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Abstract:
This paper presents an identification approach for feedforward controller design dedicated
to nonlinear systems when their structure is known. We propose a model-based approach,
leveraging Block-Oriented models, which allows a fast identification of the system when its
structure is known. The controller is then designed based on the identified model using a criterion
close to traditional identification criteria. Additionally, a costless iterative model identification
and controller design approach is also proposed to improve the performance of the controller if
necessary. The effectiveness of the approach is demonstrated through the design of a feedforward
controller for a Wiener system.
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1. INTRODUCTION

From mechanical, electronic to aerospace systems, numer-
ous real life applications exhibit nonlinear characteristics,
posing significant challenges in the design of controllers. In
this paper, we are particularly interested in a specific type
of control: Feedforward control. The primary goal of this
paper is to present an iterative identification procedure for
the design of a feedforward controller for nonlinear systems
which can be represented by Wiener structures (i.e., a
cascade of a linear dynamic block and static nonlinearity).

Feedforward control is generally used to achieve the track-
ing of a given reference signal r(t). This is generally
achieved by determining the input signal that has to be ap-
plied to the true system using optimal control (Vinter and
Vinter, 2010) or iterative learning control (ILC) (Bristow
et al., 2006). In optimal control, the optimal input is de-
termined based on a model of the true system while in ILC
this input is determined using multiple experiments on the
system (model-free approach). In both cases, the optimal
input is determined for a given realization of the reference
signal. This means that, for a reference having the same
frequency content, but a different time realization, the
whole procedure has to be repeated. This drawback in
fact only pertains to the case of nonlinear systems. Indeed,
in the linear case, we can, e.g., use H2 control to design
a feedforward controller F (whose... expression depends
on the frequency content of the reference signal). Once
the controller F has been designed for a given type of

reference, it can therefore be used to generate the optimal
control input for different realizations of the reference (and
for references having similar frequency content). It would
therefore be interesting to be able to design such feedfor-
ward controllers also for nonlinear systems. This is what is
proposed e.g. in (Aarnoudse et al., 2021), (Van Hulst et al.,
2022) and (Poot et al., 2023). In these papers, iterative
learning control is used to determine the optimal input for
a representative realization of the reference signal and a
nonlinear feedforward controller which allows to reproduce
the optimal input when fed with the reference signal is
then determined.

The ILC based approaches in (Aarnoudse et al., 2021),
(Van Hulst et al., 2022) and (Poot et al., 2023) are
particularly interesting when we do not have a precise
idea of the structure of the true system. In this paper,
we consider the situation where this structure is known.
In particular, we will suppose that the true system is
a Wiener system, i.e., the true system is made up of a
linear transfer function followed by a static nonlinearity.
In this case, one can use a single experiment on the true
system to derive input-output data that can then be used
to identify a model of the true system. Based on this
identified model and a representative realization of the
reference signal, we propose an approach to determine
the feedforward controller using an approach close to an
identification criterion. The structure of the feedforward
controller is chosen as a Hammerstein system, i.e., a static
nonlinearity followed by a linear transfer function. This



choice is motivated by the fact that feedforward control
can be seen as a way to somehow invert the true system
((see also (Van Hulst et al., 2022) and (Poot et al., 2023)).

While iterative learning control generally requires mul-
tiple experiments on the true system, the identification
approach proposed in the previous paragraph has the
advantage that it requires in theory only one well-designed
experiment on the true system in order to identify the
model of the true system. It is clear though that, if this
experiment is not well designed, the identified model will
not be an accurate representation of the true system and
the resulting feedforward controller will not be able to
track the reference in a satisfactory manner. In this sit-
uation, the input-output data obtained by applying the
feedforward controller on the true system can be used to
improve the accuracy of the model and to update the
feedforward controller. This procedure can be repeated
until a suitable controller is synthetized. Note that this
approach can be considered as costless since the additional
data are obtained in a feedforward control configuration.
Note that this iterative procedure can also be considered as
an extension to the case of feedforward controller design
for nonlinear (Wiener) systems of the classical iterative
identification-control design procedure presented in (Van
Den Hof and Schrama, 1995), (Gevers, 2002) and (Forgione
et al., 2015) for the linear case.

As mentioned above, in this paper, the structure of the
true system is assumed to be a Wiener system and the
feedforward controller will have a Hammerstein structure.
The Wiener and Hammerstein structures are classical ex-
amples of block-oriented models (Giri and Bai, 2010). This
type of models allows to represent nonlinear systems by
dividing them into interconnected static nonlinear and
linear dynamic blocks. Due to their flexibility and easy-
understanding, block-oriented models have found applica-
tions in the identification of numerous systems (Firouz
et al., 2020),(Muhammad et al., 2021), (Naitali et al.,
2008). They have also been used as models for to-be-
controlled systems in, e.g., (Rollins et al., 2016), (Dolanc
and Strmenik, 2008), and (Kalafatis et al., 2005). As indi-
cated above, we will identify a Wiener model of the Wiener
true system and we will design the Hammerstein feedfor-
ward controller using an approach close to an identification
criterion. For this purpose, we can leverage the numer-
ous identification approaches that are available for such
model structures (see, e.g., (Schoukens et al., 2015) and
(Schoukens et al., 2012)). In this paper, we will in partic-
ular take advantage of the recently introduced ”dynoNet”
nonlinear identification tool proposed in (Forgione and
Piga, 2021).

To sum up, our goal in this paper will be to:

• Show how a feedforward controller can be designed
from an identified block-oriented Wiener model of the
to be controlled system.
• Present a costless iterative model identification and

controller design approach in a case where an initially
designed controller does not perform well on the true
system.

The rest of this paper is structured as follows: first,
the problem will be presented in Section 2, then the
structures and identification approaches of the model and

the controller are presented in Section 3. The iterative
procedure is presented in Section 4. Lastly, the procedures
are illustrated through numerical examples in Section 5.

2. FRAMEWORK

Fig. 1. Control scheme

In this study, we are interested in the design of a feedfor-
ward controller for the open loop control scheme presented
in Figure 1. In this figure, r(t) is the reference that the true
system has to track. Like in the linear case, it is important
to define the class of reference signals that we wish to track.
In this paper, we will suppose that the frequency content of
r(t) can be described by a known transfer function H(z).
In other words, we will suppose that r(t) is given by:

r(t) = H(z)ẽ(t), (1)

where ẽ(t) is a white Gaussian noise whose variance defines
the amplitude range of r(t). The signal u(t) on Figure 1 is
the input provided to the system and y(t) is the measured
output of the system.

The true system S is considered to be a Wiener system.
These systems are composed of a linear time dynamic
block followed by a static nonlinearity. In this paper, the
linear block, noted G0(z), is considered to be stable. The
static nonlinearity is noted g0(.).

In Wiener systems, the input u(t) is filtered through the
linear dynamic block G0(z), producing an intermediate
signal x(t) = G0(z)u(t). This signal is then passed through
the static nonlinearity g0(.), yielding the output signal
ỹ(t) = g0(x(t)). In the remainder of the paper, we will
use the following expression for ỹ(t):

ỹ(t) = g0(G0(z)u(t)). (2)

In this paper, the output of the Wiener system ỹ(t) is
corrupted with a white gaussian noise e: N (0, σ2). For a
given input u(t), the measured output y(t) can thus be
expressed as follows:

y(t) = g0(G0(z)u(t)) + e(t). (3)

The goal of this paper will be to design a feedforward
controller F for the system S. For a given reference r(t),
the controller should provide a command u(t) to pass
to the system, allowing it to track the reference. The
controller F should be designed in order to minimize the
following criterion:

E(r(t)− ỹ(t))2 + λEu2(t), (4)

where E represents the expectation operator and λ > 0 is
a user chosen constant which defines the penalty on the
control efforts.



As indicated in the introduction, the controller F must
somehow achieve an inversion of the true system system.
Since this true system has a Wiener structure, it therefore
makes sense to choose a Hammerstein structure for the
controller F , i.e., a static nonlinearity followed by a linear
dynamic block. The static nonlinearity of the feedforward
controller will be denoted by f(.) and the linear dynamic
block by F (z). In Hammerstein systems the input r(t)
passes through the static nonlinearity f(.) providing an
intermediate signal z(t) = f(r(t)). This signal is then
filtered through the linear dynamic block F (z) producing
the output of the Hammerstein system u(t) = F (z)z(t).
In the remainder of the paper, we will therefore use the
following expression for the control input u(t) generated
by the reference r(t):

u(t) = F (z)f(r(t)). (5)

In this paper, it is considered that an initial dataset D1 =
{u1(t), y1(t)}Nt=1, obtained from an open-loop experiment
on S is available. Since we know the structure of the true
system, we can use this dataset to identify a model M of
S and then design the controller based on that model.

Since we know that the true system S belongs to the class
of Wiener systems, then the model M will also have the
same structure. The model M will be identified using the
data D1 in a model structure parametrized by a parameter
vector θ. This vector θ contains the parameters of both the
linear block Gθ(z) and the static nonlinearity gθ(.)

In the next section, we will show how the model of the
true system can be identified and how the feedforward
controller can be determined based on this identified model
and a representative realization of the reference signal (1).
The latter will be done using a criterion which is very close
to an identification criterion. Consequently, in the sequel,
we will say (with some abuse of terminology) that both the
Wiener modelM of the true system and the Hammerstein
feedforward controller F will be identified.

3. STRUCTURES AND IDENTIFICATION
CRITERIONS

In this section, the identification procedures forM and F ,
as well as their structures are discussed. In this paper we
choose a parametric identification approach for the Wiener
and Hammerstein structures.

3.1 Structures and identification of M

As said before, the model of the true system M will have
the exact same structure as the true system S, i.e., a
Wiener structure. It is parametrized as follows:

Gθ(z) =
b0 + b1z

−1 + b2z
−2 + ....+ bnbz

−nb

1 + a1z−1 + a2z−2 + ....+ anaz
−na

(6a)

gθ(.) = g̃θ(., θg), (6b)

where g̃θ(., θg), is a class of non linear static function
described by its parameter vector θg ∈ Rng . We note
by A ∈ Rna the vector containing the na denominators

of the linear block of M and B ∈ Rnb the vector
containing the nb numerators. A = [a1, a2, ....ana ]T and
B = [b0, b1, b2, ....bnb ]

T . We note θ ∈ Rna+nb+ng the
vector containing all the parameters of the modelM, i.e.,
θ = [AT , BT , θTg ]T .

The goal of the identification of M is to find the pa-
rameters θ of M which allow to represent accurately the
behaviour of the true system. Given the initial dataset
D1 = {u1(t), y1(t)}Nt=1, this can be achieved by minimizing
the following cost function W :

W (θ) =
1

N

N∑
t=1

(gθ(Gθ(z)u1(t))− y1(t))
2
, (7)

where N is the number of samples collected. The param-

eter θ̂ which allow to best represent the model given a
dataset D1 = {u1(t), y1(t)}Nt=1, is thus provided by:

θ̂ = arg min
θ
W (θ). (8)

In the sequel, the blocks of the identified model M (i.e.,

the one parametrized with θ̂)) will be denoted by Ĝθ(z)
and ĝθ(.). For a given input u(t), the output ŷ of M is
therefore given by:

ŷ(t) = ĝθ(Ĝθ(z)u(t)). (9)

3.2 Structure and design of F

The feedforward controller F will have a Hammerstein
structure described by a parameter vector φ. Its static
non linearity, denoted by fφ(.), and linear dynamic layer,
denoted by Fφ(z), are described as follows:

Fφ(z) =
d0 + d1z

−1 + d2z
−2 + ....+ dndz

−nd

1 + c1z−1 + c2z−2 + ....+ cncz
−nc

(10a)

fφ(.) = f̃φ(., φf ), (10b)

where f̃φ, is a class of non linear static function described
by its parameter vector φf ∈ Rnf . We note by C ∈ Rnc the
vector containing the nc denominators of the linear block
and D ∈ Rnd the vector containing the nd numerators.
C = [c1, c2, ....cnc ]

T and D = [d0, d1, d2, ....dnd ]T . We note
φ ∈ Rnc+nd+nf the vector containing all the parameters
of the controller: φ = [CT , DT , φTf ]T .

We will suppose that we have a (representative 1 realiza-
tion of duration Nr of the reference signal (1)) and we will
approximate the control criterion (4) using this realization

and the identified model Ĝθ(z), ĝθ(.) of the true system:

V (φ, θ̂) =
1

Nr

Nr∑
t=1

(
ĝθ(Ĝθ(z)uφ(t))− r(t)

)2
+ λu2φ(t),

(11)

where uφ(t) = Fφ(z)fφ(r(t)).

1 i.e., a sufficiently long realization of (1)



Given a model Ĝθ(z), ĝθ(.) the optimal parameter vector

φ̂ is thus:

φ̂ = arg min
φ
V (φ, θ̂). (12)

Note the similarity between the criterion (11)-(12) and
the identification criterion (7)-(8). Similar optimization
algorithms can therefore be used to determine both the
model of the true system and the feedforward controller.
This is also why we say in this paper that the feedforwad
controller is ”identified”.

The optimal controller which minimize the criteria (11)

with parameter vector φ̂ will be denoted by F̂φ(z)f̂φ(.).

Remark In this paper the static nonlinearities of the
model gθ(.) and the feedforward controller fφ(.), will be
parametrized using a neural network structure (Forgione
and Piga, 2021). Neural networks are used because they
are known to excel in modeling complex static functions
due to their flexibility. In the numerical examples pre-
sented in section 5, the neural networks used will have
1 input, 1 hidden layer and 1 output. However, more com-
plex structures may be used if the latter do not allow to
identify the static nonlinearity. In networks with 1 hidden
layer, the output f(x) is expressed as an affine combination
of neurons νk(x)nνk=1 (the number of neurons is denoted
nν):

f(x) =

nν∑
k=1

wkνk(x) + b, (13)

with b a scalar offset and wk scalar weightings. The
quantity νk(x)nνk=1 is a nonlinear mapping of the entry x:

νk(x) = Φ
(
b̃k + w̃kx

)
, (14)

where Φ(x) is generally the so-called activation function

(typically RELU or tanh) and where w̃k and b̃k are scalar
coefficients.

To implement the block-oriented models and to identify
their parameters (i.e. to solve (7) and (11)), we use the
dynoNet structure and tools presented in (Forgione and
Piga, 2021).

4. ITERATIVE LEARNING PROCEDURE

Using the procedure presented in the previous section, a
feedforward controller is available and this feedforward
controller (say F1) can be used to design the control
input of the true system using the reference signal r(t).
If the performance of the controller is not satisfactory
(i.e., the output y(t) is not sufficiently close to r(t)), the
data generated during the application of the feedforward
controller F1 can be used to improve the model. These
data will be denoted by D2 = {u2(t), y2(t)}Nt=1 in the
sequel 2 . A new and better model M2 can be identified

2 For the simplicity of notations, we will suppose that D1 and D2

contain the same amount of data

using this new data set D2 as well as the previous data
D1. The identification criterion for the modelM2 will be:

W2(θ) =
1

N

N∑
t=1

(gθ(Gθ(z)u1(t))− y1(t))
2

+
1

N

N∑
t=1

(gθ(Gθ(z)u2(t))− y2(t))
2
.

(15)

The new parameter vector, θ̂2, which allows to best rep-
resent the true system S, given the dataset D1 and D2 is
thus given by:

θ̂2 = arg min
θ
W2(θ). (16)

When a new model M2 has been identified, then a new
controller F2 can also be designed based onM2 and using
the identification criterion (11). The sequence consisting
in first identifying a new model and then redesigning the
controller based on that model can be repeated iteratively
until a controller which performs well on the true system
is found. As mentioned in the introduction, the learning
of a better model can be considered as costless since the
new data sets are generated when operating the plant
in a control configuration. The procedure is described in
Algorithm 1.

Algorithm 1 Iterative procedure

Initialize: Available dataset D1 = {u1(t), y1(t)}Nt=1 and
a representative realization of length Nr of the to-be-
tracked reference r(t).
Repeat imax times the following steps, i =
1, ...imax
1. Identify a model Mi using the data contained
in the set D = {D1 = (u1(t), y1(t)), D2 =
(u2(t), y2(t))...., Di = (ui(t), yi(t)))} and the criterion:

Wi(θ) =
1

N

N∑
t=1

(gθ(Gθ(z)u1(t))− y1(t))
2

+
1

N

N∑
t=1

(gθ(Gθ(z)u2(t))− y2(t))
2

+ ....

+
1

N

N∑
t=1

(gθ(Gθ(z)ui(t))− yi(t))2 .

2. Design the feedforward controller Fi using the iden-
tified model Mi and the design criterion:

V (φ, θ̂i) =
1

Nr

Nr∑
t=1

(
ĝθi(Ĝθi(z)uφ(t))− r(t)

)2
+ λu2φ(t).

3. Perform an experiment on the true system S using
the designed controller Fi, collect the data Di+1 =
{ui+1(t), yi+1(t)}Nt=1 and add them to the set D.
End Repeat

5. EXAMPLES

In this section the procedures described above will be
illustrated. To evaluate the goodness of the identification



of the model and of the tracking of the reference by the
controller, we use the ”fit” and Root Mean Squared Error
(RMSE) metrics:

fitM = 100

1−

√∑Ñ
t=1(ŷ(t)− y(t))2√∑Ñ
t=1(ŷ(t)− y(t))2

% (17a)

fitF = 100

1−

√∑Ñr
t=1(y(t)− r(t))2√∑Ñr
t=1(y(t)− r(t))2

%, (17b)

where a represents the mean value of the vector containing
the N observations of a. fitM and fitF are the fit on
the identification of the model (computed using validation
data, i.e., data that have not been used for the identifica-
tion) and the fit on the tracking of the reference by the
true system, respectively. The RMSE is defined as follows:

RMSEM =

√√√√ 1

Ñ

Ñ∑
t=1

(ŷ(t)− y(t))2 (18a)

RMSEF =

√√√√ 1

Ñr

Ñr∑
t=1

(y(t)− r(t))2, (18b)

where RMSEM and RMSEF are the RMSE on the
identification of the model (computed using the validation
data) and the RMSE on the tracking of the reference by
the true system respectively. Note that, since this is a
simulation example, we could have used ỹ(t) instead of
y(t) in (17) and (18). The choice to use y(t) instead of ỹ(t)
is nevertheless made since ỹ(t) is unavailable in practice.

Two cases will be considered:

• In the first one, we will consider a case where there
is no need for an iterative procedure to design the
controller.
• In the second one, we will perform the iterative

procedure (see Section 4).

For the 2 cases considered, we will use the same true
system S. As mentioned before, the true system is a
Wiener system, i.e., it is composed by a linear dynamic
block G0(z) followed by a static nonlinearity f0(x).

The linear dynamic bloc G0(z) of the true system S is:

G0(z) =
1z−1

1− 0.1412z−1 − 0.1z−2
. (19)

The static nonlinearity of the true system S is:

f0(x) = 5tan−1(2x). (20)

5.1 Controller synthesis without an iterative procedure

We will first show that, if the open-loop experiment leading
to D1 is well designed (i.e., u1 is sufficiently broadband
and sufficiently powerful), the identified model M1 is

sufficient to design a satisfactory controller F1 (no iterative
procedure is required).

We assume here, that the following experiment has been
conducted on the true system S in order to collect a
dataset D1:

• The system is excited with a multisine input u1(t) of
maximum frequency of 2000 Hz.

• 20000 samples from the output of the system y1(t)
are collected.

• The output is corrupted with a white gaussian noise
of standard deviation σe = 5.10e−4.

This dataset is divided into 2 sets of 10000 samples each.
The first set is used to identify the model, the second one
for validation.

The structure of the model is the one described in (6),
where na = 3,nb = 4 and g̃θ is a neural network with
1 hidden layer (Equations (13) - (14)) with 16 neurons
and a tanh activation function. The parameter vector has

dimension 42. The optimal parameter vector θ̂ can be
identified using the criteria (7)-(8).

Fig. 2. Model output ŷ1 (blue), true system output y1
(black) and difference between ŷ1 and y1 (red) for a
given input u1(t)

Figure 2 presents the difference between the predicted
output from the identified model M compared to the
output of the true system S, on the validation set. As
can be seen from this figure, the blue signal (ŷ1) and
the black signal (y1) are overlapping and the red signal
( ŷ1-y1 ) is very small. The RMSEM = 6.0.10−4 and the
fitM = 99%. This shows that we are able to identify a

parameter vector θ̂ that allows to represent well the model
with the given data.

Now that a model has been identified from the data, a
controller F1 can be designed from the model. In this
case we want to design our controller to allow the model
to follow a reference signal ra(t) which corresponds to a
filtered white gaussian noise (1) where H(z) is a lowpass
filter with a cutoff frequency at 2000Hz:

H(z) =
0.0014 + 0.004z−1 + 0.004z−2 + 0.001z−3

1− 2.51z−1 + 2.13z−2 − 0.61z−3
, (21)

and where the variance of ẽ(t) has been chosen in such a
way that the maximal amplitude of ra(t) is close to the



one of y1(t) in D1. The structure of the controller is the

one described in (10), where nd = 4,nc = 4 and f̃φ is a
neural network with 1 hidden layer, 16 neurons and a tanh
activation function. In total there are 44 parameters stored
in the parameter vector φ to identify. These parameters are
identified using the criteria (11)-(12) with λ = 0.

Once the controller has been designed from the model it
can be tested on the true system as well.

Fig. 3. Model output ŷa (blue), true system output ya
(green), reference signal ra (black) and difference
between ra and ya (red) when the input is the control
signal provided by the designed controller F1

Figure 3 shows the outputs ya(t) and ŷa(t) obtained when
we test the identified controller on the true system and the
model, respectively.

ŷa(t) = ĝθ(Ĝθ(z)uφ(t)) (22a)

ya(t) = g0(G0(z)uφ(t)) + e(t), (22b)

where uφ(t) = F̂φ(z)f̂φ(ra(t)). As can be seen in Figure
3, ra(t), ya(t) and ŷa(t) are all overlapping. This means
that the designed controller not only performs well on
the model but also on the true system. This is even more
highlighted on the Figure 3 where the difference between
ra(t) and ya(t) (in red on Figure 3) is always close to 0.
We have the RMSEF = 9.5.10−4 and fitF = 99%.

By choosing a filtered white gaussian noise as reference
signal, the designed controller F1 will not only allow to
follow the specific signal ra(t) but also other signals with
the same frequency content and amplitude. To highlight
this, we test the controller for 2 signals different from
ra(t). The first one, ra1(t), is a sinusoid of amplitude
0.4 and of frequency 2000 Hz. The second one, ra2(t), is
such as ra given by (1) with H(z) in (21), but generated
with a different realization of the white noise ẽ(t). With
the first signal ra1(t) we have the RMSEF = 1.2.10−3

and fitF = 99%. With the second signal ra2(t) we have
RMSEF = 1.0.10−3 and fitF = 99%. This shows that
the designed controller can be used with other reference
signals.

5.2 Application of the iterative procedure

In the previous section, the reference ra that must be
tracked and that is used to identify the feedforward con-

troller F1 will generate, when applied to F1, signals ua(t)
and ya(t) that are close (in amplitude) to the ones collected
in D1.

In this section, we will suppose that the to-be-tracked
reference (1) is generated with a white noise ẽ with higher
variance. This reference rb (having higher amplitude) is
compared to y1 in Figure 4. This figure shows that the
amplitude of rb is approximatively ten times higher than
y1.

Fig. 4. New reference signal to follow rb (in blue) compared
to y1(t) used to identify the model M1 (in black)

Fig. 5. Model output ŷb (blue), true system output yb
(green), reference signal rb (black) and difference
between rb and yb (red) when the input is the control
signal ub(t) provided by the controller designed using
M1 and rb

When (11)-(12) are used to design the feedforward con-
troller using the model identified with D1 and with this
reference rb, the tracking performance on the true system
is much poorer as indicated in Figure 5. In this case, we
have fitF = 81% and RMSEF = 0.31.

Even though the tracking performance observed in figure
5 is not perfect, the application of the controller allows
to obtain a certain tracking of rb which, as indicated in
Section 4, allows to collect a second dataset D2. This
dataset is used to identify a new model M2, using the
criteria (15)-(16) and the same structure as M1. M2 and
rb are then used to identify a new and better feedforward
controller F2, using the criterion (11)-(12). The structure
of the controller F2 is the same as the one of F1.



By comparing Figures 5 and 6, it is clear that the controller
F2 identified with M2 and rb achieves a much better
tracking of rb than the controller identified with M1 and
rb, as shown in Figure 6. Indeed, we obtain fitF = 99%
and a RMSEF = 2.7.10−3.

The improved performance can be related to the fact that
the model M2, identified with both D1 and D2, models
the nonlinearity g0 over a larger range than the model
identified with only D1.

Note that this controller F2 also allows to efficiently track
other references with similar frequency content and am-
plitude as rb, as well as the initial (smaller in amplitude)
reference ra(t). To highlight this, we choose as reference
signal rc(t): a sinusoid of amplitude 5 and frequency 2000
Hz and feed this sinusoid to F2.

As can be observed on figure 7, the identified controller
F2 also allows to track signals with the same frequency
content as rb(t). With the signal rc(t), we have a fitF of
99% and a RMSEF = 1.5.10−2. This controller also allows
to track efficiently the initial reference signal ra(t). Indeed
when we use the controller F2 to track ra(t), we have a fit
fitF of 99% and a RMSEF = 9.6.10−4.

Fig. 6. Model output ŷb (blue), true system output yb
(green), reference signal rb (black) and difference
between rb and yb (red) when the input is the control
signal ub(t) provided by the new designed controller
F2

Fig. 7. Model output ŷc (blue), true system output yc
(green), reference signal rc (black) and difference
between rc and yc (red) when the input is the control
signal uc(t) provided by the controller F2

6. CONCLUSION

In this paper, a model-based feedforward open-loop con-
troller design approach for nonlinear system is presented.
It leverages the use of block-oriented models to identify
a model of the unknown true system and design the
controller based on that model. An iterative procedure
which consists of re-using the data acquired when testing
controllers to re-identify a new model and then design a
new controller based on it is also presented. Results on
numerical applications show that the presented method
is able to design feedforward controllers which allow to
follow the desired reference signals. As future work, we
would like to add an exploration aspect in the iterative
controller design approach.
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