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Abstract

Probabilistic inference in high-dimensional con-
tinuous or hybrid domains poses significant
challenges, commonly addressed through dis-
cretization, sampling, or reliance on parametric
assumptions. The drawbacks of these meth-
ods are well-known: inaccuracy, slow computa-
tional speeds or overly constrained models.
This paper introduces a novel general inference
algorithm designed for Bayesian networks fea-
turing both discrete and continuous variables.
The algorithm avoids the discretization of con-
tinuous densities into histograms by employ-
ing quadrature rules to compute continuous
integrals and avoids the use of a parametric
model by using orthogonal polynomials to rep-
resent the posterior density. Additionally, it
preserves the computational efficiency of classi-
cal sum-product algorithms by using an auxil-
iary discrete Bayesian networks appropriately
constructed to make continuous inference.
Numerous experiments are conducted using
either the conditional linear Gaussian model
as a benchmark, or non-Gaussian models for
greater generality. Our algorithm demonstrates
significant improvements both in speed and ac-
curacy when compared with existing methods.

1 INTRODUCTION AND RELATED
WORKS

Bayesian networks (BNs) [Pearl, 1988] are a class of
probabilistic models useful for dealing with complex
systems under uncertainty. Specifically, they exploit
conditional independence between random variables to
compactly encode their joint distribution as a product
of lower-dimensional conditional probability distribu-

tions (CPDs). In addition, these conditional indepen-
dence are represented through a Directed Acyclic Graph
(DAG) giving an interpretability to the model which is
valuable to assist domain experts.

Probabilistic inference, which consist of obtaining the
marginal distribution of a set of unobserved variables
given a set of observed variables, constitute one of the
principal uses of BNs. Indeed, this task is at the very
basis of many applications such as classification or pre-
diction [Friedman et al., 1997]. While it is a NP-hard
problem [Cooper, 1990a], classic algorithms [Koller and
Friedman, 2009] take advantage of the factorisation
of the joint distribution to make these calculations
tractable. They are roughly divided into two categories:
approximated inference algorithms that estimate the
posterior distribution, for instance using sampling meth-
ods, and exact inference methods that compute exactly
the posterior distribution. These algorithms perform ef-
fectively when all variables are discrete, but encounter
difficulties when confronted to continuous variables.
This is because the model used to represent the CPDs
must be closed under product, marginalization and
restriction [Shenoy and Shafer, 2008]. Discrete CPDs
can be described using conditional probability tables
(CPTs), which are closed under these operations, but a
general model for continuous CPDs does not exist.

This paper focuses on exact inference methods for BNs
containing both discrete and continuous variables, com-
monly refered as hybrid BN. While numerous attempts
have been made to address this problem, they all comes
with some sort of shortcomings.

Although discretization of continuous variables may
appear as a simple solution, it comes with several
drawbacks. Since the complexity of discrete inference
algorithms is exponential with respect to the largest
domain size of the variables, this results into a trade-off
between the loss of accuracy and the increase in the
computational cost. Furthermore, for a given number
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of discretization points, their position is determined by
minimizing a distance which can be computationally
costly [Kozlov and Koller, 1997]. In general, numerous
heuristics provide a diverse range of solutions, espe-
cially regarding the number of discretization points.
This implies a certain level of arbitrariness in the selec-
tion of discretization methods, despite their substantial
impact on the final outcome.

Mixtures of truncated basis functions (MoTBFs)
[Langseth et al., 2012] are a set of models that approx-
imate a continuous CPD using a piecewise function.
Each piece corresponds to a function that is closed un-
der the inference operations. This method generalizes
discretization which is equivalent to approximating con-
tinuous CPDs with piecewise constant functions (his-
tograms). However, despite being more expressive than
histograms, the conversion of a CPD into a MoTBF
can be difficult and the number of pieces can grow
exponentially when multiplying CPDs [Shenoy, 2012].

Another common solution is to use a continuous model
satisfying the closure properties such that inference
algorithms can be applied with minor modifications.
The most well-known example of this type is the con-
ditional linear Gaussian (CLG) model [Lauritzen and
Wermuth, 1989] but it has strong limitations, such as
assuming normal distribution and linear relationships
between variables. For a comprehensive overview of the
methods discussed, see Salmeron et al. [2018].

This paper introduces a novel inference algorithm de-
signed for hybrid Bayesian networks. Marginalization
of continuous variables employs Gaussian quadrature
methods, while the representation of the continuous
posterior density utilizes orthogonal polynomials. This
approach allows to avoid the discretization of the con-
tinuous CPDs or the use of a parametric assumptions.
Additionally, inference is efficiently organized through
an auxiliary discrete Bayesian network and classical
sum-product algorithms. Consequently, this algorithm
combines the efficiency of discrete inference methods
with the expressive power of hybrid representation.

The remainder of the paper is organized as follows:
Section 2 reviews classic algorithms to make inference
in discrete Bayesian networks. Section 3 gives the basic
notions about orthogonal polynomials and numerical
integration using quadrature rules. Section 4 describes
the construction of the discrete BN associated with
the inference in the hybrid BN and how to retrieve
the continuous model from the result of the discrete
inference. Section 5 contains a simple example on gener-
ated Gaussian data. Finally, the last section illustrates
the performance of our algorithm on classical Bayesian
network structures, which we have equipped with con-
tinuous distributions.

2 INFERENCE IN BAYESIAN
NETWORKS

Consider a random vector X = (X1, . . . , Xn) whose
components Xi take values xi from domains Ωi. A BN
structure G is a DAG whose nodes X = {X1, . . . , Xn}
represent random variables and arcs represent direct
dependencies between those variables. Let Pai denote
the parents of Xi in G, the joint probability distribution
fX of the random vector X is said to factorize according
to G if it can be written as

fX(x1, . . . , xn) =
n∏

i=1
fXi|Pai

(xi|pai)

where pai denotes a realization of Pai
1. A BN is defined

as a couple (fX, G) where fX factorizes over G and
where each node Xi is associated with the CPD fXi|Pai

.
For a visual representation, see figure (??).

Given a subvector of observed variables XE ⊂ X, tak-
ing a known value e ∈ ΩE , and a subvector of target
variables XT ⊂ X \ XE , a probabilistic inference con-
sists of computing the posterior density fXT |XE=e by
marginalizing the variables X

M
= X \ {XT ∪ XE}. In

the discrete case, where each domain Ωi is countable,
the posterior density is obtained by the formula:

f(xT |e) = f(xT , e)
f(e) =

∑
xM ∈ΩM

f(xT , x
M

, e)∑
xT ∈ΩT

f(xT , e) . (1)

Obtaining fXi|XE=e is then equivalent to compute
fXi,XE=e and to normalize it afterwards. This task,
called the inference, is difficult : exact and even approx-
imate inference are NP-hard (Cooper [1990b], Dagum
and Luby [1997]). However, in the discrete case, effec-
tive heuristics are used to perform these calculations
with good efficiency (for instance Madsen and Jensen
[1999]).

In the hybrid case, which is the focus of this paper,
components of a random vector can be either discrete
or continuous. To discriminate between discrete and
continuous random vectors, they will be denoted re-
spectively by Xd and Xc, with dimensions nd and nc,
and domains Ωd

X and Ωc
X. If no exponent is specified,

the hybrid case is implied. Equation (1) becomes:

f(xT |e) =

∑
xd

M
∈Ωd

M

∫
Ωc

M
f(xT , xd

M
, xc

M
, e)dxc

M∑
xd

T
∈Ωd

I

∫
Ωc

I
f(xd

T , xc
T , e)dxc

T

(2)

1In the remainder, when it is clear from the arguments,
the index of conditional densities will be dropped in order
to alleviate the notations.
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Note that no parametric assumptions are made for
the distributions of the continuous variables. Several
methods to make inferences in this context and their
shortcomings were presented in the previous section.
In the next, we propose to convert these integrals into
sums using quadrature rules and to use discrete infer-
ence algorithms to efficiently compute them.

3 INTEGRATION USING
QUADRATURE RULES

This section introduces the basic notions of integration
using Gauss quadrature rules. It is mainly inspired from
Gautschi [2011] and the interested reader can refer to
this monograph for further details.

3.1 ORTHOGONAL POLYNOMIALS

Let R[X] denote the vector space of real polynomials
in one variable and Rd[X] the subspace of polynomi-
als of degree at most d. Let µ be a positive measure
whose moments are all finite, the vector space R[X] is
equipped with the following inner product:

⟨P, Q⟩ =
∫
R

P (x)Q(x)dµ, (P, Q) ∈ R[X]×R[X] (3)

and the resulting norm: ||P || =
(∫

R P 2(x)dµ
)1/2.

In this context, two polynomials P and Q of R[X] are
said to be orthogonal if ⟨P, Q⟩ = 0. If, in addition of
being orthogonal, ||P || = ||Q|| = 1, then they are said
to be orthonormal. Given that the inner product is
positive definite on R[X], that is ||P || > 0, ∀P ∈ R[X]
such that P ̸≡ 0, then there exists a unique family
{Pi}i∈N, where i is the degree, of orthonormal polyno-
mials (with a positive leading coefficient) associated
with µ. For instance, the family associated with the
uniform measure on [−1, 1] and that will be used later,
is called the Legendre polynomials. This family of or-
thonormal polynomials form a basis of R[X] and are
therefore well suited for function approximation (Fig.
??). In particular, we will now see that they play a
crucial role in Gauss quadrature rules.

3.2 GAUSS QUADRATURE RULES

Let f ∈ F(R,R), the set of integrable real function with
respect to the measure µ. Given a set of p mutually
distinct points x[i] in the support of µ and a set of p
real values {ω1, . . . , ωp}, a p-point quadrature rule is a
linear map Lp such that:

∀f ∈ F(R,R), Lp(f) =
p∑

i=1
ωif(x[i]), (4)

Then, Lp(f) gives an approximation of the integral of
f and Rp(f) is the associated error :

Rp(f) =
∫
R

f(x)dµ − Lp(f)

The points x[i] are called the nodes and the values ωi

the weights of the quadrature. If for a given d ∈ N,
∀P ∈ Rd[X], Rp(P ) = 0, the quadrature is said to have
a degree of exactness d.

For a fixed number of nodes p, the maximum degree
of exactness of such a quadrature rule is d = 2p − 1,
and is obtained through the so-called Gaussian quadra-
ture rules, where the points x[i] are the zeros of Pp,
the orthonormal polynomial of degree p associated to
the measure µ. As for the weights, they are given by
formulas depending on the orthogonality condition (Eq.
3). In the case of the uniform measure on [−1, 1] and
for a p-points quadrature rule, the nodes are the zeros
of the p-th Legendre polynomial Pp and the weights
are given by [Abramowitz et al., 1965]:

ωi = 2p + 1
(1 − x[i]2)

[
P ′

p(x[i])
]2 > 0.

4 INFERENCES USING GAUSS
QUADRATURES

First, let us introduce some notations relative to dis-
crete sets that will be used in this section. Discrete sets
{a, a + 1, . . . , b − 1, b} where a, b ∈ N such that a < b
are denoted by Ja, bK. In the case where the bounds are
vectors a, b ∈ Nn such that ai < bi, ∀i, the notation
Ja, bK serves as a shorthand for the Cartesian product
×n

i=1Jai, biK. Finally, when a = 1, the lower bound is
implied and the notation is shortened as JbK.

The numerical integration method discussed in the
previous section can be easily extended to handle mul-
tivariate integrals by employing a quadrature rule for
each dimension. This technique can then be applied for
computing the integrals in equation (2) that becomes:

f(xT |e) =

∑
xd

M
∈Ωd

M

∑
i∈JpM K

ωif(x
T

, xd
M

, xc
M

[i], e)∑
xd

T
∈Ωd

T

∑
i∈Jp

T
K
ωif(xd

T
.xc

T
[i], e) (5)

With the subscript “∗” as a wildcard for T or M ,
p∗ = (p∗,1, . . . , p∗,nc

∗
) is the number of quadrature

nodes (denoted by {xc
∗[i]}i∈Jp∗K) chosen for each com-

ponent of Xc
∗ and ωi =

∏
j∈Jnc

∗K ωij
. Denoting Xδ

∗
the discretized random vector obtained from Xc

∗ that
takes values xδ

∗ in Ωδ
∗ = {xc

∗[i]} with probability
f(xδ

∗) ∝ ωifXc
∗
(xc

∗[i]), this last equation can be identi-
fied with the formula (1). Note that ωifXc

∗
is just an

3



approximation of a discrete probability distribution,
since it does not sum to 1. However, the sum tends to
1 as the number of quadrature nodes increases.

Then, using Gauss quadratures to marginalize continu-
ous variables leads to a formula that is equivalent to
a discrete inference. Moreover, this inference is exact
if the conditional densities fXc

i
|Pai

are polynomials of
degree at most di = 2pi − 1 of the variable xc

i . By
constructing a discrete BN judiciously from the hybrid
one, the different operations can be done efficiently
using the classic inference algorithms for BN that we
have discussed in section 2.

4.1 CONSTRUCTION OF THE DISCRETE
BN

The structure Gδ of the discrete BN remains the same
as the structure Gh of the hybrid one. The transfor-
mation only lies in the continuous component of the
conditional density. Given a topological order over this
structure, let Xc

i be a continuous random variable in
the hybrid BN, then this variable is replaced by the
discrete variable Xδ

i in the discrete BN, and it has for
CPD the table Ti containing:

Ti(xδ
i = j|Pad, Paδ = k) =(ωi)jf(xc

i [j]|Pad
i , Pac

i [k])
∝ f(xδ

i |Pad
i , Paδ

i )

where Pac
i [k] are the nodes of the quadratures for the

parents of i, determined by the multi-index k (following
the definition of x[i] in section 3.2).

Now, let Xd
i be a discrete random variable in the hybrid

BN, then in the discrete BN, Xd
i has for CPD the table

Ti containing:

Ti(xd
i |Pad, Paδ = k) =f(xd

i |Pad
i , Pac

i [k])

The parents of Xi are necessarily a set of discrete
variables, since variables are replaced following a topo-
logical order.

Since the only difference between the hybrid BN and
its discretized version comes from how the continuous
variables are handled, in the remainder of this section
and without a loss of generality, the case where Xd = ∅
is considered in order to focus on the principal idea
of our algorithm. In order to alleviate notations and
since all variables will be continuous, the “c” exponent
is dropped.

4.2 RECONSTRUCTION OF THE
CONTINUOUS POSTERIOR

The previous construction allowed us to obtain a dis-
crete BN that we can now use to perform inference.

However, these inferences only give us access to a dis-
crete table containing fXδ

T
|Xδ

E
, that is, an estimation of

the conditional density evaluated at the Gauss nodes.
Hence, a last step is needed to reconstruct a continuous
function.

First, let us consider the case where XE = ∅ and we
want to reconstruct the continuous joint density fXT

. In
order to recover a continuous function from fXδ

T
|Xδ

E
, the

assumption is made that the posterior density is a linear
combination of multivariate orthogonal polynomials
used for the Gauss quadrature rules. These multivariate
orthogonal polynomials are constructed as the tensor
product of univariate orthogonal polynomial :

f(xT ) =
∑

i∈JpT K

αiPi(xT )

where i is a multi-index of dimension dT and where
Pi =

⊗dT

k=1 Pik
. With this assumption, the value of

coefficients αi can be easily estimated using the or-
thonormality property:

αi = ⟨fXT
, Pi⟩ =

∫
RdT

f(xT )Pi(xT )dµ

This multiple integral, once again, can be approximated
using Gauss quadratures for each dimension:

αi =
∑

j∈JpT K

ωjf(x[j])Pi(xT [j]) (6)

By construction of the discrete BN, the posterior dis-
crete distribution for Xδ

T is the tensor:

ϕj = ωjf(xT [j])

Consequently, the coefficients of the linear combination
can be computed by the contraction of the tensor ϕj ,
and the tensor πi,j = Pi(xT [j]) whose elements corre-
sponds to the evaluation of the multivariate orthogonal
polynomials at the Gauss nodes:

αi =
∑

j∈JpT K

πi,jϕj (7)

In the case where XE ̸= ∅, the posterior fXT |XE
can

be computed by making the ratio between fXT ,XE

and fXE
, that have been approximated by a linear

combination whose coefficients are give by the previous
equation:

fXT |XE
(xT |xE) =

∑
i∈JpT K

∑
j∈JpEK

αi,j (Pi ⊗ Pj) (xT , xE)∑
k∈JpEK

αkPk(xE)

=
∑

i∈JpT K


∑

j∈JpEK
αi,jPj(xE)∑

k∈JpEK
αkPk(xE)

 Pi(xT )

=
∑

i∈JpT K

γi(xE)Pi(xT )
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Hence, the posterior can also be written as a linear
combination of multivariate orthogonal polynomials
of xT and whose coefficients are themselves ratio of
multivariate orthogonal polynomials of xE . By allowing
a further approximation and at the expense of fXT |XE

not being exactly the ratio of fXT ,XE
and fXE

, the
reconstruction of the continuous posterior can be done
using the result of an inference in the discrete BN. To
do so, the coefficients γi(xE) has to be in a polynomial
form and are then approximated by linear combinations
of multivariate orthogonal polynomials of xE :

fXT |XE
(xT |xE) =

∑
i∈JpT K

γi(xE)Pi(xT )

=
∑

i∈JpT K

 ∑
j∈JpEK

γi,jPi(xT )

 Pj(xE)

=
∑

i∈JpT K

∑
j∈JpEK

γi,jPi,j(xT , xE)

where Pi,j = Pi ⊗ Pj . The coefficients γi,j can then be
computed using a contraction between the potential
ϕk,l = fXδ

T
|Xδ

E
(xδ

T |xδ
E) = ωif(xT [k]|xE [l]) obtained by

inference in the discrete BN and the tensor πi,j,k,l =
Pi,j(xT [k], xE [l]):

γi,j =
∑

k∈JpT K

∑
l∈JpT K

πi,j,k,lϕk,l

4.3 INFERENCE OF A UNIVARIATE
MARGINAL USING
GAUSS-LEGENDRE QUADRATURE

The numerical experiments made in the next section
in order to test our algorithms are relying on the es-
timation of the univariate marginal of a variable Xi.
This corresponds to the case where Xc

M
= {Xi} and

Xc
E = ∅ and equation (7) reduces to:

αj =
pi∑

j=1
πj,kϕk =

pi∑
j=1

Pj(xi[k])ϕk

which can be rewritten under matrix notation:

α = Πϕ

where α is the column vector whose components are the
coefficients αj , ϕ is the potential obtained by inference
in the discrete BN and Π is the matrix:

Π =

P1(ξi[1]) . . . P1(ξi[p])
...

. . .
...

Pn(ξi[1]) . . . Pn(ξi[p])


Since we want to estimate the univariate marginal of Xi

for any kind of probabilistic model for the conditional

densities fXjPaj , we take the family of orthogonal poly-
nomials whose weight function is ω(x) = 1

2 on [−1, 1]
and called the Legendre polynomials. Since the scalar
product is defined on a bounded domain, we need to
truncate conditional densities whose support is R. To
do so, we introduce a parameter ϵ that will control the
probability mass that is ruled out by the truncation.
The domain of a random variable Xi is the quantile at
probability level ϵ. While this is possible for nodes with-
out parents, this isn’t the case for nodes with parents
since their univariate marginal is unknown. To circum-
vent this problem, the quantile at probability level ϵ
of fXi|Pa[j] is computed for each value of the discrete
parent. The estimated lower and upper bound of the
domain are then respectively given by the minimum
and the maximum of the obtained bounds. Note that
to estimate the domain of variable, we need that its
parents are discretized and this task is done simultane-
ously with the discretization. Once the domain [ai, bi]
of a variable is known, the linear transformation:

X̃i = 2
bi − ai

X − ai + bi

2

is applied and the new variable has domain Ωi = [−1, 1]
and conditional density

f
X̃i|P̃ai

(x̃i|p̃ai) = bi − ai

2 f
Xi|P̃ai

(bi − ai

2 x̃i+
ai + bi

2 |P̃ai)

The method described in the previous subsection is then
applied to the discrete BN with renormalized random
variables to obtain fX̃i

. Finally, applying the inverse
linear transformation to X̃i, we obtain the marginal
density defined on [ai, bi]:

fXi(xi) = 2
bi − ai

fX̃i

(
2

bi − ai
xi − bi + ai

bi − ai

)
Note that in addition of the parameter ϵ, our algorithm
depends on the parameters pi which are the number of
Gauss nodes pi taken for each variable Xi. They are all
set to a same value p and consequently, the algorithm
depends on the two parameters ϵ and p.

The method used to estimate the domains of the vari-
able can overestimate the size of the true domain at
level of probability ϵ. A solution to this downside is
to initialize the domains using this rough estimation,
discretize the nodes and to make inferences to estimate
the univariate marginal of each node. Doing so, we
can use the marginals to compute the domain corre-
sponding to the quantile of level ϵ for each variable.
By discretizing again the variables with these new do-
mains we can improve the estimation and repeating
the process we can improve the estimation. This add
a new parameter r to our algorithm corresponding to
the number of iteration done to estimate the domains.
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Note however that in a learning setting, the domain
can be estimated directly from the dataset and this
problem doesn’t appear.

5 NUMERICAL EXPERIMENTS

This section investigates the influence of hyperparame-
ters on the performances of our new inference algorithm
while also conducting a comparative analysis against
classical methods. All the scripts necessary to reproduce
the numerical experiments detailed here are available
in the GitHub repository (anonymized). These scripts
utilize the pyAgrum library [Ducamp et al., 2020] for
probabilistic graphical models and the OpenTURNS
library [Baudin et al., 2016] for dealing with continuous
distributions.

5.1 EXPERIMENTAL SETUP

To establish a benchmark for our study and gain access
to theoretical insights, the CLG model is employed
[Lauritzen and Wermuth, 1989] for constructing con-
tinuous BNs. In this context, given a BN structure G,
the CPDs have for expression:

f(xi|pai) = N

xi; µi +
|Pai|∑
j=1

bijpaij , σi


where paij is the value of the j-th parent of Xi and
N (x; µ, σ) denotes the density of a normal distribution
of mean µ and standard deviation σ. Without loss of
generality, the parameters µi and σi are respectively
set to 0 and 1 for all i ∈ J1, nK. Doing so, the parame-
terization only depends on coefficients bij that quantify
the strength of the arc between Xi and Xj .

The experiments conducted within this section focus
on the estimation of the univariate marginals of the
variables in the CLG. The performance of a method
in estimating the marginal density of Xi is quanti-
fied through the normalized-root-mean-square-error
(NRMSE) metric:

NRMSE(i) =


∥∥∥f̂i − fi

∥∥∥
2

∥fi∥2

1/2

between the theoretical marginal fi and its estimated
counterpart f̂i. The theoretical marginal is obtained
using inference algorithms for CLG Lauritzen [1992].

Two inference methods are used for comparison with
our new algorithm that will be labeled “Legendre” from
now on. The first one, labeled “Classic”, consists in the
discretization of the random variables by partitioning

their domains into p bins of equal size. Subsequently,
the CPDs are converted into CPTs and a discrete BN is
obtained, allowing to use the classic sum-product algo-
rithms. Similarly to our algorithm, the domains of the
variables are truncated and the probability mass that is
ruled out is controlled by a parameter ϵ. Consequently,
this method is characterized by two hyperparameters:
ϵ and p, that are similar to the parameters of our
algorithm. Indeed, ϵ has the same meaning for both
algorithms and the number of bins and the number of
Gauss nodes determine the size of the CPTs for the
discrete BN. In other words, the complexity of (the
memory used by) the discrete BNs is the same in both
cases (“Legendre” or “classic”).

The third method, labeled as “GKS”, is a kernel smooth-
ing method Wand and Jones [1994] used on a sample
generated by forward sampling [Koller and Friedman,
2009, chap. 12] from the CLG. The kernel is chosen
to be Gaussian and the bandwidth is fixed such that
it minimizes the AMISE criteria. Consequently, the
only hyperparameter for this method is the size of the
sample denoted by s.

Discrete inference methods ("classical" and "legendre")
require the construction of large discrete Bayesian net-
works. We have not taken this time into account in the
benchmarks, as it is calculated off-line. Note also that
all figures showing error curves are in semi-logarithmic
scale.

5.2 CHAIN WITH TWO VARIABLES

In order to explore the impact of each hyperparameter
of our algorithm on its performances, we consider the
simplest non-trivial structure: the chain X1 → X2. A
CLG being equivalent to a multivariate normal distribu-
tion, the covariance of the latter can be expressed using
parameters µi, σi and bij Neapolitan et al. [2004]. This
allows to relate the coefficient b21 to the correlation
ρ12 between X1 and X2:

b21 = sign(ρ12)
(

1
ρ2

12
− 1

)−1/2
(8)

The evolution of the NRMSE for the marginal of X2 is
shown on figure 1 and is compared with the discretiza-
tion method in the case where ρ12 = 0.5. The y-axis
represents the number of discretization bins in the case
of the classic method and the number of Gauss nodes
in the case of our algorithm. The x-axis represents the
value of ϵ used to truncate the domain of the random
variables.

Our algorithm appears to be largely superior since it
achieves a precision of order 10−8 for (ϵ = 10−8, p =
51) while the discrete method only attains a precision

6
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Figure 1: Heatmap visualization of the NRMSE of X2
for the classic discretization (on left) and the Legendre
transformation (on right).

of order 10−2 for the same values. As for the kernel
method, it only attains a NRMSE of order 10−2 using
a sample of size s = 106 (see Fig. 2).

Looking at its individual behaviour, we can observe
that given a value of ϵ, the NRMSE seems to converge
to a limit of the same order than ϵ as p increases.
This is due to the fact that to obtain a true density
function, a renormalization is done after the truncature
of the domain. Hence the excluded probability mass
of approximately 2ϵ is giving a bound to the precision
that can be attained even if the number of Gauss nodes
increases.

0.2 0.4 0.6 0.8 1.0

10−8

10−6

10−4

10−2

100

gks, s=106

classic, p=21

classic, p=31

classic, p=51

legendre, p=21

legendre, p=31

legendre, p=51

Figure 2: Evolution of the NRMSE of X2 with respect
to the correlation parameter ρ12 and with ϵ = 10−8 for
classic and legendre.

Figure 2 shows the evolution of the NRMSE with re-
spect to the value of ρ12 used to parameterized the
CLG. The parameter ϵ for both “classic” and “legen-
dre” is fixed to 10−8 and the sample size of “gks” is
set to 106. Once again, we observe that our algorithm
largely outperforms the other two methods for most of
the value of ρ12. However, if the correlation between
the variables is too strong, the quality of the approxi-
mation is decreasing both for “classic” and “legendre”.
In the case of the discretization method, this is due
to the fact that as the correlation approach 1, the pa-
rameter b21 increases. As a consequence, the mean of
X2 knowing X1 = x1 will be translated to large values
compared to the domain at ϵ level. For this reason,
the probability of each bin will be so small that it is

rounded to 0, leading to bad results. Now, in the case
of our algorithm, it can be explained by the fact that
the zeros of Legendre polynomials accumulate at the
bounds of the domain and most of the information will
be concentrated in this area while the probability mass
for Gaussian distributions is concentrated in the center
of the domain.

5.3 CHAIN OF ARBITRARY SIZE

In order to visualize the loss of quality in the estimation
of marginals due to the propagation of errors, we now
consider a CLG with a chain structure X0 → X1 →
· · · → Xl of length l + 1.

0 5 10 15 20
Depth

10−7

10−5

10−3

10−1

(a) ρ = 0.7
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Depth

10−6

10−3

100

11

21

31

41

51

(b) ρ = 0.8

Figure 3: Evolution of the NRMSE with respect to the
depth of the node in the chain.

This CLG is parameterized such that the correlation
ρi,i−1 between Xi−1 and Xi is the same for all i ∈
J1, lK. The marginal of each variable is estimated using
our algorithm and figure 3 shows the evolution of the
NRMSE with the depth of the variable in the chain. We
observe that if the value of the correlation is not too
high, the propagation of errors is manageable, giving
enough Gauss nodes. However, in the case of a strong
correlation, these errors are growing exponentially.

5.4 REFERENCE STRUCTURES

To evaluate our algorithm on larger structures, we
use well-established BN structures derived from real-
world applications, available from the bnlearn repos-
itory. Given that these BNs are discrete, we retain
only the structure while reparameterizing the CPDs
associated with each node using the Conditional Lin-
ear Gaussian (CLG) model. The coefficients bij are all
set to the same value, leading to diverse correlations
among the variables.

For each structure, the marginal of each node is esti-
mated using the different methods and compared to
the theoretical marginal via NRMSE. We estimate the
marginal distribution of each node using the previous
methods and compare them to the theoretical marginal
distribution using the NRMSE. For our method and
the "Classical" approach, we set p = 51 and ϵ = 10−8,
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while the "GKS" method still uses a sample size of
s = 106. Table 1 summarizes the results, presenting
the maximum NRMSE for a node in the structure and
the average computation time2 across all nodes for in-
ference tasks. Once again, our methods shows better
results for NRMSE compared to the two others. The
"Classic" method is the faster to make inference but it
is at the expense of a poor accuracy. As for the "GKS"
method, it is the slower but its accuracy is not sensitive
to the structure.

NRMSE Legendre Classic GKS
asia 3.45e-07 4.50e-02 5.28e-03
sachs 2.58e-08 4.49e-02 5.08e-03
child 1.10e-04 4.51e-02 5.18e-03

time (s) Legendre Classic GKS
asia 9.42e-02 3.30e-03 3.17e+01
child 3.02e-01 1.12e-01 1.07e+02
sachs 3.67e-01 2.13e-01 4.58e+01

Table 1: NRMSE and computing time in seconds

5.5 NON-GAUSSIAN MODELS

In this subsection, we extend the application of our
method to non-Gaussian models to demonstrate its
versatility. Specifically, we construct a Copula Bayesian
Network (CBN) [Elidan, 2010], which enables sepa-
rate modeling of the dependency between variables
and their marginal behavior. The dependency is estab-
lished using a Gaussian copula [Nelsen, 2006], while the
marginal behavior is modeled using beta distributions.
As depicted in Figures 4a, the resulting marginals de-
viate significantly from Gaussian distributions. Given
the absence of theoretical references in this context,
reference marginals are computed using Gauss- Kron-
rod quadrature [Notaris, 2016] on the joint distribution.
However, this method, though accurate, is prohibitively
slow for high-dimensional settings, necessitating restric-
tion to a few variables. Thus, we consider a BN struc-
ture comprising only four variables: A, B, C, and D,
with arcs A → C, B → C, C → D, A → D. Discretiza-
tion, having shown poor performance in previous sec-
tions, is omitted from this comparison. Instead, we
employ a Conditional Linear Gaussian (CLG) model,
constructed based on the closest CLG density in terms
of Kullback-Leibler distance. Figure 4 illustrates the
approximation of the marginal distribution of variable
D using different techniques, along with the absolute
difference between the estimated and reference values.

2Computations have been done using an Intel Core i7-
8650U CPU @ 1.90GHz.

As expected, the CLG model exhibits considerable de-
viation from the reference density due to its Gaussian
assumption. In contrast, our proposed model achieves
closer approximation to the "true" density with signifi-
cantly reduced computation time compared to kernel
smoothing methods.

0.0 0.5 1.0
0.0

0.5

1.0

clg

legendre

gks

reference

(a) Marginal of D

0.00 0.25 0.50 0.75 1.00

10−4

10−2

100

(b) Absolute error

Figure 4: Estimation of the marginal of D in the CBN.

6 CONCLUSION AND FUTURE
WORKS

In this paper, we introduce a novel general inference
algorithm tailored for general hybrid BNs. Our method
uses quadrature rules for continuous marginalization,
circumventing the conventional discretization of contin-
uous densities into histograms or the sampling. Addi-
tionally, we overcome the restrictive nature of the CLG
model.Our algorithm maintains the computational effi-
ciency of classical sum-product algorithms through an
auxiliary discrete Bayesian network designed for con-
tinuous inference. Numerical experiments validate the
efficacy of our approach, demonstrating its superiority
over classical methods.

However, we observed limitations in our algorithm when
correlations between variables approach deterministic
relations. While increasing the number of quadrature
points can mitigate this issue, it comes at the cost of
slower inference. To address this, we can improve our
algorithm with an adaptive method that dynamically
adds points only as needed. In this context, utilizing
Gauss-Kronrod quadratures, could offer advantages
since quadrature points could be recycled. Moreover,
exploring other Gauss quadratures based on orthogonal
polynomials, like Hermite polynomials, may better suit
for specific distributions.

Lastly, while our paper introduces a general algorithm
for hybrid BNs, our experiments were confined to com-
puting marginal densities without observations and
with only continuous variables. Future implementa-
tions and research should remove these restrictions to
conduct more comprehensive experiments.
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