acid/CO ₂ (RIVER [®] , ALDI, Denmark)
Choline chloride/butanediol 1:4 v/v	in pure mineral water
Choline chloride/butanediol 1:4 v/v in potassium phosphate buffer [100 mM, pH 7.5] (1-to-10 v/v)	in 1 M solution (mineral water) of K_2HPO_4 (1-to-10 v/v) (final K_2HPO_4 concentration 0.1 M)
Choline chloride/ethylene glycol 1:2 v/v	
Choline chloride/ethylene glycol 1:2 v/v in potassium	
phosphate buffer [100 mM, pH 7.5] (1-to-10 v/v)	

Experimental conditions as described in Table S2.

Fig. S6 NADH-driven FMN reduction enhanced by the **1**-(H⁺)-mediated hydride transfer for the BV oxidation of *rac*-**2a** by 2,5-DKCMO. **A** Total yield of the lactone products over time. **B** Determination of the initial rates for 60 min. **C** *ee* of the ketone substrate. \blacksquare oxygenase [312 µg mL⁻¹] / **1**-(SO₄) [100 µM], \blacksquare oxygenase [62 µg mL⁻¹] (five-fold less compared to \blacksquare or \blacksquare) / **1**-(SO₄) [100 µM], \blacksquare oxygenase [312 µg mL⁻¹] / no **1**-(SO₄).

Experimental conditions: NADH [25 mM], FMN [10 µM], catalase [400 - 1000 U mL⁻¹, 0.5 mL potassium phosphate buffer [100 mM, pH 7.5]. Experiments in duplicates.