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Abstract— Color Doppler echocardiography enables vi-
sualization of blood flow within the heart. However, the
limited frame rate impedes the quantitative assessment of
blood velocity throughout the cardiac cycle, thereby com-
promising a comprehensive analysis of ventricular filling.
Concurrently, deep learning is demonstrating promising
outcomes in post-processing of echocardiographic data
for various applications. This work explores the use of
deep learning models for intracardiac Doppler velocity
estimation from a reduced number of filtered I/Q signals.
We used a supervised learning approach by simulating
patient-based cardiac color Doppler acquisitions and pro-
posed data augmentation strategies to enlarge the training
dataset. We implemented architectures based on con-
volutional neural networks. In particular, we focused on
comparing the U-Net model and the recent ConvNeXt models, alongside assessing real-valued versus complex-
valued representations. We found that both models outperformed the state-of-the-art autocorrelator method,
effectively mitigating aliasing and noise. We did not observe significant differences between the use of real
and complex data. Finally, we validated the models on in vitro and in vivo experiments. All models produced
quantitatively comparable results to the baseline and were more robust to noise. ConvNeXt emerged as the
sole model to achieve high-quality results on in vivo aliased samples. These results demonstrate the interest of
supervised deep learning methods for Doppler velocity estimation from a reduced number of acquisitions.

Index Terms— Color Doppler, Aliasing mitigation, Echocardiography, Deep learning, ConvNeXt, Ultrasound
simulations

I. INTRODUCTION

COLOR Doppler echocardiography facilitates the concur-
rent visualization of cardiac tissue and intracardiac blood

movement. In clinical settings, this imaging modality may
serve as a visual aid to diagnose some cardiac pathologies.
However, the frame rate currently available is insufficient to
quantitatively assess blood velocities during a cardiac cycle.
Increasing the temporal resolution of color Doppler could
potentially open up new possibilities for diagnosing diastolic
impairment through the use of quantitative analysis tools [1].

To generate a color Doppler image, backscattered echoes
are acquired in the axial direction (fast-time) at n consecutive
instants (slow-time). The radio frequency (RF) signals undergo
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I/Q demodulation, followed by clutter filtering and beamform-
ing. The number n of slow-time acquisitions is referred to as
the packet size. They enable the estimation of the phase shifts
along the slow-time axis, from which Doppler velocities are
subsequently derived. Phase shifts are usually estimated in two
steps [2]. First, a clutter filter is applied to the I/Q signals
to eliminate signals corresponding to tissues and slow-moving
artifacts. Then, spatially weighted average autocorrelations are
computed to estimate the local phase shifts [3]. In practice, the
packet size typically ranges around n = 8. The reliability of
the autocorrelation-based estimates significantly relies on the
packet size; its reduction compromises robustness to noise and
other artifacts.

In addition to noise, color Doppler can suffer from aliasing,
which occurs when velocities exceed the Nyquist limit set by
the pulse repetition frequency (PRF). While limited research
has been dedicated to dealiasing in echocardiography, it is
an essential step in extracting reliable quantitative information
from color Doppler. In the context of ultrafast imaging, Posada
et al. [4] proposed the use of staggered multi-PRF emissions to
provide alias-free Doppler velocities. Deliasing has also been
addressed as a post-processing problem. Muth et al. [5] devel-
oped the DeAN algorithm for denoising and dealiasing color
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Doppler velocity maps. Their method involves unsupervised
segmentation of aliased regions and subsequent dealiasing
through comparison with neighboring regions. However, the
method is prone to failure in cases of deteriorated signal
quality.

In recent years, deep learning has led to significant advance-
ments in medical imaging by replacing traditional model-based
methods with learning-based approaches. In particular, convo-
lutional neural networks (CNNs) have emerged as pivotal tools
in ultrasound imaging, either by introducing entirely learning-
based models or by enhancing the performance of existing
model-based solutions with a deep learning step [6].

Few works have addressed Doppler velocity estimation with
deep learning. For cardiac tissue Doppler estimation, van
Sloun et al. [7] used an encoder-decoder on the I/Q signals to
replace the classical autocorrelator method. Utilizing in vivo
I/Q data from a porcine model, they derived Doppler estimates
that achieved the quality of the autocorrelator method with
reduced noise levels. In cardiac color Doppler, Apostolakis et.
al. [8] introduced a serial U-Net designed to estimate Doppler
velocities from wall-filtered RF signals with reduced (n = 4)
or undersampled packet sizes. They used a training dataset
of flow phantom acquisitions whose reference velocities were
given by an autocorrelator with a packet size of n = 14. Lei et
al. [9] proposed a complex-valued CNN dedicated to carotid
blood flow velocity estimation from RF signals, which simul-
taneously addressed clutter removal and velocity estimation,
demonstrating promising results on simulated carotid data and
in vivo experiments. Regarding clutter filtering, Solomon et al.
[10] proposed a deep unfolding algorithm for super-resolution
ultrasound applications. They formulated the problem as an
iterative Robust Principal Component Analysis (RPCA) and
solved it using a deep learning algorithm. In the same context,
Brown et al. [11] performed clutter filtering on both in vitro
and in vivo data using a spatio-temporal 3D CNN.

Regarding dealiasing, in 2020 Nahas et al. [12] trained
a U-Net to identify and segment aliased regions in femoral
bifurcation color Doppler images using Doppler frequency,
power and bandwidth information. Recently, they proposed
an accelerated dealiasing technique for high-frame-rate vec-
tor Doppler imaging in femoral imaging [13]. Alternatively,
Ling et al. [14] compared a deep unfolding method with a
data-driven deep learning approach for dealing with aliasing
in cardiac color Doppler images. The data-driven approach
demonstrated superior results, with both methods outperform-
ing the DeAN method mentioned above. All these dealiasing
works can be considered as post-processing methods applied
to Doppler velocity maps.

In this study, we propose a deep learning approach as an al-
ternative to the current autocorrelator technique in the context
of focused cardiac color Doppler acquisitions. Our goal was
to obtain accurate Doppler velocities from clutter-filtered I/Q
signals with a reduced packet size of n = 2. We contended
that convolutional neural networks can identify spatial and
channel-wise connections that the autocorrelator overlooks,
potentially compensating for the packet size reduction. Our
main contributions are as follows:

1) We generated a training dataset for supervised learning

by simulating color Doppler echocardiography with a
dedicated pipeline. It included customized data augmen-
tation techniques to increase the dataset size.

2) We implemented state-of-the-art deep learning architec-
tures for Doppler velocity estimation from I/Q signals
with a reduced packet size. We explored the performance
of U-Net and ConvNeXt architectures, and the impact
of using real-valued versus complex-valued representa-
tions.

3) We validated the proposed deep learning models using
both in vitro and in vivo sequences. These experiments
showed that the deep learning models achieved com-
parable results to the autocorrelator while exhibiting
robustness to noise and inherent reduction of aliasing.

II. METHODS

A. Doppler velocity estimation in color Doppler

In ultrasound imaging, the received RF signals undergo I/Q-
demodulation and beamforming. In the context of Doppler
imaging, these resulting complex-valued signals can be orga-
nized in arrays of shape h×w×n, where h and w represent the
fast-time and lateral dimensions, respectively, and n denotes
the slow-time dimension referred to as the packet size. These
processed signals are filtered to remove clutter and retrieve
blood-related signals. Blood Doppler velocities are then esti-
mated by calculating the phase shifts of the filtered signals
in the slow-time direction, i.e. along the third dimension of
the array. These phase shifts can be derived by evaluating the
argument of the lag-one autocorrelator (R1) applied to the
I/Q signals. We adopted the 2-D autocorrelator introduced by
Loupas et al. [3] as the baseline method. We smoothed R1

spatially with a Hamming kernel of size 10×4 pixels to obtain
a smoothed autocorrelation Rs

1. Finally, the Doppler velocities
were computed by converting the arguments to velocities as
follows:

vD =
vN
π

arg(Rs
1),

where vN stands for the Nyquist velocity. The reliability of this
technique depends on the packet size number, and decreasing
it can degrade the estimation quality, especially when dealing
with noisy acquisitions.

B. Color Doppler simulations

Training supervised deep learning models requires large
annotated datasets. In the context of color Doppler, high-
quality in vivo ground truth is not available. Therefore, it is
necessary to rely on simulations to build a supervised training
dataset. In this study, we adapted the patient-based color
Doppler simulator developed by Sun et al. [15]. A schematic
representation of the inputs and outputs of the simulation
pipeline is illustrated in Figure 1. Given the patient’s B-
mode and Doppler information along a cardiac sequence, the
simulation pipeline consisted of three main steps.
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Highlights

• We explored the use of deep learning for generating color Doppler images from clutter-filtered echocardiographic I/Q signals.
• We proposed a deep learning model that estimates phase shift from I/Q signals and mitigates aliasing from a reduced packet size.

The model was trained solely on in silico data and validated on both in vitro and in vivo sequences.
• It was found that deep learning models can inherently reduce aliasing and are robust to noise induced by a reduced packet size.

Patient B-mode

Patient Doppler

Simulated color Doppler
acquisition (I/Q signals)

Tissue and blood
movement modeling

+

Doppler velocity reference

Fig. 1. Inputs and outputs of the color Doppler simulation pipeline.

1) Modeling cardiac tissue motion: For each patient’s B-
mode image, the inner and outer walls of the left ven-
tricular myocardium were segmented using a deep learning
method [16]. A myocardial mesh was generated from the seg-
mentation masks. Tissue scatterers were randomly distributed
in the end-systole frame. Their positions were then propagated
frame by frame based on the motion of the myocardial mesh.
For additional information, refer to [15].

2) Modeling blood flow motion: Patient Doppler velocity
frames were treated as independent due to the low frame
rate of color Doppler. For each color Doppler frame, a 2-D
intraventricular vector flow map was computed from the pa-
tient’s Doppler velocities using a physics-based method [17].
For each frame, blood scatterers were distributed in the in-
traventricular region. Series of [number of firings × n] time
steps were defined, during which the blood scatterers were
displaced according to the 2-D velocity maps. To enhance
realism, fluctuation values were computed from velocity maps
and added to velocity values. This process was repeated for all
frames of the sequence. From the resulting vector outputs, we
used the radial components to build the ground truth Doppler
velocity maps D ∈ Rh×w in our training dataset.

3) Simulation of an ultrasound acquisition: From the tissue
and blood scatterer position maps defined at each time step,
scanline-based ultrasound acquisitions were simulated using
SIMUS [18], [19] of the Matlab UltraSound Toolbox (MUST)
[20]. The RF signals were post-processed conventionally with
I/Q-demodulation and delay-and-sum beamforming on a h×w
grid. The resulting I/Q signals S ∈ Ch×w×n were the inputs
in our training dataset.

C. Doppler velocity estimation with deep learning

We explored the use of convolutional neural networks,
arguing that the spatial nature of convolutions could com-
pensate for the loss of temporal information and produce
better estimates. We focused on two architectures: U-Net and
ConvNeXt.

1) U-Net: The U-Net architecture, introduced in 2015 for
medical image segmentation, comprises an encoder-decoder
structure with skip connections [21]. Given that our input
S was complex-valued and the output D was real-valued,
we examined two architectures: one entirely real-valued and
another that was complex-valued in all layers except the last
one.

• Real U-Net. The input of the network was in the form
S ∈ Rh×w×2n, where the real and imaginary parts of the
I/Q signals were concatenated to obtain real representa-
tions. We began with the standard U-Net architecture as
described in [21] and made two modifications. Firstly, to
ensure a lightweight network, we retained two dimension
reduction steps, thereby reducing the network to only 6
layers. Secondly, the kernels of the two convolutions at
each U-Net stage were of sizes 5 × 5 and 3 × 3. The
number of feature maps was (32, 64, 128) for the encoder
part and symmetrically for the decoder part. With this
configuration, the network had 1.5 million parameters,
and the lowest dimension achieved was 45 × 10.

• Complex U-Net. The input of the network was in the form
S ∈ Ch×w×n. The network features mirrored those of the
Real U-Net, with the following distinctions. We employed
complex-valued convolutions using the PyTorch frame-
work. In particular, the network weights were complex-
valued in all layers except the last one, where the real
and imaginary parts of the feature map were concatenated
before applying the real-valued weights. For the complex-
valued activation function, we used the Complex ReLU,
as advised by Trabelsi et al. [22]. Finally, we used the
2-D complex batch normalization available in [23], imple-
mented following the recommendations of [22] in order to
obtain equal variance in both the real and imaginary parts.
The network contained the same number of parameters as
the Real U-Net (1.5 M), but the convolutional operations
were four times more computationally intensive.

2) ConvNeXt: We then considered ConvNeXt [24], a recent
convolutional neural network architecture. Since 2020, hier-
archical vision Transformer architectures have demonstrated
superior performance over convolutional models in various
computer vision tasks. However, Transformers models suffer
from being data-intensive. As a solution, ConvNeXt was
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introduced in 2022. It is a convolutional-based model that
integrates strategies from Transformer models, resulting in
an architecture that outperforms state-of-the-art Transformers
while remaining data efficient. One of its key features is the
separate handling of spatial and channel information, akin to
the self-attention mechanism in Transformers. This property
is achieved through the use of depthwise convolutions. We
adapted the ConvNeXt architecture to our problem by uti-
lizing a U-Net architecture with ConvNeXt as its backbone
(i.e., ConvNeXt layers served as feature extractors in the
encoder part). A schematic representation of the considered
architecture is depicted in Figure 2. With this configuration,
the network comprised 4.7 million parameters, and the lowest
dimension attained was 11 × 5.

D. Data augmentation
In computer vision, a common technique for data augmen-

tation involves applying simple transformations to available
images to increase the size and variability of the training set,
resulting in a more robust model. However, for ultrasound data,
the options for realistic data augmentation are limited due to
the specific geometry of the acquisition process. Additionally,
some augmentation techniques require interpolation, which
may significantly alter the signal information. Therefore, we
only used vertical flipping and a custom zooming procedure.

1) Zoomed samples: Zooming was achieved by simulating
color Doppler with 1.5w focused firings and then beamforming
on a finer grid of 1.5h points. The resulting simulated samples
were included in the dataset with a probability of 0.2 and
randomly cropped to a h× w shape.

2) Aliased samples: Aliasing patterns appear in Doppler
velocity maps when the maximum speed exceeds the Nyquist
velocity. In such cases, phase unwrapping methods can be
applied to the Doppler velocity maps as a post-processing
step, as described in the introduction. In contrast to these
post-processing approaches, we aimed to make the Doppler
estimation inherently robust to aliasing. This was achieved by
providing the deep learning models with new training pairs
(S,D), where S represents the I/Q aliased signal and D
denotes the corresponding alias-free Doppler ground truth. The
aliased samples were obtained during simulations by randomly
reducing the original PRF values of each sequence by a factor
in the [0.4, 0.6] range. Each simulated aliased sample was
considered as an augmented sample and added to the dataset
with a probability of 0.5.

III. EXPERIMENTS

A. Data acquisition
1) In silico experiment: Our simulations, described in Sec-

tion II-B, aimed to neglect the influence of clutter through
the exclusive modeling of tissue-free scenarios. As input,
we used patient color Doppler echocardiographic data ac-
quired in a previous study [25]. Examinations adhered stan-
dard echocardiographic procedures, resulting in a diverse
patient population encompassing individuals with and without
cardiac disease. Due to randomization and anonymization,
demographic and clinical details were unknown during the

TABLE I
PARAMETERS OF THE SIMULATED ULTRASOUND ACQUISITION

Parameter Value
simulated probe Verasonics P4-2v
central frequency (fc) 2.7× 106 Hz
pitch 300× 10−6 m
#elements 64
bandwidth 74%
#cycles B-mode 1
#cycles Doppler 6
PRF patient-based
sector width patient-based
depth patient-based
sampling frequency 4fc
acquisition type focused waves
#firings B-mode 120
#firings Doppler 40
packet size (n) 8

present work. The sequences, captured from the apical three-
chamber view, incorporated both B-mode and Doppler velocity
information. We obtained cardiac sequences of 37 patients,
each containing at least one complete cardiac cycle (total:
2,576 samples). From these patient echocardiographic data,
we simulated 2,576 training pairs. The probe and acquisition
parameters are summarized in Table I. During the simulations,
we leveraged patient-specific parameters as pulse repetition
frequency (PRF), sector angle, and depth. The simulated RF
signals were demodulated into I/Q signals and beamformed
into a 180 × 40 grid using delay-and-sum. Each training
pair (S,D) consisted of I/Q signals S ∈ C180×40×n and
Doppler velocity references D ∈ R180×40. Figure 3A shows
a simulated sample.

Data augmentation, as described in Section II-D.1, was
applied. Samples with reduced packet size were created
by selecting two consecutive frames in the slow-time. The
augmented dataset of color Doppler simulations contained
∼ 4, 500 pairs and is referred to as Alias-free-Set from here
on.

Only 24 of the original samples contained aliased regions,
accounting for less than 0.001% of the total dataset pixels. As
a consequence, we used the procedure described in Section II-
D.2. The subset of aliased samples is referred to as Aliased-
Set in the sequel. An example of a sample simulated with
both its original and decreased PRF is depicted in Figure 3.
The Alias-free-Set dataset augmented with the Aliased-Set
contained ∼ 5, 300 pairs, henceforth referred to as Full-Set.

2) In vitro experiment: We designed a rotating disk exper-
iment to measure Doppler velocities from a color Doppler
acquisition. We constructed a 6 cm diameter agar disk and
connected it to a rotating motor. A Verasonics P4-2v cardiac
probe was positioned at 8 cm from the center of the disk. To
minimize clutter and artifacts, we submerged the entire setup
in a water tank. Figure 4A provides a schematic representation
of the experiment.

The acquisition parameters were set as described in Table I,
with the sector width, depth and PRF configured to 50◦, 12 cm
and 6,000 Hz, respectively. The packet size was n = 32. We
ran a total of 12 experiments, varying the maximum outer
speed between 0.1 and 1.13 m/s, mirroring intracardiac blood
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Fig. 4. (A) Schematic representation of the in vitro experiment using
a rotating disk phantom. (B) B-mode obtained during one of the experi-
ments.

velocities. The Nyquist velocity was vN = 0.85 m/s for all
experiments, resulting in four experiments displaying aliased
regions. An example of an acquisition result is depicted in
Figure 4B.

Samples with reduced packet size were created by selecting
two consecutive frames in the slow-time. The ground truth
Doppler velocity maps used to compute the models’ estimation
errors during inference were obtained from the known rotation
speed of the phantom.

3) In vivo experiment: Cardiac echo-Doppler focused acqui-
sitions were conducted on two healthy volunteers. The study
received approval from the ethics and research committee
of Polytechnique Montréal (CER-2122-54-D). In accordance

with the simulation and phantom experiments, the P4-2v
Verasonics probe was used with identical parameters as those
used for the phantom. Data were acquired in the apical three-
chamber view, including both B-mode and Doppler informa-
tion. The packet size was set to n = 16. The ultrasound signals
were post-processed and beamformed on a 180× 40 grid. We
obtained 16 color Doppler image samples from each volunteer.

To be consistent with the clutter-free setting of both in
silico and in vitro experiments, we applied an SVD-based
clutter filter. We discarded the first four largest singular
values to isolate the blood I/Q signals. We segmented the left
ventricular endocardium unsupervisedly using a deep learning-
based method [16] to mask off I/Q signals not pertaining
to intraventricular blood. Samples with low Doppler power
(< −20 dB) in over 70% of the ventricular region were
discarded, resulting in 20 selected samples. None of the
selected samples contained aliased regions. To assess the
method’s robustness, we deliberately introduced aliasing by
considering one out of three frames in the slow-time, thereby
artificially decreasing the PRF by a factor of three. We applied
this procedure to the 20 selected samples, providing seven new
samples with several aliased regions.

Samples with reduced packet size were generated by se-
lecting two consecutive frames in the slow-time. In the in
vivo experiments, ground truth Doppler velocity maps were
not available. Hence, Doppler velocity maps obtained with the
autocorrelator using the maximum packet size (n = 16) were
used as references.

B. Deep learning implementation details
1) Training settings: Because the ultrasound data were sim-

ulated with patient-specific PRFs, the Nyquist velocity varied
from sample to sample. Therefore, we opted to use phase
shifts as the ground truth instead of Doppler velocities to
ensure standardized inputs across samples. Each sample was
normalized with respect to its maximum complex modulus
across the slow-time. For greater robustness, we trained the
network using 9-fold cross-validation, where samples from a
given patient were assigned to the same fold. Once the test
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TABLE II
DOPPLER VELOCITY ESTIMATION RESULTS OF THE BASELINE METHOD

AND THE THREE PROPOSED DEEP LEARNING METHODS, TRAINED AND

EVALUATED ON ALIAS-FREE-SET. THE RESULTS CORRESPOND TO THE

MEAN ± STANDARD DEVIATION OF THE RMSE [M/S × 10−2 ].

Method Alias-free-Set
Autocorrelator 3.7± 2.6

Real U-Net 1.8± 0.9
Complex U-Net 1.8± 0.8

ConvNeXt 1.7± 0.91.7± 0.91.7± 0.9

fold was chosen, the split of samples in training/validation
was set to 9/1. The network weights were initialized with
the Xavier distribution. The loss function was the masked
mean squared error, where the mask corresponded to the left
ventricular cavity. The optimizer was AdamW, and the batch
size was set to 16. The initial value of the learning rate was
set to 10−3 and decreased following a plateau scheduler with
a patience of 10 epochs. Trainings were performed using the
PyTorch library on an NVIDIA V100 GPU with 16 GB of
memory.

2) Inference: Inference on the in silico dataset was executed
using the 9-fold cross-validation procedure, thus obtaining a
prediction for each sample of the dataset. Ensemble inference
was carried out for both the in vitro and in vivo datasets, by
calculating the median value predicted for each pixel by the
nine models of the cross-validation.

C. Metrics
To gauge the accuracy of Doppler velocity estimation, we

calculated the root mean squared error (RMSE) between the
ground truth and predicted maps, and examined its mean and
standard deviation. Note that for the in vivo experiments,
we refer to this metric as the root mean squared difference
(RMSD) as we only had access to an imperfect reference, not
the ground truth.

IV. RESULTS

A. In silico results
The performance of our methods in Doppler velocity esti-

mation, when trained on Alias-free-Set and using a packet size
n = 2, is presented in Table II. For all methods, the metrics
were computed exclusively within the left ventricle.

All deep learning approaches outperformed the autocorre-
lator. Real U-Net and Complex U-Net provided comparable
results, with ConvNeXt slightly outperforming both. In addi-
tion, the variability of the three models was significantly lower
than that of the autocorrelator.

We examined the samples with higher errors for both the
autocorrelator and the deep learning models. For the former,
large estimation errors mainly occurred in two situations: noisy
signals and in the presence of aliasing. For the deep learning
models, large errors were observed in two specific settings:
in a few pixels near the valves and the presence of aliasing
across a large region of the ventricle. To mitigate the effects
of aliasing, we trained our models on the Full-Set dataset. The
results of the estimation are presented in Table III.

TABLE III
DOPPLER VELOCITY ESTIMATION RESULTS OF THE BASELINE METHOD

AND THE THREE PROPOSED DEEP LEARNING METHODS TRAINED ON

FULL-SET AND EVALUATED ON ALIAS-FREE-SET AND ALIASED-SET.
THE RESULTS REPRESENT THE MEAN ± STANDARD DEVIATION OF THE

RMSE [M/S × 10−2 ].

Method Alias-free-Set Aliased-Set
Autocorrelator 3.7± 2.6 16± 9.8

Real U-Net 1.9± 0.8 2.5± 1.4
Complex U-Net 1.8± 0.8 2.4± 1.6

ConvNeXt 1.7± 0.71.7± 0.71.7± 0.7 2.3± 1.52.3± 1.52.3± 1.5

We noted that when testing on Alias-free-Set, we maintained
a consistent performance compared to the models trained on
Alias-free-Set. Moreover, when testing on Aliased-Set, we
observed a substantial reduction in error compared to the
autocorrelator method, indicating that the models are capable
to alleviate aliasing to some extent.

Illustrative examples are shown in Figure 5. We only re-
port predictions obtained with ConvNeXt (the best-performing
model) for the sake of brevity. As explained above, ConvNeXt
trained in both ways achieved accurate estimates in the absence
of aliasing (samples A and B). In such cases, we observed
that the autocorrelator was more susceptible to noise. When
encoutering small aliased regions (sample C, left region), the
model trained with Alias-free-Set effectively removed aliasing.
However, when aliasing extended over a large region, it
either smoothed the region, leading to velocity underestimation
(sample C, right part, and sample D), or produced a pattern
similar to that of the autocorrelator, albeit smoothed at the
edges (sample E). In contrast, ConvNeXt trained on Full-Set
yielded results closely aligned with the ground truth.

B. In vitro validation

Figure 6 shows the RMSE obtained with the baseline and
deep learning-based methods for all 12 in vitro experiments,
using the same packet size n = 2. The RMSE is depicted
as a function of the phantom outermost speeds. The Nyquist
velocity vN was kept unchanged across all experiments. We
observed that our methods gave state-of-the-art results for
v < vN and showed improved performance when v > vN .
Real U-Net and Complex U-Net gave comparable results,
while ConvNeXt slightly underperformed them in terms of
aliasing reduction for high rotation speeds.

Estimation maps for two of the experiments are presented
in Figure 7. In the first experiment, where the maximum
velocity was below the Nyquist limit, we observed estimations
closely aligned with the ground truth for all our networks.
Moreover, our estimates were less noisy compared to those of
the autocorrelator. In the second experiment, where the max-
imum velocity exceeded the Nyquist limit, the autocorrelator
estimation clearly revealed the aliased regions. In contrast, our
methods significantly reduced the aliased patterns. However,
ConvNeXt displayed noisy artifacts in the aliased regions.
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Fig. 5. Doppler velocity estimations for five in silico samples. B-mode and color Doppler images were simulated from the data of five different
patients. Samples A and B had velocities below the Nyquist limit. Samples C, D and E had velocities above the Nyquist limit. Aliased regions are
indicated with white arrows.

C. In vivo validation

Estimation results on the in vivo sequences are reported in
Table IV. We summarized results on 20 standard volunteer
samples, and on 7 aliased samples, and the reference used
for all RMSD calculations was the autocorrelation result with
n = 16.

For standard samples, the autocorrelator with n = 2
produced the results closest to the reference. All three deep
learning methods led to comparable results, albeit slightly
further away from the reference. Figure 8 shows illustrative

examples for Complex U-Net and ConvNeXt. In sample A,
our methods estimated a Doppler velocity map comparable
to the autocorrelator estimation with n = 2. In this case,
all three estimates computed with n = 2 produced smaller
velocity estimates than those provided by the autocorrelator
with n = 16. In sample B, the three methods also yielded
lower velocity estimates, but the two deep learning methods
behaved as denoisers, unlike the autocorrelator with n = 2.
The denoising capability of our methods is evident in sample
C.



8 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. XX, NO. XX, XXXX 2024

0 0.2 0.4 0.6 0.8 1 1.2
v [m/s]

0

0.1

0.2

0.3

0.4
R

M
S

E
 [m

/s
]

N
yq

ui
st

 li
m

it

Autocorrelator
Real U-Net
Complex U-Net
ConvNeXt
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Fig. 7. Doppler velocity estimation results for two in vitro experiments.
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For aliased samples, as anticipated, the autocorrelator exhib-
ited a substantial deviation from the reference due to aliasing,
as reported in Table IV. Among the deep learning methods,
ConvNeXt gave results significantly closer to the reference
compared to Real U-Net and Complex U-Net. Sample D exem-
plifies a scenario with induced aliasing, where both Complex
U-Net and ConvNeXt successfully reduced aliasing. However,
Complex U-Net yielded an incorrect prediction in the lower
right corner. Similarly, sample E illustrates another example
of induced aliasing where ConvNeXt reduced aliasing, while
Complex U-Net yielded relatively large errors in the apical

TABLE IV
DOPPLER VELOCITY ESTIMATION RESULTS OF THE BASELINE METHOD

AND THE THREE PROPOSED DEEP LEARNING METHODS, EVALUATED ON

STANDARD VOLUNTEER AND ALIASED VOLUNTEER SAMPLES. THE

RESULTS REPRESENT THE MEAN ± STANDARD DEVIATION OF THE

RMSD [M/S × 10−2 ].

Method Standard samples Aliased samples
Autocorrelator 5.8± 6.05.8± 6.05.8± 6.0 11± 2.1

Real U-Net 6.4± 6.3 8.1± 2.0
Complex U-Net 6.6± 6.3 8.1± 1.3

ConvNeXt 6.5± 5.9 4.0± 2.34.0± 2.34.0± 2.3

TABLE V
COMPARISON OF THE COMPLEXITY OF THE AUTOCORRELATOR AND

THE THREE DEEP LEARNING MODELS. THE TRAINING TIMES ARE

REPORTED FOR THE TRAINING OF ONE FOLD, ASSUMING THAT ALL

FOLDS CAN BE TRAINED IN PARALLEL. THE INFERENCE TIMES ARE

REPORTED FOR THE INFERENCE OF IN VIVO FRAMES. TRAINING AND

INFERENCE WERE BOTH CONDUCTED ON GPU FOR DEEP LEARNING

MODELS AND ON CPU FOR THE AUTOCORRELATOR.

Model # Parameters Training time Inference time
Autocorrelator x x ∼ 1.6 ms

Real U-Net 1.5 M ∼ 0.5 h ∼ 2.5 ms
Complex U-Net 1.5 M ∼ 5 h ∼ 18 ms

ConvNeXt 4.7 M ∼ 1 h ∼ 5.3 ms

region.

D. Computational time

Table V reports the sizes of the models and their training and
inference times. With the same parameter configuration, Com-
plex U-Net required significantly more training and inference
time than Real U-Net. In contrast, ConvNeXt offered the most
advantageous trade-off between the number of parameters
and the training and inference times. The inference times of
the three models were sufficiently low to support real-time
imaging.

V. DISCUSSION

A. Doppler velocity estimation with deep learning

We achieved reliable Doppler velocity estimates from a
reduced packet size n = 2 with all proposed deep learning
models. This held true for alias-free samples across in silico,
in vitro and in vivo data (Table II, Figure 6 and Table IV).
When working with aliased sequences, we noticed that the
models trained on alias-free data (Alias-free-Set) tended to
smooth the aliased regions (sample E of Figure 5), rendering
post-processing dealiasing methods less suitable. Augmenting
the training dataset with aliased simulations notably improved
the model’s ability to mitigate aliasing in both in silico and in
vitro data (sample E of Figure 5 and experiment 2 of Figure 8).
For in vivo data, only ConvNeXt reliably reduced aliasing in
all samples (Table 6 and sample E of Figure 8).

Regarding the autocorrelation method, our analysis revealed
that our deep learning models yielded comparable quantitative
results on in vitro and in vivo validations (Figure 6 and
Table IV). We also observed that this method remained stable
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Fig. 8. Doppler velocity estimation results on five in vivo samples using the autocorrelator with packet sizes 16 and 2, the Complex U-Net and the
ConvNeXt. Samples A, B and D are from volunteer #1. Samples C and E are from volunteer #2. Samples D and E induced aliasing.

when the packet size was reduced to n = 2, albeit producing
some level of noise on the velocity maps (samples A and C in
Figure 8). However, in some cases, the estimation displayed a
noticeable level of noise (sample B in Figure 8). In contrast,
our method appeared to be more robust to noise (as evident
in sample B in Figure 8).

A critical concern with deep learning methods is their
capacity to generalize. Models frequently fail to extrapolate
when the distribution shift between training and validation
datasets is too large. This issue is particularly pronounced
in medical imaging, where distribution shifts can arise from

various factors, such as differences in data acquisition or
preprocessing, and training with unrealistic simulations. In
our study, we obtained encouraging results regarding the
generalization capability of our models, despite being trained
exclusively on in silico samples. Notably, our models demon-
strated high-quality results on unseen in vitro and in vivo data.
We only observed large errors in a limited number of cases
(as exemplified by sample E in Figure 8). This highlights
the effectiveness of our simulation pipeline in generating
color Doppler samples to build supervised training datasets.
Our pipeline enables users to expand the range of clinical
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scenarios, including different echocardiographic views, trans-
mission types (e.g. focused, diverging), and transducer types. It
uses patient-derived Doppler echocardiographic data to model
cardiac tissue and blood backscatterers. Although our focus
was on 3-chamber views, other views could thus be explored.
Additionally, the SIMUS simulator provides the flexibility to
specify various probe and transmission parameters, allowing
for the simulation of ultrasound signals with non-focused
waves. This capability facilitates the generation of a vast pool
of training data, enabling the creation of more generalized
models. It is also worth noting that the favorable results
obtained in non-flow data during the in vitro disk experiments
suggests the potential for directly applying our model to
other modalities involving Doppler velocity estimation, such
as tissue Doppler.

Finally, this work could offer practical advantages for fo-
cused color Doppler echocardiography. For instance, assuming
a typical packet size of around n = 8, reducing the packet
size to n = 2 could result in a fourfold increase in frame
rate, yielding approximately 60 frames/cardiac cycle. Such
an enhancement could ease quantitative assessment of blood
velocity throughout the cardiac cycle, potentially simplifying
the application of techniques like intracardiac Vector Flow
Mapping.

B. Model comparison
Two data representation methods were evaluated: the real-

valued and complex-valued. Additionnally, two types of archi-
tectures were benchmarked: U-Net and ConvNeXt.

1) Real-valued vs. complex-valued representations: We an-
ticipated that Complex U-Net would outperform Real U-Net,
in line with findings from our previous studies [26]. However,
Real U-Net and Complex U-Net yielded comparable results.
One hypothesis is that while the Doppler velocity estimation
problem involves complex-valued inputs, the output data are
real-valued. Therefore, a transition from complex-valued to
real-valued representations may be necessary, and a complex-
valued architecture may not fully leverage its capabilities in
this specific scenario. We also noted that the use of complex-
valued representations significantly increased computational
time during both training and inference due to the higher
number of operations associated with complex-valued convo-
lutions.

2) U-Net vs ConvNeXt: In our study, we analyzed Con-
vNeXt, a state-of-the-art deep learning architecture built on
enhanced convolutional layers mirroring Transformer blocks
for improved performance. We found similar performance
from U-Net and ConvNeXt on in silico and in vitro data.
Although ConvNeXt exhibited imperfect results on highly
aliased in vitro samples, it demonstrated greater robustness
when applied to in vivo aliased samples. Moreover, despite
including more parameters, ConvNeXt provided fast training
and inference times.

C. Limitations and perspectives
Despite the positive findings presented in this paper, we

acknowledge two main limitations of this work. First, the in

vivo results must be regarded as preliminary as they were
based on only two subjects, and the absence of ground truth
made it difficult to draw firm conclusions. Second, we did not
account for clutter influence and assumed that clutter filtering
could be performed effectively on a packet size of two. A
challenging perspective is to develop a clutter filtering method
specifically designed for reduced packet sizes. We believe
that exploring deep learning techniques could be a promising
avenue for addressing this task.

Another perspective is to incorporate temporal information
[16]. At this stage, our simulations were based on patient
data from an echocardiographic laboratory, and thus lacked
sufficient temporal resolution to assume continuity between
consecutive frames. Realistic color flow imaging simulations
based on a numerical heart, such as those employed previously
in our research [15], [27], would provide the necessary frame
rate to leverage temporal information effectively and improve
the robustness of our models.

VI. CONCLUSION

We explored deep learning models for Doppler velocity
estimation from clutter-filtered I/Q signals with a reduced
packet size of n = 2. Using a color Doppler simulation
pipeline, we built a supervised training dataset and applied
custom data augmentation, including artificially adding aliased
samples. Our method exhibited superior performance on in sil-
ico data compared to the autocorrelation method, and achieved
proficient results on in vitro and in vivo data. We demonstrated
the effectiveness of our approach in reducing aliasing and
handling noise. Three deep learning strategies were evaluated,
with ConvNeXt showing the best generalization performance
on in vivo samples. Overall, our study highlights the potential
of deep learning for quantitative color Doppler analysis with
minimal data.
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