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A bi-directional low-Reynolds-number swimmer with passive

elastic arms

Jessie Levillain∗ François Alouges† Antonio DeSimone‡ Akash Choudhary§

Sankalp Nambiar¶ Ida Bochert‖

Abstract

It has been recently shown that it is possible to design simple artificial swimmers at low Reynolds
number that possess only one degree of freedom and, nevertheless, can overcome Purcell’s celebrated
scallop theorem. One of the few examples is given by Montino and DeSimone, Eur. Phys. J. E, vol.
38, 2015, who consider the three-sphere Swimmer of Najafi and Golestanian, replacing one active arm
with a passive elastic spring. We further generalize this idea by increasing the number of springs and
show that it is possible to invert the swimming direction using the frequency of the single actuated
arm.

Introduction

One of the many features of low-Reynolds-number swimming [10, 9, 17] is the Scallop Theorem stated by
Purcell in his celebrated lecture [16], which forbids any net motion produced by reciprocal shape changes
of the swimmer. Several mechanisms have been, since then, proposed to overcome the scallop theorem
(see [12] and the many references therein), most of them using strategies to create non trivial loops, i.e.
closed curves with non zero surface, in the shape space of the swimmer. Simple examples are given by
the three link swimmer [16], the three sphere swimmer [14], the Push-Me-Pull-You [7] or Purcell’s rotator
[11]. All of these examples use two degrees of freedom in the shape activated periodically in time with a
phase lag in order to produce the loop.

Furthermore, the efficiency of such systems has also been extensively studied in the literature, and we
refer the interested to the examples given in references [1, 6, 2, 18].

Strikingly, the constraint of having at least two degrees of freedom can be overcome, if one considers
in the system, a passive elastic link. Indeed, the mechanism, discovered in [15], consists of a three-link
swimmer with only one activatable joint, the other being a rotational spring. Due to hydrodynamic
interactions, a periodic activation of the controlled parameter induces an out of phase periodic motion of
the spring, permitting to describe a loop in the shape space. So far, two swimmers have been proposed
in that direction: the three-link swimmer [15] and the three-sphere swimmer [13]. The latter, being an
adaptation of the one proposed in [14], is simpler to analyze because, due to its rectilinear shape, no
rotational movement is possible. A careful study, provided in [13] shows in particular that a displacement
of the swimmer is possible depending on the frequency at which the actuated arm is deformed. At very
low or very high frequency no net motion is possible after a stroke, while at a natural frequency of the
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system (which depends on the viscosity of the fluid, the masses and the spring constant) a resonant effect
takes place which provides an out of phase oscillation of the spring and, consequently, a net motion.

The present paper explores the situation where another spring is added to the system. The swimmer is
therefore composed of four spheres linked by three arms, one of which (in the center) being activated while
the two remaining ones are springs. We particularly focus on the situation where the spring constants
are different, leading to 2 natural frequencies of the system. We show that such systems can offer the
interesting possibility of controlling the direction in which the swimmer moves with the frequency of the
activated arm.

After recalling Montino and DeSimone’s results on the three-sphere swimmer [13], we introduce a
two-spring swimmer with a spring on each side of the actuated arm, and explore the consequences on its
swimming motion and direction. We study its dynamics and displacement, depending on various system
parameters.

1 The 3-sphere Swimmer with a passive arm

Figure 1: Three-sphere swimmer as proposed by Montino and DeSimone in [13]. Two spheres are
connected by a spring with rest length l1 and spring constant k. The third sphere is connected by
an actuated arm. The distances between the spheres are given by L1(t) and L2(t).

Najafi and Golestanian created a swimmer consisting of three spheres, connected by two actuators
[14]. By increasing and decreasing the length of the two actuators out of phase, the swimmer is able to
perform a non-reciprocal motion providing a net displacement. Based on this, Montino and DeSimone
proposed a three-sphere swimmer with a passive elastic arm [13] mimicking in this context, the mechanism
of [15]. As shown in Figure 1, the first and second spheres are connected by a spring with spring constant
k. The equilibrium length is denoted as l1, the distance between the spheres is L1(t). The length of the
actuated arm, which connects the second and third spheres, is given as L2(t). The radius of the spheres
is a. For a periodic activation of L2(t) of the form

L2(t) = l2(1 + ε sin(ωt)), (1)

the passive elastic arm experiences an out-of-phase oscillation due to hydrodynamic interactions. The
movement L1(t) can be calculated by balancing elastic and hydrodynamic forces. Indeed, assuming
a
L1

∼ a
L2

≪ 1, the velocities vi, i = 1, 2, 3 of the three spheres are related to the hydrodynamic forces in
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the following way

v1 =
f1

6πµa
+

f2
4πµL1

+
f3

4πµ(L1 + L2)
,

v2 =
f1

4πµL1
+

f2
6πµa

+
f3

4πµL2
,

v3 =
f1

4πµ(L1 + L2)
+

f2
4πµL2

+
f3

6πµa
.

Here, µ is the fluid viscosity and fi describes the force, which is exerted on the fluid by the i-th sphere.
The above set of equations can also be represented in the matrix form

V = RF (2)

where V = (v1, v2, v3)
T is the vector of the velocities of the spheres and F = (f1, f2, f3)

T the vector of
hydrodynamic forces acting on each sphere. The current structure of 3× 3 mobility matrix R takes into
account stokeslet interactions [8] by assuming that a ≪ Li, while self-interaction diagonal terms come
from the hydrodynamic motion of a sphere in a fluid.

As it is the case in the low Reynolds number regime, inertial forces are neglected. Since there are no
external forces considered, the force balance equation for a freely suspended swimmer

f1 + f2 + f3 = 0 (3)

must be fulfilled. The elastic force f e = k(L1 − l1) acting on the first sphere is equal and opposite to f1
due to Newton’s third law, leading to

f1 = k(L1 − l1). (4)

Furthermore, the velocities of the spheres and the lengths of the two arms are connected by

L̇1 = v2 − v1 , L̇2 = v3 − v2 . (5)

The time evolution of L2 is controlled by the actuator as given in equation (1). The given system of
equations (1- 5) can be solved to obtain L1(t) and L̇1(t) and this calculation is done numerically in [13].
It can be observed that loops are formed in the configuration space (L1, L2). Since the displacement of
a swimmer is proportional to the (algebraic) area enclosed by the curve in shape space, the three-sphere
body is able to swim. Figure 2a shows the calculated curves in the shape space for different values of
the actuating frequency ω. The other parameters are set to l1 = l2 = 2 · 10−4 m, a = 0.1 · 10−4 m,
µ = 8.9 · 10−4 Pa s, and k = 10−7 N/m. It can be observed that the area enclosed by the blue curve
(corresponding to an intermediate frequency) is larger than for the higher frequency (green curve) and
for the lower frequency (red curve). This agrees with the qualitative study of [13], which states that the
area enclosed by the curve vanishes for Ω → 0 or Ω → ∞, where Ω = ωµ(l1 + l2)/k is a dimensionless
frequency parameter.

From the resulting time evolution of L1(t) and L2(t), the position xi of each sphere can be calculated
from ẋi = vi. The displacement of the swimmer ∆x(t) =

∑
i (xi(t)− xi(0)) /3 is shown in Figure 2b,

with respect to the normalized time t ·ω/(2π). As it can be observed from the area in configuration space,
the displacement of the swimmer after one period with intermediate frequency (blue) is larger than the
one corresponding to a smaller (red) or higher frequency (green).

It can be concluded that the three-sphere swimmer proposed by Montino and DeSimone is able to
produce a net displacement depending on the dimensionless frequency Ω of the actuated arm. If Ω becomes
too high or too low, the net displacement of the swimmer becomes smaller or eventually vanishes.
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(a) (b)

Figure 2: Numerical results for Montino and DeSimone’s three-sphere swimmer. (A) Curves in config-
uration space resulting from numerical solution of equations (1 - 5). The different colors correspond
to different frequencies ω (in rad s−1) of the actuated arm. Note that the unit of length is 10−4 m.
(B) Displacement ∆x (in 10−4 m) of the three-sphere swimmer with respect to the normalized time
t/T = t · ω/(2π) for different actuating frequencies ω. [13]

2 The 4-sphere swimmer with two passive elastic arms

Montino and DeSimone’s swimmer [13] enabled us to circumvent the Scallop Theorem while only having
one active degree of freedom in the system. However, this three-sphere swimmer can only swim in one
direction. We now propose a new mechanism which, still with a single degree of freedom, is able to swim
in both directions.

The swimmer is composed of 4 spheres where only the middle link serves as the active arm while the
two others are passive springs as shown in Figure 3. In other words,

L2 = l2(1 + ε sin(ωt)), (6)

and L1, L3 are the unknowns to be determined.

Figure 3: Four-sphere swimmer where the middle arm connecting spheres 2 and 3 is the activated part.
Springs have rest lengths li and spring constants ki. Distances between the spheres are given by L1(t),
L2(t) and L3(t). In this case, the motion of the middle arm is prescribed as: L2 = l2(1 + ε sin(ωt)).

As in Section 1, we write down the equations for velocity vi’s of the four spheres similarly to [13].
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This yields the following set of equations that govern the velocity of the spheres:

v1 =
f1

6πµa
+

f2
4πµL1

+
f3

4πµ(L1 + L2)
+

f4
4πµ(L1 + L2 + L3)

,

v2 =
f1

4πµL1
+

f2
6πµa

+
f3

4πµL2
+

f4
4πµ(L2 + L3)

,

v3 =
f1

4πµ(L1 + L2)
+

f2
4πµL2

+
f3

6πµa
+

f4
4πµL3

,

v4 =
f1

4πµ(L1 + L2 + L3)
+

f2
4πµ(L2 + L3)

+
f3

4πµL3
+

f4
6πµa

,

that we again write in the abstract form
V = RF , (8)

where V = (v1, v2, v3, v4)
T is the vector of the velocities of the spheres and F = (f1, f2, f3, f4)

T the vector
of hydrodynamic forces acting on each sphere. Furthermore, the force-free condition becomes

f1 + f2 + f3 + f4 = 0. (9)

and we can write the force balance law on spheres 1 and 4 as the balance between the viscous forces and
the elastic forces of the arms:

f1 = k1 (L1 − l1) , f4 = −k3 (L3 − l3) . (10)

and we observe that the rate of change of each of the links obeys

L̇i = vi+1 − vi, for i ∈ {1, 2, 3} . (11)

The system (6 - 11) can be easily written as a differential-algebraic system of 11 equations with 11
unknowns. This system is then solved using standard numerical techniques.

2.1 Computing net displacement over a period

In the four-sphere swimmer described in our model, the net displacement of the swimmer after a periodic
stroke can be computed as follows. Notice that the computation below does not involve the nature of the
links (whether they are springs or rods). Calling X the position of the first sphere, V can be expressed
linearly in terms of Ẋ and the rates of change of the arms’ length L̇i as

v1 = Ẋ, v2 = Ẋ + L̇1, v3 = Ẋ + L̇1 + L̇2, v4 = Ẋ + L̇1 + L̇2 + L̇3 ,

that we rewrite in the matrix form as

V = M


Ẋ

L̇1

L̇2

L̇3

 with M =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 .

Next, using F = R−1V and that the total force vanishes, provides us with a linear relationship between
Ẋ and L̇1, L̇2, L̇3. Namely 

1
1
1
1

 ·R−1M


Ẋ

L̇1

L̇2

L̇3

 = 0 . (12)
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This is an equation that links Ẋ to L̇1, L̇2, L̇3 linearly, that we may rewrite under the form

Ẋ = ξ(L) · L̇

where ξ is a 3-D vector field. Indeed, an expansion of ξ(L) around the equilibrium solution Leq = (l1, l2, l3)
in the limit a/l ≪ 1 with l = max(l1, l2, l3) is obtained as follows. We first notice that, to first order

R−1 = 6πµa Id− 9πµa



0
a

L1

a

L1 + L2

a

L1 + L2 + L3a

L1
0

a

L2

a

L2 + L3a

L1 + L2

a

L2
0

a

L3a

L1 + L2 + L3

a

L2 + L3

a

L3
0


+ 6πµaO

((a
l

)2
)
.

Simplifying by 6πµa, we may thus rewrite (12) as

αẊ + β1L̇1 + β2L̇2 + β3L̇3 = 0 ,

where

α = 4− 3

2

(
2a

L1
+

2a

L2
+

2a

L3
+

2a

L1 + L2
+

2a

L2 + L3
+

2a

L1 + L2 + L3

)
+O

((a
l

)2
)

,

β1 = 3− 3

2

(
a

L1
+

2a

L2
+

2a

L3
+

a

L1 + L2
+

2a

L2 + L3
+

a

L1 + L2 + L3

)
+O

((a
l

)2
)

,

β2 = 2− 3

2

(
a

L2
+

2a

L3
+

a

L1 + L2
+

a

L2 + L3
+

a

L1 + L2 + L3

)
+O

((a
l

)2
)

,

β3 = 1− 3

2

(
a

L3
+

a

L2 + L3
+

a

L1 + L2 + L3

)
+O

((a
l

)2
)

,

from which we deduce that

ξ = − (β1, β2, β3)
T

α
+O

((a
l

)2
)

.

This leads to a formula for the coordinates of ξ, namely

ξ1 = −3

4
− 3

16

(
a

L1
− a

L2
− a

L3
+

a

L1 + L2
− a

L2 + L3
+

a

L1 + L2 + L3

)
+O

((a
l

)2
)

,

ξ2 = −1

2
− 3

8

(
a

L1
− a

L3

)
+O

((a
l

)2
)

,

ξ3 = −1

4
− 3

16

(
a

L1
+

a

L2
− a

L3
+

a

L1 + L2
− a

L2 + L3
− a

L1 + L2 + L3

)
+O

((a
l

)2
)

,

Now, if we consider a closed stroke L(t) in the shape space, the total displacement at the end of the
stroke appears to be the circulation of ξ along the closed curve L(t). In other words, using Stokes theorem

∆X =

∮
L

ξ(L) · dL =

∫
Σ

curl(ξ) · dS

where Σ is any surface that is bounded by the closed curve L(t).
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From the computation above, the leading term of curl(ξ) can be computed near L = (l1, l2, l3) and
we obtain

curl(ξ)(l1, l2, l3) =
3

16


a

l22
+

2a

l23
+

a

(l1 + l2)2
− a

(l2 + l3)2
− a

(l1 + l2 + l3)2

− a

l21
− a

l23
− a

(l1 + l2)2
− a

(l2 + l3)2
+

2a

(l1 + l2 + l3)2
2a

l21
+

a

l22
− a

(l1 + l2)2
+

a

(l2 + l3)2
− a

(l1 + l2 + l3)2

+O

(
a2

l3

)
, (13)

which enables us to compute an approximation of the displacement of the swimmer after a stroke around
a given shape L = (l1, l2, l3). The validity of this expression to compute an approximation of the
displacement after a stroke will be checked against the full integration of the system in the next Section.

2.2 Numerical results: Swimming dynamics and displacement over time

Numerical integration of the system (6 - 11) typically yields the 3D trajectories (L1(t), L2(t), L3(t)) that
are plotted in Figure 4. The flux of curl(ξ) through the areas enclosed by the limit cycles represents the
displacement of the swimmer per unit cycle. All simulations are performed with reference parameters
l = l1 = l2 = l3 = 2 · 10−4 m, a = 0.1 · 10−4 m, µ = 8.9 · 10−4 Pa s, ε = 0.4, ω = 1 rad s−1. As in Section
1, Figure 4(A) shows the behavior of the system when k1 = 0.1k3 = 10−7 N m−1, and for ω = 0.1, 1, and
10. As expected, a periodic limit cycle is quickly obtained whose orientation changes with ω. As for the
swimmer of the previous section, there exists an optimal frequency that provides the highest displacement
per unit cycle, while for very low or high frequencies the area enclosed by the cycle tends to 0.

(a) (b)

Figure 4: Three dimensional trajectories of the four-sphere swimmer depicting limit cycles. (A) Effect of
various frequencies ω (in rad s−1) for a fixed κ = 10. (B) Effect of stiffness ratio κ = k3/k1 for a fixed
ω = 1 rad s−1.

In Figure 4(B), we fix the frequency ω = 1 and vary the stiffness of the second link relative to
the first link. Here k3 = 1 · 10−7 N m−1 while k1 = 0.1k3, k3 and 10 k3, characterized by the stiffness
ratio κ = k3/k1. We observe that, although the areas enclosed by the trajectories remain similar, their
orientation varies depending on κ. This can be expected since, when one spring is stiffer than the
other one, phase lag will differ and one side of the swimmer will thus start moving before the other
one. This influences the swimming direction of our model, which is then illustrated when computing the
displacement. Lastly, we can notice that the area enclosed by the curve when κ = 1 is nonzero, although
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the swimmer does not have any net displacement, as shown later on in Figure 7, which seems unusual.
This can be nevertheless explained. Indeed, when κ = 1, the swimmer is completely symmetric, falling in
the case of the Scallop Theorem once again. However, since there is still a phase lag between the springs
and the active arm, the global length at which the swimmer starts each stroke can vary, explaining the
nonzero surface bounded by the curve in the shape space.

Figure 5: Average displacement per period (∆X, in m) of the swimmer computed directly by integration
(in red) and using the circulation of the first-order approximation (13) of curl(ξ) (in blue), plotted as a
function of ω (in rad s−1), for ε = 0.3.

We calculate the net displacement over a periodic stroke by integrating the average velocity of the
spheres in the steady-state regime, i.e. when the initial transient is terminated. Figure 5 shows both the
approximation of the displacement computed using the formula ∆X =

∮
L
ξ(L) · dL =

∫
Σ
curl(ξ) · dS with

the first-order expansion of curl(ξ) given in (13), and the integration of Ẋ giving the exact displacement
per period. Here, a/ℓ = 0.05 and ε = 0.3, and we notice very a very small difference of about 5% between
the approximation with the numerical integration of the system over a wide range of frequencies.

In Figure 6, we plot the swimmer’s displacement as a function of time, in the permanent regime,
when κ = k3/k1 = 10 and when κ = 0.1, for ω = {0.1, 1, 10} rad s−1. The swimmer exhibits different
behaviors depending on the frequency, namely, its efficiency varies and, more importantly the direction
of the motion changes.

To understand the variation of the swimmer displacement with the frequency, we plot in Figure 7, the
average (renormalized) displacement per period ∆X/l, as a function of ω. Roughly speaking, the plot
segregates two regimes that are separated by the κ = 1 curve. In this latter situation, as we have already
mentioned, both springs are synchronized with the same amplitude due to the symmetry of the system.
Thus, the swimmer undergoes a reciprocal shape change and no displacement can be observed. For κ > 1,
∆X/l has a positive maximum first, followed by a negative minimum, and conversely for κ < 1. The
average displacement per period approaches to zero as ω → 0 and ω → ∞ [13]. The maxima/minima
of the curves imply a characteristic resonant behavior where the displacement is maximum for a given
frequency.

Now, consider the case of κ = 0.1 in Figure 7. The displacement over one stroke ∆X is maximum at
ω ≈ 0.5 rad s−1 and minimum for ω ≈ 5 rad s−1. Therefore, when the right spring is much stiffer than
the left spring, k3 ≫ k1, the swimmer moves to the right for small frequencies and moves to the left for
moderate frequencies. As k3 reduces and approaches k1, both extrema of ∆X reduce in magnitude and
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Figure 6: The swimmer’s displacement ∆X (inm) plotted as a function of normalized time t/T = t·ω/(2π)
for κ = 0.1 and various ω.

Figure 7: Average displacement per period (∆X, in m) of the swimmer, plotted as a function of ω (in
rad s−1) for various κ.

shift to larger frequencies. For k1 = k3, there is no displacement. For k1 > k3 the scenario is opposite
with the minima of larger magnitude appearing first followed by the maxima of smaller amplitude.

3 Conclusion

We have proposed and studied the dynamics of a four-sphere swimmer with two passive elastic arms,
activated by a central link that elongates and retracts periodically with amplitude ε and angular frequency
ω. Thanks to interactions between elastic and hydrodynamic forces, a phase difference between the
oscillations of the active arm and each spring is created, whose value depends on the springs’ stiffness.
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When these are unequal, it gives rise to a large range of frequencies at which the swimmer moves with
a higher efficiency. This phase differences enables the model to undergo non-reciprocal shape changes,
thus circumventing the Scallop Theorem’s obstruction [16].

Moreover, since there are two springs with different stiffnesses on each side of the activated arm,
depending on the driving frequency, the system undergoes a different behavior. Indeed, playing with the
oscillation frequency of the active arm can change the system’s swimming direction, contrarily to what
was shown in earlier works [13]. This paves the way for controlling complex trajectories with simple
artificial micro-swimmers composed of spheres as in references [3, 4, 5].
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