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A bi-directional low-Reynolds-number swimmer with passive

elastic arms

Jessie Levillain∗ François Alouges† Antonio DeSimone‡ Akash Choudhary§

Sankalp Nambiar¶ Ida Bochert‖

Abstract

It has been recently shown that it is possible to design simple artificial swimmers at low
Reynolds number that possess only one degree of freedom and, nevertheless, can overcome
Purcell’s celebrated scallop theorem. One of the few examples is given by Montino and
DeSimone, Eur. Phys. J. E, vol. 38, 2015, who consider the three-sphere Swimmer of
Najafi and Golestanian, replacing one active arm with a passive elastic spring. We further
generalize this idea by increasing the number of springs and show that it is possible to invert
the swimming direction using the frequency of the single actuated arm.

Introduction

One of the many features of low-Reynolds-number swimming [10, 9, 17] is the Scallop Theorem
stated by Purcell in his celebrated lecture [16], which forbids any net motion produced by
reciprocal shape changes of the swimmer. Several mechanisms have been, since then, proposed
to overcome the scallop theorem (see [12] and the many references therein), most of them using
strategies to create non trivial loops, i.e. closed curves with non zero surface, in the shape space
of the swimmer. Simple examples are given by the three link swimmer [16], the three sphere
swimmer [14], the Push-Me-Pull-You [7] or Purcell’s rotator [11]. All of these examples use
two degrees of freedom in the shape activated periodically in time with a phase lag in order to
produce the loop.

Furthermore, the efficiency of such systems has also been extensively studied in the literature,
and we refer the interested to the examples given in references [1, 6, 2, 18].

Strikingly, the constraint of having at least two degrees of freedom can be overcome, if one
considers in the system, a passive elastic link. Indeed, the mechanism, discovered in [15], consists
of a three-link swimmer with only one activatable joint, the other being a rotational spring. Due
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‡SISSA, Trieste, Italy
§Department of Chemical Engineering, Indian Institute of Technology, 208016 Kanpur, India
¶Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
‖Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany and Institute for

Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120
Heidelberg, Germany

1



to hydrodynamic interactions, a periodic activation of the controlled parameter induces an out
of phase periodic motion of the spring, permitting to describe a loop in the shape space. So
far, two swimmers have been proposed in that direction: the three-link swimmer [15] and the
three-sphere swimmer [13]. The latter, being an adaptation of the one proposed in [14], is
simpler to analyze because, due to its rectilinear shape, no rotational movement is possible. A
careful study, provided in [13] shows in particular that a displacement of the swimmer is possible
depending on the frequency at which the actuated arm is deformed. At very low or very high
frequency no net motion is possible after a stroke, while at a natural frequency of the system
(which depends on the viscosity of the fluid, the masses and the spring constant) a resonant
effect takes place which provides an out of phase oscillation of the spring and, consequently, a
net motion.

The present paper explores the situation where another spring is added to the system. The
swimmer is therefore composed of four spheres linked by three arms, one of which (in the center)
being activated while the two remaining ones are springs. We particularly focus on the situation
where the spring constants are different, leading to 2 natural frequencies of the system. We
show that such systems can offer the interesting possibility of controlling the direction in which
the swimmer moves with the frequency of the activated arm.

After recalling Montino and DeSimone’s results on the three-sphere swimmer [13], we intro-
duce a two-spring swimmer with a spring on each side of the actuated arm, and explore the
consequences on its swimming motion and direction. We study its dynamics and displacement,
depending on various system parameters.

1 The 3-sphere Swimmer with a passive arm

Figure 1: Three-sphere swimmer as proposed by Montino and DeSimone in [13]. Two spheres are
connected by a spring with rest length l1 and spring constant k. The third sphere is connected
by an actuated arm. The distances between the spheres are given by L1(t) and L2(t).

Najafi and Golestanian created a swimmer consisting of three spheres, connected by two
actuators [14]. By increasing and decreasing the length of the two actuators out of phase, the
swimmer is able to perform a non-reciprocal motion providing a net displacement. Based on
this, Montino and DeSimone proposed a three-sphere swimmer with a passive elastic arm [13]
mimicking in this context, the mechanism of [15]. As shown in Figure 1, the first and second
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spheres are connected by a spring with spring constant k. The equilibrium length is denoted as
l1, the distance between the spheres is L1(t). The length of the actuated arm, which connects
the second and third spheres, is given as L2(t). The radius of the spheres is a. For a periodic
activation of L2(t) of the form

L2(t) = l2(1 + ε sin(ωt)), (1)

the passive elastic arm experiences an out-of-phase oscillation due to hydrodynamic interactions.
The movement L1(t) can be calculated by balancing elastic and hydrodynamic forces. Indeed,
assuming a

L1
∼ a

L2
≪ 1, the velocities vi, i = 1, 2, 3 of the three spheres are related to the

hydrodynamic forces in the following way

v1 =
f1

6πµa
+

f2
4πµL1

+
f3

4πµ(L1 + L2)
,

v2 =
f1

4πµL1
+

f2
6πµa

+
f3

4πµL2
,

v3 =
f1

4πµ(L1 + L2)
+

f2
4πµL2

+
f3

6πµa
.

Here, µ is the fluid viscosity and fi describes the force, which is exerted on the fluid by the i-th
sphere. The above set of equations can also be represented in the matrix form

V = RF (2)

where V = (v1, v2, v3)
T is the vector of the velocities of the spheres and F = (f1, f2, f3)

T the
vector of hydrodynamic forces acting on each sphere. The current structure of 3 × 3 mobility
matrix R takes into account stokeslet interactions [8] by assuming that a ≪ Li, while self-
interaction diagonal terms come from the hydrodynamic motion of a sphere in a fluid.

As it is the case in the low Reynolds number regime, inertial forces are neglected. Since there
are no external forces considered, the force balance equation for a freely suspended swimmer

f1 + f2 + f3 = 0 (3)

must be fulfilled. The elastic force f e = k(L1−l1) acting on the first sphere is equal and opposite
to f1 due to Newton’s third law, leading to

f1 = k(L1 − l1). (4)

Furthermore, the velocities of the spheres and the lengths of the two arms are connected by

L̇1 = v2 − v1 , L̇2 = v3 − v2 . (5)

The time evolution of L2 is controlled by the actuator as given in equation (1). The given
system of equations (1- 5) can be solved to obtain L1(t) and L̇1(t) and this calculation is done
numerically in [13]. It can be observed that loops are formed in the configuration space (L1, L2).
Since the displacement of a swimmer is proportional to the (algebraic) area enclosed by the curve
in shape space, the three-sphere body is able to swim. Figure 2a shows the calculated curves
in the shape space for different values of the actuating frequency ω. The other parameters are
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set to l1 = l2 = 2 · 10−4m, a = 0.1 · 10−4m, µ = 8.9 · 10−4 Pa s, and k = 10−7N/m. It can be
observed that the area enclosed by the blue curve (corresponding to an intermediate frequency)
is larger than for the higher frequency (green curve) and for the lower frequency (red curve).
This agrees with the qualitative study of [13], which states that the area enclosed by the curve
vanishes for Ω → 0 or Ω → ∞, where Ω = ωµ(l1+ l2)/k is a dimensionless frequency parameter.

From the resulting time evolution of L1(t) and L2(t), the position xi of each sphere can
be calculated from ẋi = vi. The displacement of the swimmer ∆x(t) =

∑
i (xi(t)− xi(0)) /3

is shown in Figure 2b, with respect to the normalized time t · ω/(2π). As it can be observed
from the area in configuration space, the displacement of the swimmer after one period with
intermediate frequency (blue) is larger than the one corresponding to a smaller (red) or higher
frequency (green).

(a) (b)

Figure 2: Numerical results for Montino and DeSimone’s three-sphere swimmer. (A) Curves in
configuration space resulting from numerical solution of equations (1 - 5). The different colors
correspond to different frequencies ω (in rad s−1) of the actuated arm. Note that the unit of
length is 10−4m. (B) Displacement ∆x (in 10−4m) of the three-sphere swimmer with respect
to the normalized time t/T = t · ω/(2π) for different actuating frequencies ω. [13]

It can be concluded that the three-sphere swimmer proposed by Montino and DeSimone is
able to produce a net displacement depending on the dimensionless frequency Ω of the actuated
arm. If Ω becomes too high or too low, the net displacement of the swimmer becomes smaller
or eventually vanishes.

2 The 4-sphere swimmer with two passive elastic arms

Montino and DeSimone’s swimmer [13] enabled us to circumvent the Scallop Theorem while
only having one active degree of freedom in the system. However, this three-sphere swimmer
can only swim in one direction. We now propose a new mechanism which, still with a single
degree of freedom, is able to swim in both directions.

The swimmer is composed of 4 spheres where only the middle link serves as the active arm
while the two others are passive springs as shown in Figure 3. In other words,

L2 = l2(1 + ε sin(ωt)), (6)

and L1, L3 are the unknowns to be determined.
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Figure 3: Four-sphere swimmer where the middle arm connecting spheres 2 and 3 is the activated
part. Springs have rest lengths li and spring constants ki. Distances between the spheres are
given by L1(t), L2(t) and L3(t). In this case, the motion of the middle arm is prescribed as:
L2 = l2(1 + ε sin(ωt)).

As in Section 1, we write down the equations for velocity vi’s of the four spheres similarly
to [13]. This yields the following set of equations that govern the velocity of the spheres:

v1 =
f1

6πµa
+

f2
4πµL1

+
f3

4πµ(L1 + L2)
+

f4
4πµ(L1 + L2 + L3)

,

v2 =
f1

4πµL1
+

f2
6πµa

+
f3

4πµL2
+

f4
4πµ(L2 + L3)

,

v3 =
f1

4πµ(L1 + L2)
+

f2
4πµL2

+
f3

6πµa
+

f4
4πµL3

,

v4 =
f1

4πµ(L1 + L2 + L3)
+

f2
4πµ(L2 + L3)

+
f3

4πµL3
+

f4
6πµa

,

that we again write in the abstract form

V = RF , (8)

where V = (v1, v2, v3, v4)
T is the vector of the velocities of the spheres and F = (f1, f2, f3, f4)

T

the vector of hydrodynamic forces acting on each sphere. Furthermore, the force-free condition
becomes

f1 + f2 + f3 + f4 = 0. (9)

and we can write the force balance law on spheres 1 and 4 as the balance between the viscous
forces and the elastic forces of the arms:

f1 = k1 (L1 − l1) , f4 = −k3 (L3 − l3) . (10)

and we observe that the rate of change of each of the links obeys

L̇i = vi+1 − vi, for i ∈ {1, 2, 3} . (11)
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The system (6 - 11) can be easily written as a differential-algebraic system of 11 equations
with 11 unknowns. This system is then solved using standard numerical techniques.

2.1 Computing net displacement over a period

In the four-sphere swimmer described in our model, the net displacement of the swimmer after a
periodic stroke can be computed as follows. Notice that the computation below does not involve
the nature of the links (whether they are springs or rods). Calling X the position of the first
sphere, V can be expressed linearly in terms of Ẋ and the rates of change of the arms’ length
L̇i as

v1 = Ẋ, v2 = Ẋ + L̇1, v3 = Ẋ + L̇1 + L̇2, v4 = Ẋ + L̇1 + L̇2 + L̇3 ,

that we rewrite in the matrix form as

V = M


Ẋ

L̇1

L̇2

L̇3

 with M =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 .

Next, using F = R−1V and that the total force vanishes, provides us with a linear relationship
between Ẋ and L̇1, L̇2, L̇3. Namely

1
1
1
1

 ·R−1M


Ẋ

L̇1

L̇2

L̇3

 = 0 . (12)

This is an equation that links Ẋ to L̇1, L̇2, L̇3 linearly, that we may rewrite under the form

Ẋ = ξ(L) · L̇

where ξ is a 3-D vector field. Indeed, an expansion of ξ(L) around the equilibrium solution
Leq = (l1, l2, l3) in the limit a/l ≪ 1 with l = max(l1, l2, l3) is obtained as follows. We first
notice that, to first order

R−1 = 6πµa Id−9πµa



0
a

L1

a

L1 + L2

a

L1 + L2 + L3a

L1
0

a

L2

a

L2 + L3a

L1 + L2

a

L2
0

a

L3a

L1 + L2 + L3

a

L2 + L3

a

L3
0


+6πµaO

((a
l

)2
)
.

Simplifying by 6πµa, we may thus rewrite (12) as

αẊ + β1L̇1 + β2L̇2 + β3L̇3 = 0 ,
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where

α = 4− 3

2

(
2a

L1
+

2a

L2
+

2a

L3
+

2a

L1 + L2
+

2a

L2 + L3
+

2a

L1 + L2 + L3

)
+O

((a
l

)2
)

,

β1 = 3− 3

2

(
a

L1
+

2a

L2
+

2a

L3
+

a

L1 + L2
+

2a

L2 + L3
+

a

L1 + L2 + L3

)
+O

((a
l

)2
)

,

β2 = 2− 3

2

(
a

L2
+

2a

L3
+

a

L1 + L2
+

a

L2 + L3
+

a

L1 + L2 + L3

)
+O

((a
l

)2
)

,

β3 = 1− 3

2

(
a

L3
+

a

L2 + L3
+

a

L1 + L2 + L3

)
+O

((a
l

)2
)

,

from which we deduce that

ξ = −(β1, β2, β3)
T

α
+O

((a
l

)2
)

.

This leads to a formula for the coordinates of ξ, namely

ξ1 = −3

4
− 3

16

(
a

L1
− a

L2
− a

L3
+

a

L1 + L2
− a

L2 + L3
+

a

L1 + L2 + L3

)
+O

((a
l

)2
)

,

ξ2 = −1

2
− 3
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(
a

L1
− a

L3

)
+O

((a
l

)2
)

,

ξ3 = −1

4
− 3

16

(
a

L1
+

a

L2
− a

L3
+

a

L1 + L2
− a

L2 + L3
− a

L1 + L2 + L3

)
+O

((a
l

)2
)

,

Now, if we consider a closed stroke L(t) in the shape space, the total displacement at the
end of the stroke appears to be the circulation of ξ along the closed curve L(t). In other words,
using Stokes theorem

∆X =

∮
L
ξ(L) · dL =

∫
Σ
curl(ξ) · dS

where Σ is any surface that is bounded by the closed curve L(t).
From the computation above, the leading term of curl(ξ) can be computed near L = (l1, l2, l3)

and we obtain

curl(ξ)(l1, l2, l3) =
3

16


a

l22
+

2a

l23
+

a

(l1 + l2)2
− a

(l2 + l3)2
− a

(l1 + l2 + l3)2

− a

l21
− a

l23
− a

(l1 + l2)2
− a

(l2 + l3)2
+

2a

(l1 + l2 + l3)2
2a

l21
+

a

l22
− a

(l1 + l2)2
+

a

(l2 + l3)2
− a

(l1 + l2 + l3)2

+O

(
a2

l3

)
,

(13)
which enables us to compute an approximation of the displacement of the swimmer after a
stroke around a given shape L = (l1, l2, l3). The validity of this expression to compute an
approximation of the displacement after a stroke will be checked against the full integration of
the system in the next Section.
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2.2 Numerical results: Swimming dynamics and displacement over time

Numerical integration of the system (6 - 11) typically yields the 3D trajectories (L1(t), L2(t), L3(t))
that are plotted in Figure 4. The flux of curl(ξ) through the areas enclosed by the limit cy-
cles represents the displacement of the swimmer per unit cycle. All simulations are performed
with reference parameters l = l1 = l2 = l3 = 2 · 10−4m, a = 0.1 · 10−4m, µ = 8.9 · 10−4 Pa s,
ε = 0.4, ω = 1 rad s−1. As in Section 1, Figure 4(A) shows the behavior of the system when
k1 = 0.1k3 = 10−7N m−1, and for ω = 0.1 rad s−1, 1 rad s−1, and 10 rad s−1. As expected, a
periodic limit cycle is quickly obtained whose orientation changes with ω. As for the swimmer
of the previous section, there exists an optimal frequency that provides the highest displacement
per unit cycle, while for very low or high frequencies the area enclosed by the cycle tends to 0.

(a) (b)

Figure 4: Three dimensional trajectories of the four-sphere swimmer depicting limit cycles. (A)
Effect of various frequencies ω (in rad s−1) for a fixed κ = 10. (B) Effect of stiffness ratio
κ = k3/k1 for a fixed ω = 1 rad s−1.

In Figure 4(B), we fix the frequency ω = 1 and vary the stiffness of the second link relative
to the first link. Here k3 = 1 · 10−7N m−1 while k1 = 0.1k3, k3 and 10 k3, characterized by
the stiffness ratio κ = k3/k1. We observe that, although the areas enclosed by the trajectories
remain similar, their orientation varies depending on κ. This can be expected since, when one
spring is stiffer than the other one, phase lag will differ and one side of the swimmer will thus
start moving before the other one. This influences the swimming direction of our model, which is
then illustrated when computing the displacement. Lastly, we can notice that the area enclosed
by the curve when κ = 1 is nonzero, although the swimmer does not have any net displacement,
as shown later on in Figure 7, which seems unusual. This can be nevertheless explained. Indeed,
when κ = 1, the swimmer is completely symmetric, falling in the case of the Scallop Theorem
once again. However, since there is still a phase lag between the springs and the active arm, the
global length at which the swimmer starts each stroke can vary, explaining the nonzero surface
bounded by the curve in the shape space.

We calculate the net displacement over a periodic stroke by integrating the average velocity
of the spheres in the steady-state regime, i.e. when the initial transient is terminated. Fig-
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Figure 5: Average displacement per period (∆X, in m) of the swimmer computed directly by
integration (in red) and using the circulation of the first-order approximation (13) of curl(ξ) (in
blue), plotted as a function of ω (in rad s−1), for ε = 0.3.

ure 5 shows both the approximation of the displacement computed using the formula ∆X =∮
L ξ(L) · dL =

∫
Σ curl(ξ) · dS with the first-order expansion of curl(ξ) given in (13), and the

integration of Ẋ giving the exact displacement per period. Here, a/ℓ = 0.05 and ε = 0.3, and we
notice very a very small difference of about 5% between the approximation with the numerical
integration of the system over a wide range of frequencies.

In Figure 6, we plot the swimmer’s displacement as a function of time, in the permanent
regime, when κ = k3/k1 = 0.1, for ω = {0.1, 1, 10} rad s−1. The swimmer exhibits different
behaviors depending on the frequency, namely, its efficiency varies and, more importantly the
direction of the motion changes.

To understand the variation of the swimmer displacement with the frequency, we plot in
Figure 7, the average (renormalized) displacement per period ∆X/l, as a function of ω. Roughly
speaking, the plot segregates two regimes that are separated by the κ = 1 curve. In this latter
situation, as we have already mentioned, both springs are synchronized with the same amplitude
due to the symmetry of the system. Thus, the swimmer undergoes a reciprocal shape change and
no displacement can be observed. For κ > 1, ∆X/l has a positive maximum first, followed by a
negative minimum, and conversely for κ < 1. The average displacement per period approaches
to zero as ω → 0 and ω → ∞ [13]. The maxima/minima of the curves imply a characteristic
resonant behavior where the displacement is maximum for a given frequency.

Now, consider the case of κ = 0.1 in Figure 7. The displacement over one stroke ∆X
is maximum at ω ≈ 0.5 rad s−1 and minimum for ω ≈ 5 rad s−1. Therefore, when the right
spring is much stiffer than the left spring, k3 ≫ k1, the swimmer moves to the right for small
frequencies and moves to the left for moderate frequencies. As k3 reduces and approaches k1,
both extrema of ∆X reduce in magnitude and shift to larger frequencies. For k1 = k3, there
is no displacement. For k1 > k3 the scenario is opposite with the minima of larger magnitude
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Figure 6: The swimmer’s displacement ∆X (in m) plotted as a function of normalized time
t/T = t · ω/(2π) for κ = 0.1 and various ω.

Figure 7: Average displacement per period (∆X, in m) of the swimmer, plotted as a function
of ω (in rad s−1) for various κ.

appearing first followed by the maxima of smaller amplitude.

3 Conclusion

We have proposed and studied the dynamics of a four-sphere swimmer with two passive elastic
arms, activated by a central link that elongates and retracts periodically with amplitude ε and
angular frequency ω. Thanks to interactions between elastic and hydrodynamic forces, a phase
difference between the oscillations of the active arm and each spring is created, whose value
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depends on the springs’ stiffness. When these are unequal, it gives rise to a large range of
frequencies at which the swimmer moves with a higher efficiency. This phase differences enables
the model to undergo non-reciprocal shape changes, thus circumventing the Scallop Theorem’s
obstruction [16].

Moreover, since there are two springs with different stiffnesses on each side of the activated
arm, depending on the driving frequency, the system undergoes a different behavior. Indeed,
playing with the oscillation frequency of the active arm can change the system’s swimming
direction, contrarily to what was shown in earlier works [13]. This paves the way for controlling
complex trajectories with simple artificial micro-swimmers composed of spheres as in references
[3, 4, 5].
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