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Numerical modelling of static hysteresis phenomena using a vector
extension of the Loss Surface model

Léopold Mikula1,2, Brahim Ramdane1, Lucas Blattner Martinho2, Afef Kedous-Lebouc1, and Gérard Meunier1

1Université Grenoble Alpes, CNRS, Grenoble INP, G2Elab. F-38000 Grenoble, France
2Altair Engineering France. F-38240 Meylan, France

This paper proposes a vector extension of the Loss Surface model for numerically modelling hysteretic phenomena in
electromagnetic device simulations with isotropic ferromagnetic materials. The vectorization strategy is based on Mayergoyz’s
approach. The developed model has been implemented in the 2D finite element code. To handle the non linear problem solved with
the Newton-Raphson algorithm, a suitable method is proposed for the approximation of the reluctivity tensor. Several test cases
from TEAM problem 32 were investigated for validation. The results are in good agreement with measurements combining accuracy
and short computation times.

Index Terms—Vector magnetic hysteresis modelling, Loss Surface, Finite Element Method

I. INTRODUCTION

THE Finite Element Method (FEM) is generally used in
the analysis of electromagnetic devices. In this context,

the nonlinear behaviour of ferromagnetic materials is com-
monly represented by a scalar, one-to-one magnetization curve
in the FEM procedure. The magnetic core losses are usually
computed then knowing the space and time variations of the
magnetic flux density and considering a posteriori approaches
such as the Bertotti [1] or Loss Surface (LS) [2] models.
However, even if the losses estimation may be accurate with
these methods, it excludes hysteresis phenomena from the
magnetic field computation.

Scalar hysteresis models such as the classic implementations
of the Jiles-Atherton (JA)[3] and Preisach [4] models can only
describe the behaviour of soft magnetic materials subjected to
unidirectional fields. To account for rotating fields, such as the
ones occurring in electromechanical devices, an extension of
the scalar model to a vector model is needed. For instance,
Bergqvist [5] and Mayergoyz [6] have proposed vector gen-
eralizations of the scalar JA and Preisach models. One of the
main difficulties in these generalizations lies in the conversion
of the standard b(h) models into an inverse h(b) hysteresis
operator that is more adapted to FEM formulations stated in
terms of the magnetic vector potential. This point has been
discussed for both models in [8] and [7]. In the past, several
authors have addressed the problem of incorporating hysteresis
models into FEM formulations using JA [9] or Preisach [10]
model.

The LS model has been developed for a long time at the
G2Elab and has been proven in loss prediction in electrical ma-
chines by using it in a post processing mode in FE Simulation.
Recently it has been greatly improved in terms of accuracy and
robustness. It has also been extended over saturation and high
frequency [11] and [12] . Moreover, the scalar LS model is by
definition a h(b) model and are consequently a good candidate
for vectorization and implementation in 2D FEM analysis. So,
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the objective is to implement the LS static and dynamic model
into FEM simulation for non-oriented materials considering at
a first step an isotropic and static vectorial behavior.

The vector extension of the LS model proposed in this paper
uses the well-known Mayergoyz vector extension method [6].
The suitable procedure to implement this new model in 2D
finite element analysis is presented. An application to 2D
transient magnetic hysteresis problem resolution is described
and results are discussed.

II. STATIC LOSS SURFACE SCALAR MODEL

In this work, only the static LS model is considered. In this
context, the static magnetic field intensity hstat is expressed as
the sum of the reversible and irreversible contributions hanhys

and hcomp

hstat = hanhys + hcomp (1)

hanhys represents the anhysteretic field, which is assumed
to be history independent. This component corresponds to
the median curve of a quasi-static hysteresis loop of the
saturated material. The history dependency is considered
through hcomp, which represents the magnetic field intensity
component caused by both the bending and displacement of
the domain walls.

Fig. 1: Key quantities of the static LS model [11]
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For any hysteresis loop, hcomp is defined as the difference
between hstat and hanhys. The main purpose of the model is
to estimate the value of hcomp in a simple way. To achieve this
objective, three quantities henv

comp, ∆h and ∆henv
1stmag must be

defined. The first one corresponds to the equivalent of hcomp

for a major hysteresis loop. The second one is the difference
between the static field of any hysteresis loop and the major
envelope. The third one is the difference between h1stmag(b)
and hanhys. We define the first magnetization curve by the
coordinates of reversal points of centred minor hysteresis
loops. Equation (2) summarizes the relationships between all
these quantities, which are further geometrically illustrated in
Fig. 1.

henv
comp = hmajor

stat − hanhys

∆h = hcomp − henv
comp

∆henv
1stmag = h1stmag − hanhys

(2)

As can be seen in Fig. 1, ∆h(b) decreases monotonically
from the initial value ∆hrev to its minimum value ∆hrevp

when b varies from the reversal point brev to the previous
reversal point brevp. Moreover, we express the same quantities
δh and δb in a relative scale as follows

δh =
∆h−∆hrevp

∆hrev −∆hrevp
and δb =

b− brevp
brev − brevp

(3)

The decreasing behavior of δh is also ensured in the case of
minor loop. In this way, all the reversal curves of a hysteresis
loop have the same kind of variations even if these curves
have different value of brev and brevp. Thus, we can compute
hcomp by using a unique function f which describes δh now
called the unit differential reversal curve (uDRC) as described
in [11].

hcomp = (∆hrev −∆hrevp) δh+ henv
comp

where δh = f(∆brev, δb)
(4)

Fig. 2: uDRC principal [11]

The values of the coefficients used in the analytical func-
tions f and henv

comp may be obtained through the measurement
of the major hysteresis loop and few centered hysteresis
cycles through data-fitting. The detailed procedure employed
to determine them is described in [11].

III. ISOTROPIC VECTOR MODEL

Scalar hysteresis models are not suitable for describing
the behaviour of a material subjected to rotating fields. Con-
sequently, a vector extension of the LS model based on
Mayergoyz’s method is here proposed. The main idea of
this method is to combine the contribution of scalar models

continuously distributed in space. Vector b is projected on all
directions and can be expressed in two dimensions as in (5),
where eϕ is a unit vector along the direction defined by an
angle ϕ

b =

∫ π
2

−π
2

b · eϕdϕ where eϕ = [cosϕ, sinϕ] (5)

Then, each projected value of b on the direction ϕ is taken
to be the input of the scalar model, thus each direction has
its own history. Finally, h is obtain by vectorial sum of each
output of the scalar models.

We choose to only project the irreversible part hcomp, while
hanhys, the reversible part remains co-linear to b. This is
physically consistent because the phase delay between h and
b is due to irreversibly of the magnetization process which is
estimated by hcomp in our model. In addition, hcomp tends to
zero close to saturation, making hstat and b parallel.The 2D,
isotropic, vector LS model may then be stated as follows:

hstat = hanhys(∥b∥)
b

∥b∥
+

∫ π
2

−π
2

eϕ · hcomp(b · eϕ)dϕ (6)

In Fig.3.a), we plotted the magnetic loss evolution vs b
amplitude under uniaxial and circular induction obtained by
the vector LS model. The curves are compared to mea-
surements and scalar LS model results. The model shows
good results under uniaxial excitation. However, the static
rotational loss remains constant and doesn’t tend to zero at
saturation as it has been observed experimentally [13]. Fig
3.b) shows the phase delay between hstat and b obtained with
rotating excitation at 10 Hz. It seems to be consistent with
the measurement obtained by Matsuo [14]. The phase delay
decreases significantly close to saturation but never reaches
zero. As a result, non-zero rotating losses. This could be
because some projection directions are not saturated. This
point must be improved in a future work.
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Fig. 3: a) Iron losses M40050A, at 10 Hz
b) Phase lag between hstat and b for rotating field at 10 Hz

A Gauss-Legendre quadrature procedure is adopted to nu-
merically evaluate the integral in equation (6). The number
and the orientation of the unit vector eϕ as well as wi the
weights assigned to direction i are fixed by the degree of the
quadrature. For a suitable precision we consider 21 directions.
The 2D, isotropic vector LS model may then be stated as
follows

hstat = hanhys(∥b∥)
b

∥b∥
+

2

π

N∑
i=1

ωieϕ,i ·hcomp(b ·eϕ,i) (7)
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IV. FEM IMPLEMENTATION

The developed model has been used for solving magnetic
transient nonlinear problems neglecting eddy currents. This
section outlines the FEM implementation procedure based on
the 2D magnetic vector potential formulation a on a domain
Ω in the plane xOy

b = curla (8)

The weak formulation is obtained by multiplying the Am-
pere law equation curlh = j by a test function W and
integrating over the domain Ω. Where h is the magnetic
field and j the current density. W is chosen equal to the
nodal shape function and expanded in terms of vector shape
functions Wi = (0, 0, wi)

t. We obtain∫
Ω

curlW · hdΩ =

∫
Ω

W · jdΩ (9)

The Newton-Raphson (NR) method is applied to solve the
non-linear system at each time step. This method requires to
evaluate the Jacobian matrix Jac associated to (9) which can
be expressed as follows

Jac =

∫
Ω

curlWi ·
[
∂h

∂b

]
· curlWjdΩ (10)

Equation (10) shows the differential reluctivity tensor
[
∂h
∂b

]
It’s is well known that the good convergence of the NR method
is closely linked to the estimation of this tensor. Thus, we
proposed a method to provide an accurate approximation of
this term.

As described in II, all the constitutive quantities of the Loss
Surface model are expressed with analytical functions. So, an
exact computation of the scalar incremental permeability is
possible as presented in (11)

∂h

∂b
=

∂hanhys

∂b
+

∂hcomp

∂b
(11)

Then the derivative terms are applied to the projection system
to obtain the differential reluctivity tensor as follows in (12)

[
∂hanhys

∂b

]
=

∂hanhys(∥b∥)
∂b

·
b ⊗ b

∥b∥2[
∂hcomp

∂b

]
=

N∑
i=1

ωi
∂hcomp(b · eϕ,i)

∂b
· eϕ,i ⊗ eϕ,i

(12)

The transient problem is solved using a backward Euler
scheme, where the nonlinear iterations are initialized using
the solution from the previous time step.

V. VALIDATION AND RESULTS

To validate the vector extension of the LS model and its
implementation in a FEM code, the numerical procedure was
applied to the TEAM problem 32 shown in Fig 4 which is a
test problem dedicated to vector hysteresis simulation [10].
The three-limbed transformer with a ferromagnetic core is
made from a stack of five 0.48 mm thick non-grain oriented
steel laminations. Two windings of 90 turns are placed on the

Fig. 4: Geometry of the TEAM problem 32 and position of sensor 1 and 2

external limbs and can be both connected together or supplied
by two independant controlled voltage sources. Since our code
does not incorporate external circuit connection, we imposed
the experimental current waveforms provided by Bottauscio et
al [15] assuming the current density is uniform in the coils.

For comparison, the same device was modeled in Al-
tair FluxTM with its transient magnetic FEM application. In
FluxTM, the same mesh was employed and the hysteretic
behaviour of the core was described by its built-in vector
Preisach model [10]. For the FE problem, the geometry is
meshed with 3000 first order triangular elements. Two periods
with 200 time steps per period have been simulated.
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Fig. 5: Case 1: a) Computed and measured flux densities at sensor P1
b) Hysteresis cycles

In the test cases 1 and 2, the windings are connected in
series and thus fed with the same sinusoidal current at 10 Hz.
In case 2, a distorted signal with a 5th harmonics in phase
with the fundamental is tested. The uniaxial flux densities
generated in the central limb by both models are compared
with the experimental results in Fig. 5.a) and 6.a). The
simulations results agree well in case 1, but both models
tend to overestimate the decrease due to the harmonics in
case 2 as shown in Fig. 6.a). In Fig. 5.b) and 6.b) the
hysteresis cycles obtained for both cases are plotted. In case 1,
there is agreement between the proposed model and Preisach
model. However, the LS vector model allows for a better
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representation of minor cycles generated by the fifth harmonics
as it can be seen in Fig 6.b).
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Fig. 6: Case 2: a) Computed and measured flux densities at sensor P1
b) Hysteresis cycles

In the test case 3, the left and right 90 turns windings are
fed by two 10 Hz sinusoidal currents, out of phase by 90°
producing rotating field at the T-joint of the transformer. For
this case, we perform two identifications for each model using
the material data provided in [15]: the first one in the rolling
direction (RD) and the second one in the transverse direction
(TD).

The results for sensor P2 set at the T-joint are compared
with the experimental data in Fig. 7.a) and 7.b). A good
concordance between the proposed vector extension of the
LS model and the Preisach model is observed for both
identification with a short better fitting of the LS results with
experiment. As specified in Fig. 4, RD (y axis) and TD (x
axis) are clearly separated in the transformer. To evaluate the
impact of our isotropic approximation we compare the results
obtained for each identification. For the RD identification,
models overestimate the induction near the RD axis and fit
well along TD axis. This can be explained by the fact that for
the same imposed exciting current, the models provide higher
flux densities in horizontal limbs than in real device, TD being
harder magnetization direction than RD. In the same way for
the TD identification, models tend to underestimate induction
close to the x axis.

For these three test cases, the NR method needs in average
less than 10 iterations to converge. This point could be
improved by the introduction of a optimized relaxation factor.

VI. CONCLUSION

In this work, a first implementation of the vector extension
of the Loss Surface hysteresis model in 2D finite element
analysis is presented and detailed. The Mayergoyz’s method
has been employed to generalize the scalar model. The pro-
posed model shows good agreement on both uniaxial and
rotating excitation compared to the classical Preisach and
to measurements. It provides an accurate estimation of the
differential reluctivity tensor allowing a good convergence of
Newton-Raphson method. An improvement of the numerical
performances could be considered by using a method to find
an optimal relaxation factor. As mentioned at the beginning,
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Fig. 7: Case 3: a) Computed and measured b-loci at sensor P2 RD
b) Computed and measured b-loci at sensor P2 TD

the next step is the generalization of the global LS model
including dynamic contribution.
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