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Abstract. This paper explores the potential of quantum computing on a
WCET1-related combinatorial optimization problem applied to a set of several
polynomial special cases. We consider the maximization problem of determining
the most expensive path in a control flow graph. In these graphs, vertices repre-
sent blocks of code whose execution times are fixed and known in advance. We
port the considered optimization problem to the quantum framework by express-
ing it as a QUBO. We then experimentally compare the performances in solving
the problem of classic Simulated Annealing (SA), Quantum Annealing (QA),
and Quantum Approximate Optimization Algorithm (QAOA). Our experiments
suggest that QA represents a fast equivalent of simulated annealing. Indeed, we
measured the approximation ratio on the results of QA and SA, showing that
their performances are comparable, at least on our set of simplified problems.

Keywords: WCETs · Quantum computing · QUBO · Combinatorial opti-
mization · Quantum annealing · QAOA

1 Introduction

The interest given to quantum computing primarily comes from the ability of qubits
to store a superposition state that reflects all the possible inputs and outputs of a
given algorithm until a measurement is performed. This property is called quantum
parallelism and can, in certain cases [21, 8], give a performance boost for quantum
algorithms. However, the advantages of quantum computing do not come without
caveats. Only some classes of problems can be solved by quantum computing, with
a definite efficiency increase compared to classical computing [19]. One crucial research
issue related to quantum computing is determining with precision which problems are
better solved by means of quantum approaches [20].
This paper explores the potential of quantum computing by examining problems

involved with determining the Worst-Case Execution Time (WCET) of a restricted set
of programs. The problems arising in WCET evaluation cover a wide range of complexity
classes, from undecidability in the general case to NP-hardness and polynomial-time
solvability in some restricted cases [25]. As such, WCET evaluation appears to provide a
relevant playground to put the quantum computing promise to the test. The execution

1 Worst-Case Execution Time (of a program).
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time of a program running on a machine depends on multiple factors, such as the initial
system state, the hardware, and the input data. The validation of a real-time system
requires knowing the WCET. However, the analysis of the exact WCET of a program
is complicated by dynamic hardware mechanisms. A possible way to cope with the
analysis complexity of WCET is by omitting such hardware mechanisms [15].

All the possible combinations of input data and execution paths need to be considered
for computing the actual WCET of a program. This computation of an exact WCET
is usually unfeasible with classic computers because the number of possible program
paths can grow exponentially with the program size (notwithstanding decidability issues
in the general case). Classical computing performs static analysis that approximates
the WCET without actually executing the program. This approximation has to be an
upper bound of the actual value of the worst-case execution time to assure the system’s
safeness. However, these WCET approximations should also not be overly pessimistic
to avoid system over-dimensioning.

Yet, performing an exhaustive examination, even implicitly, of all possible program
paths is a sufficient condition, even if not necessary, for understanding the worst-case
scenario [15]. Thus, quantum computing could allow computing better worst-case-
execution-time approximations, thanks to its promising computational power higher
than classical computing. In a nutshell, the program path analysis method determines
which sequence of instructions requires the highest execution time. The problem of
determining a program’s WCET generally is undecidable. Still, if there are no recursive
function calls, dynamic structures, and unbounded loops in the program, it becomes
decidable [11, 17]. Those strong hypothesis are enforced to be true in the field of
real-time embedded systems, which is the primary target of WCET research.
In this paper, as a first step, we focus on a simplified program model: we consider

only programs with IF-ELSE conditions (i.e., programs in which statically bounded
loops have been unrolled), assuming uninterrupted executions and independence from
the hardware. We assume the execution time of an instruction to be a constant: each
instruction leads to a cache miss, and all data have to be fetched from the main
memory. It is worth noticing that all these hypotheses make the problem solvable in
polynomial time. Nevertheless, considering the limitation of existing quantum hardware,
we argue that they represent an interesting model to be transposed to the quantum
framework for benchmarking and that quantum computing approaches should be also
evaluated against polynomial problems [24] rather than only on NP-hard ones [28]:
Performing well on the former is presumably necessary to perform well on the latter.
Furthermore, distance to optimality is of course easier to measure when attempting
to solve polynomial-time problems on quantum hardware.

In particular, we examined well-known approaches for the estimation of worst-case
execution times [14, 13, 25, 22]. Using Integer Linear Programming (ILP) problems, we
can naturally describe the structure of our problem and the set of possible program
paths, reducing the issue of estimating the WCET of a program into an optimization
problem. The sum of the execution time of the executed basic blocks gives the cost
function. Our goal is to find the maximum of this function. It is possible to adapt
this optimization problem to the quantum computing framework through the penalty
function method. The cost function and the constraints of the original problem are
represented using linear and quadratic terms. Thus, the problem can be reformulated
as a QUBO (Quadratic Unconstrained Binary Optimization) problem [16, 4] and solved
by Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing.
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In this paper, we solve the problem with different methods: Quantum annealing on
D-Wave machines, classical Simulated Annealing and Quantum Approximate Optimiza-
tion Algorithm.The aim is to compare the performance of these methods (in term of
optimization quality). Our tests suggest that D-Wave machines, in ideal cases, achieve
the performances of classical Simulated Annealing while being much faster.
The paper is organized as follows. Section 2 provides the necessary preliminaries.

Section 3 defines our problem and reformulates it in the form of a QUBO problem.
Section 4 describes our evaluation parameters and the machines for the experiments.
Section 5 collects the results of our experiments. Section 6 concludes the paper.

2 Combinatorial optimization

Combinatorial optimization computes the maximum or minimum of a function over
a discrete domain. A combinatorial optimization problem is expressed as:

z∗=argmax
z∈S

f(z) (1){
gl(z)=0, l=1,...,L

hm(z)<0 m=1,...,M
(2)

where z is a discrete integer variables, f(z) is the cost function, and S the set of
decision variables satisfying the equality and inequality constraints given in (2) [26].

An integer linear programming (ILP) formulation is the mathematical formulation
of an optimization problem in which variables are restricted to integer values and the
constraints and cost function are linear [3]. ILP canonical form is expressed as:

max cTx (3)

subject to {
Ax=b,

0≤x, x∈Zn (4)

A Quadratic Unconstrained Binary Optimization (QUBO) problem is a combinatorial
problem defined through an upper triangular matrix Q∈RNxN and a vector x of
binary variables. The goal of the optimization problem is to determine the vector of
binary variables ∀i,xi∈{0,1} that minimizes (or maximizes) the objective function :∑

i

Qiixi+
∑
i<j

Qijxixj. (5)

Using the penalty function method, we can rewrite any optimization problem into
one without any constraints. For instance, given the equality constaint g(z)=0, we
can transform (1) into:

z∗=argmax
z

f(z)+λg(z). (6)

In this paper, we solve the QUBO problem to find the most expensive execution
path by using quantum annealing (QA) and the Quantum Approximate Optimization
Algorithm (QAOA). We compare the results with these of Classical Simulated Annealing
(SA).
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At this point, it is worth noting that any QUBO cost function can be transformed into

a generalized 2D-Ising Hamiltonian with a simple transformation of variable xi=
1+σz

i

2
with σzi ∈{−1,1}:

HP =

n∑
i

hiσ
z
i +

n∑
i<j

Jijσ
z
i σ

z
j (7)

2.1 Quantum annealing

Quantum annealing is a computational process that relies on the adiabatic theorem
to solve combinatorial optimization problems. As a principle, it implements a time-
dependent Hamiltonian composed of an initial Hamiltonian H0 whose ground state is
easy to calculate and a final one tied to the cost function of the optimization problem
as seen in equation (7): HIsing(t)=A(t)H0+B(t)HP such that HIsing(0)=H0 and
HIsing(τ)=HP where τ is the optimal annealing time.

We choose H0=−
∑n

i σ
x
i whose ground state corresponds to an equal superposition

of the states of the computational basis. The adiabatic theorem states that if the time
evolution is slow enough (i.e., τ is large enough), then the (global) optimal solution
can be obtained with high probability. In practice, the final result is conditioned by the
size of the spectral gap, the evolution time, the environmental or intrinsic decoherence
effects, and the size of the coherence domain of the qubits on the chip.

If the quantum annealing can reach a minimum energy configuration, then the asso-
ciated state vector solves the equivalent QUBO problem. Reformulating combinatorial
problems in QUBO form preserves the underlying structure of the objective function [7].

2.2 Quantum Approximate Optimization Algorithm

The Quantum approximate optimization algorithm (QAOA)[5] is a quantum-classical
algorithm used to solve optimization problems. It can be seen as an ansatz for the simu-
lation of the Adiabatic process on a gate-based quantum computer. The approximation
of the process is done using a parameter p stating the number of steps for the simulation:
A p-depth QAOA consists of alternatively apply the two unitary propagators associated
with both Hamiltonians U(HP ,γ) and U(HM ,β) on the initial state |s⟩ which is a
uniform superposition of all states of the computational basis.

|ψ⟩=U(HM ,βp)U(HP ,γp)...U(HM ,β1)U(HP ,γ1)|s⟩ (8)

Each classical optimization round is used to optimize angles β1..βp and γ1..γp to
maximize the expectation value obtained from the run of the quantum circuit.

3 Problem designing: from control flow graphs to QUBO

We consider a simple micro-architecture [14] such that each basic blockBi of the program
takes a constant time ci to execute. A basic block is defined as a sequence of consecutive
instructions. The flow of control enters into the block at the beginning and leaves at the
end, without halt or possibility of branching except in the end. Let variable xi be the
execution count of the basic blockBi andN be the number of basic blocks in the program.
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In this paper, we assume that xi∈{0,1}, meaning that each basic block could be executed
only once. The total execution time of the program is given by the linear expression:

Program execution time=

N∑
i

cixi. (9)

The problem has intrinsic constraints: not every execution flow is possible. For
instance, if there is an IF-ELSE condition in our code, only the block respecting that
condition is executed. Thus, one part of the program is ignored, depending on the
input data. The WCET is given by the cost of the most expensive flow in terms of
execution time. Notice that, in our model, we consider that the solution is unique.
Our goal is to find the sequence of variables x0,···,xN−1 such that it maximizes the
cost function. To clarify all this, let us consider an example of a program with an IF
condition: concretely, we have a sequential path that at some point splits into two
branches and then reconnects again to the main path.

Fig. 1: Control flow diagram of a simple program structure

In this particular example we have only two possible paths of execution and the
objective of our optimisation problem is to find the execution path that gives us the
maximal cost:

argmax (c1x1+c2x2+c3x3+c5x5 , c1x1+c2x2+c4x4+c5x5) (10)

We call x the vector representing the execution path, with xi=1 if the corresponding
basic block Bi is executed and xi=0 otherwise. The solution is:

x=


[
1 1 1 0 1

]
if (c1x1+c2x2+c3x3+c5x5>c1x1+c2x2+c4x4+c5x5)

[
1 1 0 1 1

]
otherwise.

In this example, the solution would be obtained simply considering the path that
includes the most expensive branch of the IF condition. However, let us consider the
constraints of this graph to compute the solution. The nodes of this graph are the
blocks of code. The edges are the dis, representing the action of entering or the quitting
of a basic block. This graph represents the execution of a program, so we know for sure
that the first and the last block have to be executed, so the edges entering and quitting
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these nodes will be equal to one. Only one branch of the condition will be executed (if,
for instance, d3=1, then d4=0). For this example, the set of constraints to consider is:

d1=1,

x1=d1=d2

x2=d2=d3+d4


x3=d3=d5

x4=d4=d6

x5=d5+d6=d7

(11)

We transform this optimization problem to a QUBO moving the constraints to the
cost function (penalty method). We omit the constant values in the cost function and
we consider x2i =xi,∀i because xi∈{0,1}. Our optimization problem thus becomes:

argmaxx(
∑5

i cixi−λ(1−x3−x4)2)
=argmaxx(

∑N
i cixi−λ(1−x23−x24+2x3x4))

=argmaxx(c1x
2
1+c2x

2
2+(c3+λ)x

2
3+(c4+λ)x

2
4−2λx3x4+c5x

2
5))

(12)

Thus, for the considered problem, the matrix Q is:

Q=


c1 0 0 0 0
0 c2 0 0 0
0 0 c3+λ −2λ 0
0 0 0 c4+λ 0
0 0 0 0 c5

 (13)

where c1,...,c5∈N and x=(x1,x2,x3,x4,x5)
T .

This paper focuses on a finite set of study cases to perform our experiments. The most
basic program is not more than a linear sequence of instructions, thus with a deterministic
and constant execution time, (Fig. 2(a)). We explored programs made by chains of
consecutive IFs (Fig. 2(b)). This problem is interesting because, essentially, any program
could be reduced to a loop with a condition in it. So, by unrolling loops, a program could
be seen as a chain of conditions. Still, we want to underline that the problem is polynomial:
the solution is easily founded by considering the most expensive branch at each IF.
Then we analyzed an expanded version by allowing the exclusive conditions to be

more than two SWITCHes (Fig. 2(c)). Here again, the solution is given by the path
that takes the most expensive branch at each IF condition, so the problem is still
polynomially solvable. However, both examples give us the possibility of building an
interesting benchmark for quantum computing.

Enlarging slightly more the focus on the targeted problem, we allowed the IFs blocks
to have other nested IFs blocks inside them (Fig. 2(d)). This situation is slightly more
complex than the previous ones because the paths need to be enumerated to find the
actual worst-case path. All these cases of study are called series–parallel graphs.

The IFs chain and the SWITCH study case are easily generalizable from the matrix
(13). The nested IF study case is more complex because it is not enough to choose
the most expensive branch at each step. Thus, it is not possible to determine a pattern.
We develop explicitly here the Q matrix only for a particular example. The Q matrix
for the graph shown in Fig. 2(d) is:

Q=


c0 0 0 0 0 0
0 c1 −2λ 2λ 2λ 0
0 0 c2+2λ −2λ −2λ 0
0 0 0 c3 −4λ 0
0 0 0 0 c4 0
0 0 0 0 0 c5


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Fig. 2: Series–parallel graphs

3.1 Choice of the lambda value

Let {c1,...ck} ∈C be the set of weights for each node of the graph. {x1,...xk} are
boolean values defining if the basic block is executed. In the single IF case, the local
cost function to the IF case is expressed as (ci+λ)xi+(cj+λ)xj−2λxixj with ci,cj
the weigths of each path and xi,xj the boolean values. The factor λ is appropriate
if it follows the set of conditions:

∀ ci,cj∈R+we must have:

ci+λ>ci+λ+cj+λ−2λ⇔λ>cj

cj+λ>ci+λ+cj+λ−2λ⇔λ>ci

(14)

For simplicity, we use a single λ for the whole expression, even if it contains multiple IF
cases. We also consider that λ is an integer as each graph weight is integer. Therefore,
λ should be greater than each weight of the graph yielding:

λ=max(C)+1 (15)

This choice of λ appears to behave well with the nested IFs and SWITCH too.

4 Benchmark Metrics and Computers

We compare the performances of SA, QA and QAOA while solving the optimisation
problem of finding the most expensive execution path in the case tests we mentioned
above: IF chains, SWITCH and nested IF. This section presents metrics, algorithms
and quantum computers used for the benchmark.

4.1 Benchmark metrics

Problems presented in this paper are toy problems in which optimal solutions can be
found in polynomial time. However, their simplicity allows us to fully evaluate and
understand the results of our experiments. Before executing the experiments, each of
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our optimization problems is transposed into their minimization form. To compare our
results, we took into consideration two parameters:
– The approximation ratio (16). It represents the quality of the solution found compared

to the whole energy landscape of the problem. E is the energy obtained from a single
simulation, Emin is the energy of the optimal solution and Emax the energy of the
worst solution.

r=
E−Emax

Emin−Emax
(16)

This parameter is interesting because, although the solution may not be the exact
one, it could be very close.

– The optimal solution probability. It represents the proportion of optimal solutions
(solutions having the energy Emin) obtained during the simulation.

4.2 Simulated Annealing

We configure the simulated annealing with an exponential decrease of temperature
T1=0.95∗T0. In the following experiments, we set the thermal equilibrium at T =10−3.
These iterations are fixed with the number of input variables n and may vary between
n0,5 to n1,5. We consider SA running in a degraded mode where the number of iterations
per temperature step is inferior to n. Each simulation is based on 100 runs of the SA
to extract the mean of energy and the probability of getting the optimal solution.

4.3 Quantum annealing with D-Wave systems

Our experiments on D-Wave systems involve adiabatic quantum computing used to
find the vector that minimizes the input cost function. At the moment, they represent
the most advanced quantum machines having thousands of qubits. However, they
require problems under the form of QUBOs and the topology of their chips limits their
performance [23]. D-Wave systems used during our benchmarks are:
– DW 2000Q 6 with 2048 qubits (2041 usable qubits) and 6 connections between

each qubit (cf. Chimera topology).
– Advantage system4.1 with 5760 qubits (5627 usable qubits) and 15 connections

between each qubit (cf. Pegasus topology).
For each experiment, results are computed with and without gauge inversion. The
principle of a gauge inversion is to apply a Boolean inversion to the σi operators in our
Hamiltonian. This technique preserves the optimal solution of the problem while limiting
the effect of local biases of the qubits, as well as the machine accuracy errors [2]. Following
the commonly used procedure (e.g. [1]), we randomly selected 10% of the physical
qubits used as spin inversion for each instance. Each simulation is based on 1000 runs
of D-Wave systems to extract the mean of energy and the optimal solution probability.

4.4 Simulation of QAOA

The simulation of QAOA is performed using the Qiskit library [6]. QAOA circuits
are built from QUBO instances using penalty terms to express constraints. In our
experiments, weights are specified with integers, hence γ ∈ [0,2π] and β ∈ [0,π]. We
did not find patterns to perform interpolation optimization as in [27]. We followed the
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parameter fixing strategy [12] to set angles at p-depth. This method starts at p=1 and
randomly generates 100 pairs of angles γ1 and β1. Then, we run a local optimizer on
each of these pairs. We used COBYLA, a gradient-free optimizer. We run 1024 times
the QAOA circuit at each optimization step to sample the mean expectation value
corresponding to γ and β angles. At the end of the 100 optimization loops, we get
100 optimized pairs of angles. We select γ∗1 and β∗1 such as they minimize the value
of the cost function. This process is then repeated at p=n, initializing the problem
with γ∗1 ...γ

∗
n−1 and β∗1 ...β

∗
n−1 and 100 pairs of angles γn and βn. For the simulation

of the QAOA we used the aer simulator, which provides a good speed performance.

5 Experimental results

To represent the cost of each basic block, we generated random integer, such that
c0,...,cn ∈ {1,...,50}, and used them as input for our experiments. Each problem is
designed to have only a single optimal solution, meaning that each branch candidate
for solution should have a different global cost. In section 5.1 and section 5.2, each data
point is smoothed over 30 randomly generated instances.

5.1 IF chains

Each IF chain (Fig. 2(a)) is composed of a succession of several IF conditions. This study
case represents an ideal problem for the D-Wave as the corresponding QUBO matrix
is sparse. Hence, the encoding on D-Wave systems does not require any duplication
of qubits, neither for the 2000Q 6 nor the Advantage4.1 system. We start from one IF
condition for this benchmark and grow the problem up to 10 IF conditions. A single block
separates each IF condition block. We benchmark in Fig. 3 D-Wave systems against
the resolution with classical simulated annealing. As the problem grows, QA seems to
outperform SA progressively. For the IF chain, D-Wave system 2000 Q 6 systematically
outperforms the Advantage system4.1. Although the Advantage system is more recent
than the 2000Q 6 system, it seems more sensitive to noise. We do not simulate QAOA
for IF chains as it gives rather poor results compared to SA and D-Wave systems.

Fig. 4 shows the QAOA energy landscape at p=1 for a 3-if chain picked randomly. The
heatmap exhibits many local minima, which impact the angle optimization of QAOA.
This heatmap is more complex than heatmaps usually obtained for the well-studied Max-
cut problem ([12],Fig. 5a). This complex energy landscape seems to be closely related to
penalty terms that impact the whole energy landscape. Moreover, minimizing the mean
energy does not always lead to an increased probability of getting the optimal solution.

5.2 SWITCH

SWITCHes presented in Fig. 2(b) are harder to solve for D-Wave system since the plu-
rality of choices leads to a dense matrix and requires higher connectivity between qubits.
The impact of the density on QAOA is lower thanks to SWAP gates. In this execution
case, we notice that the D-Wave Advantage4.1 performs better than the D-Wave 2000Q 6
for SWITCH cases 3 and 4. This improvement is due to the qubit duplication occurring
on D-Wave 2000Q 6 whereas there is no qubit duplication on the Advantage4.1 for these
instances (Fig. 5e). On larger instances (from 10 to 15 SWITCHes), the advantage of the
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(a) (b)

Fig. 3: Benchmark of the QUBO resolution by D-Wave systems and SA for IF chains
from 1 to 10 IF conditions. Each D-Wave simulation is done with and without GI
(Gauge Inversion). n is the number of blocks in the if chain. SA number of iteration
per temperature step is expressed according to n. a) Mean of approximation ratio.
b) Mean of the probability to get the optimal solution.

(a) Approximation ratio (b) Optimal solution probability

Fig. 4: QAOA heatmap at p=1 for a random 3 IFs chain. Approximation ratio is
computed from the mean of the expectation value at angles γ and β.

D-Wave Advantage4.1 provided by its number of connections is questionable. However,
when the case is not ideal for D-Wave systems, the performances are poor against SA,
even when SA is running under a degraded mode (n0.5 iterations per temperature step).

5.3 Nested IFs

Nested IFs cases increase the density of the QUBO matrix. Table 1 shows two cases
of nested IFs. The results are smoothed over 30 costs generated randomly. We compare
the results obtained with SA, QA, and QAOA simulator. As for SWITCH cases, nested
IF cases are difficult to be solved for D-Wave systems. They result to be not competitive
against simulated annealing. QAOA simulations provide results of a lower performance
compared to the D-Wave systems. The results obtained with QAOA start to decrease
at p=6. This decrease may be due to the difficulty of COBYLA to optimize γ and β
angles at this depth. As the optimization at depth p always starts from angles β∗1 ...β

∗
p−1
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(a) Energy ratio SA and D-Wave (b) Optimal solution probability

(c) Energy ratio QAOA and D-Wave (d) Optimal solution probability

(e) Qubits used by D-Wave systems

Fig. 5: Comparison of switch instances solved with classical SA, D-Wave systems and
QAOA simulator. (e) Mean of the number of qubits used by D-Wave systems to solve
switch instances against the optimal number of qubits on ideal fully connected topology.

and γ∗1 ...γ
∗
p−1, the global optimization may be stuck at local minima imposed by the

parameters found at p−1. The energy landscape of problems with penalty terms would
deserves in-depth study to understand and find patterns of optimization of QAOA angles.
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Table 1: Nested IFs simulation

Nested if results
Case 1 (see fig.2d) Case 2 (see fig.2e)

Mean energy Opt sol prob Mean energy Opt sol prob
SA n0.5 0.985 0.66 0.999 0.934
SA n0.6 0.986 0.69 0.999 0.923
SA n0.7 0.989 0.76 0.999 0.956
D-Wave 2000Q 0.985 0.57 0.993 0.56
D-Wave Advantage 0.983 0.54 0.975 0.29
QAOA p=4 0.958 0.44 0.909 0.10
QAOA p=5 0.965 0.49 0.920 0.13
QAOA p=6 0.926 0.40 0.855 0.06

5.4 Real case

We provide a concrete application inspired by the bubble sort algorithm provided in the
Mälardalen WCET research group [9][18]. The algorithm’s goal is to sort an array of
integers in ascending order. We consider an ideal scenario with an in-order, single-issue
Arm processor similar to an M0 with prefetched cache memory. Blocks composing the
graph are built from the instructions obtained after the compilation of C code (using gcc
Arm 8.3 with -O2 level of optimization). The number of micro-instruction in each basic
block defines its cost as given by our in-house WCET explorer with block identification
and pipeline simulation. For the sake of simplicity, we limited to 3 the number of
elements in the vector to sort. Table 2 shows the obtained result while solving the
problem with SA and QA. From Table 2 we conclude that the 2000Q system performs
quite well, even duplicating 4 qubits. The Advantage system, while duplicating only
1 qubits performs poorly. We may conclude that duplicating on Advantages machines
downgrade drastically the performances of the machine.

Table 2: Real case simulation
Method Mean energy Opt sol prob qubits used Max qubits duplication
SA n0.5 0.944 0.58 / /
SA n1 0.972 0.79 / /
SA n1.1 0.990 0.91 / /
D-Wave
2000Q 6

0.987 0.868 15 1

D-Wave Advan-
tage4.1

0.901 0.325 12 1

6 Conclusion

In this paper, we explored the potential of quantum computing in dealing with the
combinatorial optimization problem of finding the most expensive execution path in
a graph on a restricted set of simple instances. Our work offers an example of using
quantum computing in a new application field. The performances we obtained using
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D-Wave machines and the QAOA do not suggest that quantum computing is the silver
bullet solution that will replace the classical computing solid and road-tested techniques.
Still, we claim the results we obtained are encouraging enough to explore further the
potential of quantum computing on the proposed problem (for instance, the backtracking
quantum algorithm). Indeed, our experiments suggest that quantum computing gives
us a fast equivalent of simulated annealing for ideal problems, such as the IFs chains.

We can draw some conclusions from the experience of this paper on D-Wave machines.
Their topology is quite limiting, and it is not straightforward to adapt the considered
optimization problem to it. We noticed that the Advantage4.1 machine outperforms
the 2000Q machine when the considered problems involve qubit duplications on 2000Q
device and not on the Advantage4.1 machine. It may be worth exploring the perfor-
mances of these machines while solving problems that need more qubit duplications
to be adapted to both topologies. The goal is to find parameters that show a priori
which D-Wave machine is the most suitable to solve the considered problem. The chain
of IFs is ideal for the topology of D-Wave systems, and their results are competitive
with SA. Concretely, SA on 5600 variables at n2 would need billions of evaluations of
the cost function against millisecond runtime for D-Wave systems. However, we stress
again that the problem is polynomially solvable using methods other than SA, and
the interest is the possibility of building a benchmark for quantum computers.

We can as well draw some conclusions about QAOA. At p=5 the performances of
QAOA are almost the same as D-Wave. QAOA does not have the problem of qubit dupli-
cation since we can circumvent the chip’s topology with SWAP gates. Still, we performed
our experiments on a simulator and not on a physical machine as D-Wave systems. An
idea to investigate is to restrict the search on the feasible subspace of the problem [10].
In our case, this would be a subspace where every solution preserves the flow constraint.
Another aspect that may be explored in the future is the behavior of our models

considering the effect of cache memories. Additionally, our choice of λ has no guarantees
of being optimal, even if it provides good results. As a perspective, it may be interesting
to perform a pre-processing to find, through simulations, the optimal λ. However, the
effort of finding the optimal λ could overcome its benefits.
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