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Abstract
A homomorphism f from a guest graph G to a host graph H is locally bijective, injective or surjective
if for every u ∈ V (G), the restriction of f to the neighbourhood of u is bijective, injective or surjective,
respectively. The corresponding decision problems, LBHom, LIHom and LSHom, are well studied
both on general graphs and on special graph classes. Apart from complexity results when the
problems are parameterized by the treewidth and maximum degree of the guest graph, the three
problems still lack a thorough study of their parameterized complexity. This paper fills this gap: we
prove a number of new FPT, W[1]-hard and para-NP-complete results by considering a hierarchy of
parameters of the guest graph G. For our FPT results, we do this through the development of a new
algorithmic framework that involves a general ILP model. To illustrate the applicability of the new
framework, we also use it to prove FPT results for the Role Assignment problem, which originates
from social network theory and is closely related to locally surjective homomorphisms.
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1 Introduction

A homomorphism from a graph G to a graph H is a mapping φ : V (G)→ V (H) such that
φ(u)φ(v) ∈ E(H) for every uv ∈ E(G). Graph homomorphisms generalise graph colourings
(let H be a complete graph) and have been intensively studied over a long period of time,
both from a structural and an algorithmic perspective. We refer to the textbook of Hell and
Nešetřil [44] for a further introduction.

We write G → H if there exists a homomorphism from G to H; here, G is called the
guest graph and H is the host graph. We denote the corresponding decision problem by
Hom, and if H is fixed, that is, not part of the input, we write H-Hom. The renowned
Hell-Nešetřil dichotomy [42] states that H-Hom is polynomial-time solvable if H is bipartite,
and NP-complete otherwise. We denote the vertices of H by 1, . . . , |V (H)| and call them
colours. The reason for doing this is that graph homomorphisms generalise graph colourings:
there exists a homomorphism from a graph G to the complete graph on k vertices if and
only if G is k-colourable.
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Instead of fixing the host graph H, one can also restrict the structure of the guest graph G
by bounding some graph parameter. A classical result states that Hom is polynomial-time
solvable when the guest graph G has bounded treewidth [16, 37]. The core of a graph G is
the subgraph F of G such that G→ F and there is no proper subgraph F ′ of F with G→ F ′

(the core is unique up to isomorphism [43]). Dalmau, Kolaitis and Vardi [18] proved that the
Hom problem is polynomial-time solvable even if the core of the guest graph G has bounded
treewidth. This result was strengthened by Grohe [40], who proved that if FPT 6= W[1], then
Hom can be solved in polynomial time if and only if this condition holds.

Locally constrained homomorphisms. We are interested in three well-studied variants
of graph homomorphisms that occur after placing constraints on the neighbourhoods of the
vertices of the guest graph G. Consider a homomorphism φ from a graph G to a graph H.
We say that φ is locally injective, locally bijective or locally surjective for u ∈ V (G) if the
restriction φu to the neighbourhood NG(u) = {v | uv ∈ E(G)} of u is injective, bijective
or surjective. We say that φ is locally injective, locally bijective or locally surjective if it is
locally injective, locally bijective, or locally surjective for every u ∈ V (G). We denote these
locally constrained homomorphisms by G B−→ H, G I−→ H and G S−→ H, respectively.

The three variants have been well studied in several settings over a long period of time.
For example, locally injective homomorphisms are also known as partial graph coverings and
are used in telecommunications [29], in distance constrained labelling [28] and as indicators of
the existence of homomorphisms of derivative graphs [58]. Locally bijective homomorphisms
originate from topological graph theory [4, 57] and are more commonly known as graph
coverings. They are used in distributed computing [2, 3, 7] and in constructing highly
transitive regular graphs [5]. Locally surjective homomorphisms are sometimes called colour
dominations [52]. They have applications in distributed computing [12, 13] and in social
science [26, 63, 66, 69]. In the latter context they are known as role assignments, as we will
explain in more detail below.

Let LBHom, LIHom and LSHom be the three problems of deciding, for two graphs
G and H, whether G B−→ H, G I−→ H or G S−→ H holds, respectively. As before, we write
H-LBHom, H-LIHom and H-LSHom in the case where the host graph H is fixed. Out of
the three problems, only the complexity of H-LSHom has been completely classified, both for
general graphs and bipartite graphs [32]. We refer to a series of papers [1, 6, 29, 31, 49, 50, 55]
for polynomial-time solvable and NP-complete cases of H-LBHom and H-LIHom; see also
the survey by Fiala and Kratochvíl [30]. Some more recent results include sub-exponential
algorithms for H-LBHom, H-LIHom and H-LSHom on string graphs [60] and complexity
results for H-LBHom for host graphs H that are multigraphs [51] or that have semi-edges [9].

In our paper we assume that both G and H are part of the input. We note a fundamental
difference between locally injective homomorphisms on one hand and locally bijective and
surjective homomorphisms on the other hand. Namely, for connected graphs G and H, we
must have |V (G)| ≥ |V (H)| if G B−→ H or G S−→ H, whereas H might be arbitrarily larger
than G if G I−→ H holds. For example, if we let G be a complete graph, then G I−→ H holds if
and only if H contains a clique on at least |V (G)| vertices.

The above difference is also reflected in the complexity results for the three problems under
input restrictions. In fact, LIHom is closely related to the Subgraph Isomorphism problem
and is usually the hardest problem. For example, LBHom is Graph Isomorphism-complete
on chordal guest graphs, but polynomial-time solvable on interval guest graphs and LSHom
is NP-complete on chordal guest graphs, but polynomial-time solvable on proper interval
guest graphs [41]. In contrast, LIHom is NP-complete even on complete guest graphs G,
which follows from a reduction from the Clique problem via the aforementioned equivalence:
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G I−→ H holds if and only if H contains a clique on at least |V (G)| vertices.
To give another example, LBHom, LSHom and LIHom are NP-complete for guest

graphs G of path-width at most 5, 4 and 2, respectively [15] (all three problems are polynomial-
time solvable if G is a tree [15, 33]). Note that these hardness results imply that the
aforementioned polynomial-time result on Hom for guest graphs G of bounded treewidth [16,
37] does not carry over to any of the three locally constrained homomorphism problems. It
is also known that LBHom [48], LSHom [52] and LIHom [29] are NP-complete even if G is
cubic and H is the complete graph K4 on four vertices, but polynomial-time solvable if G has
bounded treewidth and one of the two graphs G or H has bounded maximum degree [15].

An Application. Locally surjective homomorphisms from a graph G to a graph H are
known as H-role assignments in social network theory. We will include this topic in our
investigation and provide some brief context. Suppose we are given a social network of
individuals whose properties we aim to characterise. Can we assign each individual a role
such that individuals with the same role relate in the same way to other individuals with
some role, using exactly h different roles in total? To formalise this question, we model
the network as a graph G, where vertices represent individuals and edges represent the
existence of a relationship between two individuals. We now ask whether G has an h-role
assignment, that is, a function f that assigns each vertex u ∈ V (G) a role f(u) ∈ {1, . . . , h},
such that f(V (G)) = {1, . . . , h} and for every two vertices u and v, if f(u) = f(v) then
f(NG(u)) = f(NG(v)).

Role assignments were introduced by White and Reitz [69] as regular equivalences and
were called role colourings by Everett and Borgatti [26]. We observe that two adjacent
vertices u and v may have the same role, that is, f(u) = f(v) is allowed (so role assignments
are not proper colourings). Hence, a connected graph G has an h-role assignment if and only
if G S−→ H for some connected graph H with |V (H)| = h, as long as we allow H to have
self-loops (while we assume that G is a graph with no self-loops).

The Role Assignment problem is to decide, for a graph G and an integer h, whether
G has an h-role assignment. If h is fixed, we denote the problem h-Role Assignment.
Whereas 1-Role Assignment is trivial, 2-Role Assignment is NP-complete [66]. In
fact, h-Role Assignment is NP-complete for planar graphs (h ≥ 2) [64], cubic graphs
(h ≥ 2) [65], bipartite graphs (h ≥ 3) [62], chordal graphs (h ≥ 3) [68] and split graphs
(h ≥ 4) [20]. Very recently, Pandey, Raman and Sahlo [61] gave an nO(h)-time algorithm for
Role Assignment on general graphs and an f(h)nO(1)-time algorithm on forests.

Our Focus. We continue the line of study in [15] and focus on the following research
question:

For which parameters of the guest graph do LBHom, LSHom and LIHom become fixed-
parameter tractable?

We will also apply our new techniques towards answering this question for the Role
Assignment problem. In order to address our research question, we need some additional
terminology. A graph parameter p dominates a parameter q if there is a function f such that
p(G) ≤ f(q(G)) for every graph G. If p dominates q but q does not dominate p, then p is
more powerful (less restrictive) than q. We denote this by pB q. If neither p dominates q
nor q dominates p, then p and q are incomparable (orthogonal). Given the para-NP-hardness
results on LBHom, LSHom and LIHom for graph classes of bounded path-width [15], we
will consider a range of graph parameters that are less powerful than path-width. In this
way we aim to increase our understanding of the (parameterized) complexity of LBHom,
LSHom and LIHom.
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guest graph parameter LIHom LBHom LSHom

|V (G)| XP, W[1]-hard [21] FPT FPT
vertex cover number XP (Theorem 21), W[1]-hard FPT FPT
c-deletion set number (fixed c) para-NP-c (c ≥ 2) (Theorem 24) FPT FPT
fracture number para-NP-c FPT (Theorem 18) FPT (Theorem 18)
tree-depth para-NP-c para-NP-c (Theorem 28) para-NP-c (Theorem 28)
path-width para-NP-c [15] para-NP-c [15] para-NP-c [15]
treewidth para-NP-c para-NP-c para-NP-c
maximum degree para-NP-c [29] para-NP-c [48] para-NP-c [52]
treewidth plus maximum degree XP, W[1]-hard XP [15] XP [15]
feedback vertex set number para-NP-c para-NP-c (Theorem 29) para-NP-c (Theorem 29)

Table 1 Table of results. The results in blue are the new results proven in this paper. The
results in black are either known results, some of which are now also implied by our new results,
or follow immediately from other results in the table; in particular, for a graph G, dsc(G) ≥ fr(G)
if c ≤ fr(G) − 1, and dsc(G) ≤ fr(G) if c ≥ fr(G). Also note that LIHom is W[1]-hard when
parameterized by |V (G)|, as Clique is W[1]-hard when parameterized by the clique number [21], so
as before, we can let G be the complete graph in this case.

For an integer c ≥ 1, a c-deletion set of a graph G is a subset S ⊆ V (G) such that every
connected component of G \ S has at most c vertices. The c-deletion set number dsc(G) of a
graph G is the minimum size of a c-deletion set in G. If c = 1, then we obtain the vertex
cover number vc(G) of G. The c-deletion set number is also known as vertex integrity [23]. It
is closely related to the fracture number fr(G), introduced in [24], which is the minimum k

such that G has a k-deletion set on at most k vertices. Note that fr(G) ≤ max{c, dsc(G)}
holds for every integer c. The feedback vertex set number fv(G) of a graph G is the size
of a smallest set S such that G \ S is a forest. We write tw(G), pw(G) and td(G) for the
treewidth, path-width and tree-depth of a graph G, respectively; see [59] for more information,
in particular on tree-depth. It is known that

tw(G) B pw(G) B td(G) B fr(G) B dsc(G)(fixed c) B vc(G) B |V (G)|,

where the second relationship is proven in [8] and the others follow immediately from their
definitions (see also Section 2.2). It is readily seen that

tw(G) B fv(G) B ds2(G)

and that fv(G) is incomparable with the parameters pw(G), td(G), fr(G) and dsc(G) for
every fixed c ≥ 3 (consider e.g. a tree of arbitrarily large path-width and the disjoint union
of arbitrarily many triangles).

Our Results. We prove a number of new parameterized complexity results for LBHom,
LSHom and LIHom by taking some property of the guest graph G as the parameter. In
particular, we consider the graph parameters above. Our two main results, which are proven
in Section 4, show that LBHom and LSHom are fixed-parameter tractable parameterized
by the fracture number of G. These two results cannot be strengthened to the tree-depth
of the guest graph, for which we prove para-NP-completeness in Section 6. Note that the
latter results imply the known para-NP-completeness results for path-width of the guest
graph [15]. In Section 6 we also prove that LBHom and LSHom are para-NP-complete when
parameterized by the feedback vertex set number of the guest graph. This result and the
para-NP-hardness for tree-depth motivated us to consider the fracture number as a natural
remaining graph parameter for obtaining an fpt algorithm.

The above para-NP-completeness results for LBHom in fact even hold for 3-FoldCover,
the restriction of LBHom to input pairs (G,H) where |V (G)| = 3|V (H)|. The k-FoldCover
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problem was introduced in [7] (where it was called the k-Graph Covering problem). In
fact, the aforementioned result of [15] on LBHom for path-width is the first proof that
3-FoldCover is NP-complete, and the proof can easily be adapted for k ≥ 4, as observed
by Klavík [47].

In Section 5 we prove that LIHom is in XP and W[1]-hard when parameterized by the
vertex cover number, or equivalently, the c-deletion set number for c = 1. We then show
that the XP-result for LIHom cannot be generalised to hold for c ≥ 2. In fact, in the same
section, we will determine the complexity of LIHom on graphs with c-deletion set number at
most k for every fixed pair of integers c and k. Our results for LBHom, LSHom and LIHom
are summarised, together with the known results, in Table 1.

Algorithmic Framework. The FPT algorithms for LBHom and LSHom are proven via a
new algorithmic framework (described in detail in Section 3) that involves a reduction to an
integer linear program (ILP) that has a wider applicability. To illustrate this, in Section 4 we
also use our general framework to prove that Role Assignment is FPT when parameterized
by c+dsc. We emphasize that in our framework the host graph H is not fixed, but part of the
input, in contrast to other frameworks that include the locally constrained homomorphism
problems (and that consequently work for more powerful graph parameters), such as the
framework of locally checkable vertex partitioning problems [10, 67] or the framework of
Gerber and Kobler [39] based on (feasible) interval degree constraint matrices.

Techniques. The main ideas behind our algorithmic ILP framework are as follows. Let G
and H be the guest and host graphs, respectively. First, we observe that if G has a c-deletion
of size at most k and there is a locally surjective homomorphism from G to H, then H must
also have a c-deletion set of size at most k. However it does not suffice to compute c-deletion
sets DG and DH for G and H, guess a partial homomorphism h from DG to DH , and use
the structural properties of c-deletion sets to decide whether h can be extended to a desired
homomorphism from G to H. This is because a homomorphism from G to H does not
necessarily map DG to DH . Moreover, even if it did, vertices in G \DG can still be mapped
to vertices in DH . Consequently, components of G \DG can still be mapped to more than
one component of H \DH . This makes it difficult to decompose the homomorphism from
G to H into small independent parts. To overcome this challenge, we prove that there are
small sets DG and DH of vertices in G and H, respectively, such that every locally surjective
homomorphism from G to H satisfies:

1. the pre-image of DH is a subset of DG,

2. DH is a c′-deletion set for H for some c′ bounded in terms of only c+ k, and

3. all but at most k components of G \DG have at most c vertices and, while the remaining
components can be arbitrary large, their treewidth is bounded in terms of c+ k.

As DG and DH are small, we can enumerate all possible homomorphisms from some subset
of DG to DH . Condition 2 allows us to show that any locally surjective homomorphism
from G to H can be decomposed into locally surjective homomorphisms from a small set of
components of G \DG (plus DG) to one component of H \DH (plus DH). This enables us
to formulate the question of whether a homomorphism from a subset of DG to a subset of
DH can be extended to a desired homomorphism from G to H in terms of an ILP. Finally,
Condition 3 allows us to efficiently compute the possible parts of the decomposition, that is,
which (small) sets of components of G \DG can be mapped to which components of DH .
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2 Preliminaries

We use standard notation from graph theory, as can be found in e.g. [19]. Let G be a graph.
We denote the vertex set and edge set of G by V (G) and E(G), respectively. Let X ⊆ V (G)
be a set of vertices of G. The subgraph of G induced by X, denoted G[X], is the graph with
vertex set X and edge set E(G) ∩ [X]2. Whenever the underlying graph is clear from the
context, we will sometimes refer to an induced subgraph simply by its set of vertices. We
use G \X to denote the subgraph of G induced by V (G) \X. Similarly, for Y ⊆ E(G) we
let G \ Y be the subgraph of G obtained by deleting all edges in Y from G.

For a graph G and a vertex u ∈ V (G), we let NG(u) = {v | uv ∈ E(G)} and NG[v] =
NG(v) ∪ {v} denote the open and closed neighbourhood of v in G, respectively. We let ∆(G)
be the maximum degree of G. Recall that we assume that the guest graph G does not contain
self-loops, while the host graph H is permitted to have self-loops. In this case, by definition,
u ∈ NH(u) if uu ∈ E(H).

2.1 Parameterized Complexity

In parameterized complexity [17, 22, 35], the complexity of a problem is studied not only
with respect to the input size, but also with respect to some problem parameter(s). The core
idea behind parameterized complexity is that the combinatorial explosion resulting from the
NP-hardness of a problem can sometimes be confined to certain structural parameters that
are small in practical settings. We now proceed to the formal definitions.

A parameterized problem Q is a subset of Ω∗ × N, where Ω is a fixed alphabet. Each
instance of Q is a pair (I, κ), where κ ∈ N is called the parameter. A parameterized problem
Q is fixed-parameter tractable (FPT) [17, 22, 35], if there is an algorithm, called an FPT-
algorithm, that decides whether an input (I, κ) is a member of Q in time f(κ) · |I|O(1), where
f is a computable function and |I| is the size of the input instance. The class FPT denotes
the class of all fixed-parameter tractable parameterized problems.

A parameterized problem Q is FPT-reducible to a parameterized problem Q′ if there
is an algorithm, called an FPT-reduction, that transforms each instance (I, κ) of Q into
an instance (I ′, κ′) of Q′ in time f(κ) · |I|O(1), such that κ′ ≤ g(κ) and (I, κ) ∈ Q if and
only if (I ′, κ′) ∈ Q′, where f and g are computable functions. By fpt-time, we denote
time of the form f(κ) · |I|O(1), where f is a computable function. Based on the notion of
FPT-reducibility, a hierarchy of parameterized complexity, the W-hierarchy =

⋃
t≥0 W[t],

where W[t] ⊆W[t+ 1] for all t ≥ 0, has been introduced, in which the 0-th level W[0] is the
class FPT. The notions of hardness and completeness have been defined for each level W[i]
of the W-hierarchy for i ≥ 1 [17, 22]. It is commonly believed that W[1] 6= FPT (see [17, 22]).
This assumption has served as the main working hypothesis of fixed-parameter intractability.
The class XP contains parameterized problems that can be solved in O(|I|f(κ)) time, where
f is a computable function. It contains the class W[t], for all t ≥ 0, and every problem in XP
is polynomial-time solvable when the parameter is bounded by a constant. The class paraNP
is the class of parameterized problems that can be solved by non-deterministic algorithms
in f(κ) · |I|O(1) time, where f is a computable function. A problem is paraNP-hard if it is
NP-hard for a constant value of the parameter [35].

2.2 Graph Parameters

A (k, c)-extended deletion set for G is a set D ⊆ V (G) such that:
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every component of G \D either has at most c vertices or has a c-deletion set of size at
most k and
at most k components of G \D have more than c vertices.

We need the following well-known fact:

I Proposition 1 ([53]). Let G be a graph and let k and c be natural numbers. Then, deciding
whether G has a c-deletion set of size at most k is fixed-parameter tractable parameterized by
k + c.

Tree-depth. Tree-depth is closely related to treewidth, and the structure of graphs of
bounded tree-depth is well understood [59]. A useful way of thinking about graphs of
bounded tree-depth is that they are (sparse) graphs with no long paths.

The tree-depth of an undirected graph G, denoted by td(G), is the smallest natural
number k such that there is an undirected rooted forest F with vertex set V (G) of height at
most k for which G is a subgraph of C(F ), where C(F ) is called the closure of F and is the
undirected graph with vertex set V (F ) having an edge between u and v if and only if u is an
ancestor of v in F . A forest F for which G is a subgraph of C(F ) is also called a tree-depth
decomposition, whose depth is equal to the height of the forest plus one. Informally a graph
has tree-depth at most k if it can be embedded in the closure of a forest of height k. Note
that if G is connected, then it can be embedded in the closure of a tree instead of a forest.

Treewidth. A tree-decomposition T of a graph G is a pair (T, χ), where T is a tree and χ is
a function that assigns each tree node t a set χ(t) ⊆ V (G) of vertices such that the following
conditions hold:
(P1) For every edge uv ∈ E(G), there is a tree node t such that u, v ∈ χ(t).
(P2) For every vertex v ∈ V (G), the set of tree nodes t with v ∈ χ(t) induces a non-empty

subtree of T .

The sets χ(t) are called bags of the decomposition T and χ(t) is the bag associated
with the tree node t. The width of a tree-decomposition (T, χ) is the size of a largest bag
minus 1. The treewidth of a graph G, denoted by tw(G), is the minimum width over all
tree-decompositions of G.

Relationships and Properties. The following proposition summaries the known relation-
ships between the parameters we consider.

I Proposition 2 ([59]). Let G be a graph and let k and c be natural numbers. Then:
if G has a c-deletion set of size at most k, then td(G) ≤ k + c.
if G has a (k′, c)-extended deletion set of size at most k, then td(G) ≤ k′ + k + c.
tw(G) ≤ td(G).

2.3 Locally Constrained Homomorphisms
We always allow self-loops for the host graph, but not for the guest graph (see also Section 1).
Here we show some basic properties of locally constrained homomorphisms.

I Observation 3. Let G and H be non-empty connected graphs and let φ be a locally surjective
homomorphism from G to H. Then φ is surjective.
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Proof. Suppose not, and let C be the set of vertices in V (H) \ φ(V (G)). Note that C 6= ∅
(because otherwise φ is surjective) and φ(V (G)) 6= ∅ (because G is non-empty). Because H
is connected, there is an edge uv ∈ E(H) such that u ∈ V (C) and v ∈ φ(V (G)). But then,
the mapping φx : NG(x)→ NH(v) is not surjective for any vertex x ∈ φ−1(v). J

I Observation 4. Let G and H be non-empty connected graphs with a homomorphism φ

from G to H and let I ⊆ φ(V (G)). Let P = φ−1(I) and φR = φ|P . If φ is a locally injective,
surjective or bijective homomorphism, then φR is a locally injective, surjective or bijective
homomorphism, respectively, from G[P ] to H[I].

Proof. Clearly, φR is a homomorphism from G[P ] to H[I] and since φR is a restriction of
φ, it follows that if φ is locally injective, then so is φR. It remains to show that if φ is
locally surjective, then so is φR. Suppose, for contradiction, that φ is locally surjective,
but φR is not. Then there is a vertex v ∈ P such that φR(NG(v) ∩ P ) ( NH(φR(v)) ∩ I.
However, since φ does not map any vertex in V (G) \ P to a vertex of I, it follows that
φ(NG(v)) ∩ I ( NH(φ(v)) ∩ I, so φ(NG(v)) 6= NH(φ(v)). Thus φ is not surjective, a
contradiction. J

I Observation 5. Let G and H be graphs, let D ⊆ V (G), and let φ be a homomorphism
from G to H. Then, for every component CG of G \ D such that φ(CG) ∩ φ(D) = ∅,
there is a component CH of H \ φ(D) such that φ(CG) ⊆ CH . Moreover, if φ is locally
injective/surjective/bijective, then φR = φ|D∪CG is a homomorphism from G′ = G[D ∪ CG]
to H ′ = H[φ(D) ∪ CH ] that is locally injective/surjective/bijective for every v ∈ V (CG).

Proof. Suppose for a contradiction that this is not the case. Then, there is a component
CG of G \D and an edge uv ∈ E(CG) such that φ(u) and φ(v) are in different components
of H \ φ(D). Therefore, φ(u)φ(v) /∈ E(H), contradicting our assumption that φ is a
homomorphism.

Towards showing the second statement, first note that φR is a homomorphism from G′

to H ′. Moreover, NG[v] = NG′ [v] for every vertex v ∈ V (CG), so if φ is locally injective/sur-
jective/bijective for a vertex v ∈ V (CG), then so is φR. J

The following lemma is a basic but crucial observation showing that if G S−→ H and G
has a small c-deletion set, then so does H.

I Lemma 6. Let G and H be non-empty connected graphs, let D ⊆ V (G) be a c-deletion
set for G, and let φ be a locally surjective homomorphism from G to H. Then φ(D) is a
c-deletion set for H.

Proof. Suppose not, then there is a component CH of H \ φ(D) such that |CH | > c.
By Observation 3, it follows that φ is surjective and therefore φ−1(CH) is defined. Let
v ∈ φ−1(CH). Then v /∈ D and therefore v is in some component CG of G\D. Observation 5
implies that φR = φ|D∪CG is a homomorphism from G[D ∪ CG] to H[φ(D) ∪ CH ] that is
locally surjective for every v ∈ V (CG).

Now |V (CG)| < |V (CH)|, so there must be a vertex in V (CH) \ φR(CG). Because CH is
connected, there is an edge xy ∈ E(CH) such that x ∈ V (CH) \φR(CG) and y ∈ φR(V (CG)).
But then, the mapping φz : NG(z)→ NH(y) is not surjective for any vertex z ∈ φ−1

R (y). J

2.4 Integer Linear Programming
Given a set X of variables and a set C of linear constraints (i.e. inequalities) over the
variables in X with integer coefficients, the task in the feasibility variant of integer linear
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programming (ILP) is to decide whether there is an assignment α : X → Z of the variables
satisfying all constraints in C. We will use the following well-known result by Lenstra [54].

I Proposition 7 ([27, 36, 45, 54]). ILP is fpt parameterized by the number of variables.

3 Our Algorithmic Framework

In this section we present our main algorithmic framework that will allow us to show that
LSHom, LBHom and Role Assignment are fpt parameterized by k+c, whenever the guest
graph has c-deletion set number at most k. To illustrate the main ideas behind our framework,
let us first explain these ideas for the examples of LSHom and LBHom. In this case we
are given G and H and we know that G has a c-deletion set of size at most k. Because of
Lemma 6, it then follows that if (G,H) is a yes-instance of LSHom or LBHom, then H also
has a c-deletion set of size at most k. Informally, our next step, which is given in Section 3.1,
is to compute a small (i.e. with size bounded by a function of k + c) set Φ of partial locally
surjective homomorphisms such that (1) every locally surjective homomorphism from G to
H augments some φP ∈ Φ and (2) for every φP ∈ Φ, the domain of φP is a (k, c)-extended
deletion set of G and the co-domain of φP is a c′-deletion set of H, where c′ is bounded by
a function of k + c. Here and in what follows, we say that a function φ : V (G) → V (H)
augments (or is an augmentation of) a partial function φP : VG → VH , where VG ⊆ V (G) and
VH ⊆ V (H) if v ∈ VG ⇔ φ(v) ∈ VH and φ|VG = φP . This allows us to reduce our problems
to (boundedly many) subproblems of the following form: Given a (k, c)-extended deletion
set DG for G, a c′-deletion set DH for H, and a locally surjective (respectively bijective)
homomorphism φP from DG to DH , find a locally surjective homomorphism φ from G to H
that augments φP . In Section 3.2 we will then show how to formulate this subproblem as an
integer linear program and in Section 3.3 we will show that we can efficiently construct and
solve the ILP for this subproblem. Importantly, our ILP formulation will allow us to solve a
much more general problem, where the host graph H is not explicitly given, but defined in
terms of a set of linear constraints. We will then exploit this in Section 4 to solve not only
LSHom and LBHom, but also the Role Assignment problem.

3.1 Partial Homomorphisms for the Deletion Set
For a graph G and m ∈ N we let Dm

G := {v ∈ V (G) | degG(v) ≥ m}. The aim of this
subsection is to show that there is a small set Φ of partial homomorphisms such that every
locally surjective (respectively bijective) homomorphism from G to H augments some φP ∈ Φ
and, for every φP ∈ Φ, the domain of φP is a (k, c)-extended deletion set for G of size
at most k and its co-domain is a c′-deletion set of size at most k for H. The main idea
behind finding this set Φ is to consider the set of high degree vertices in G and H, i.e. the
sets Dk+c

G and Dk+c
H . As it turns out (see Lemma 8), for every subset D ⊆ Dk+c

G , D is a
(k − |D|, c)-extended deletion set for G of size at most k and Dk+c

H is a c′-deletion set for H
of size at most k, where c′ = kc(k + c). Moreover, as we will show in Lemma 9, every locally
surjective (respectively bijective) homomorphism from G to H has to augment a locally
surjective (respectively bijective) homomorphism from some induced subgraph of G[Dk+c

G ] to
DH = Dk+c

H . Intuitively, this holds because for every locally surjective homomorphism, only
vertices of high degree in G can be mapped to a vertex of high degree in H and for every
vertex in H, there must be a vertex in G that is mapped to it.

I Lemma 8. Let G be a graph. If G has a c-deletion set of size at most k, then the set
Dk+c
G is a kc(k + c)-deletion set of size at most k. Furthermore, every subset D ⊆ Dk+c

G is a



10 An Algorithmic Framework for Locally Constrained Homomorphisms

(k − |D|, c)-extended deletion set of G.

Proof. Let D′ be a c-deletion set of G of size at most k. Then every vertex v ∈ V (G)\D′ has
degree at most k + c− 1, as each of its neighbours lies either in its own component of G \D′
or in D′. Hence Dk+c

G ⊆ D′ and therefore |Dk+c
G | ≤ k. Let C1, . . . , Cm be the components of

G \D′ that contain a vertex adjacent to a vertex in D′ \Dk+c
G . Since |D′ \Dk+c

G | ≤ k and
every vertex in D′ \Dk+c

G has degree at most k + c− 1, we find that m ≤ k(k + c− 1) and
|C1∪· · ·∪Cm∪(D′\Dk+c

G )| ≤ k+kc(k+c−1) ≤ kc(k+c). Since every component in G\Dk+c
G

is either contained in a component of G \D′ or contained in C1 ∪ · · · ∪Cm ∪ (D′ \Dk+c
G ), we

find that Dk+c
G is a kc(k + c)-deletion set.

Let D ⊆ Dk+c
G ⊆ D′. We will show that D is a (k − |D|, c)-extended deletion set of G.

The components of G \D that contain no vertices from D′ \D are components of G \D′
and thus have size at most c. Consider a component C of G \D that contains at least one
vertex from D′ \D. Let DC = V (C)∩ (D′ \D). Every component of C \DC is a component
of G \D′ and thus has size at most c. Moreover, DC has size at most |D′ \D| ≤ k − |D|.
We conclude that every component of G \D either has size at most c or has a c-deletion set
of size at most k − |D|. Furthermore, since there are at most k − |D| vertices in Dk+c

G \D,
and every component of G \D that has size larger than c must contain a vertex of Dk+c

G ,
it follows that there are at most k − |D| components of G \D that have size larger than c.
This completes the proof. J

Using the above lemma, we now get to the most important result of this subsection, which
informally speaking shows that there are only boundedly many possible pre-images of the
vertices in Dk+c

H and, moreover, these pre-images are subsets of Dk+c
G .

I Lemma 9. Let G and H be non-empty connected graphs such that G has a c-deletion set
of size at most k. If there is a locally surjective homomorphism φ from G to H, then there
is a set D ⊆ Dk+c

G and a locally surjective homomorphism φP from G[D] to H[Dk+c
H ] such

that φ augments φP . If φ is locally bijective, then D = Dk+c
G and φP is a locally bijective

homomorphism.

Proof. By Lemma 8, Dk+c
G is a kc(k + c)-deletion set of size at most k. Furthermore,

observe that for a locally surjective homomorphism φ from G to H, the inequality degG(v) ≥
degH(φ(v)) holds for every v ∈ V (G) (degG(v) = degH(φ(v)) holds in the locally bijective
case). Since φ is surjective by Observation 3, this implies that φ(Dk+c

G ) ⊇ Dk+c
H (and

if φ is locally bijective, then φ(Dk+c
G ) = Dk+c

H ). By Lemma 6, φ(Dk+c
G ) is a kc(k + c)-

deletion set for H. Let D = φ−1(Dk+c
H ), so D ⊆ Dk+c

G (note that D = Dk+c
G if φ is locally

bijective). Now φ|D is a surjective map from D to Dk+c
H . Furthermore, φ(Dk+c

G \D)∩φ(D) =
φ(Dk+c

G \ D) ∩ Dk+c
H = ∅. Moreover, for every v ∈ V (G) \ Dk+c

G , φ(v) /∈ Dk+c
H = φ|D(D),

since degG(v) ≥ degH(φ(v)). Furthermore, φ|D is a homomorphism from G[D] to H[Dk+c
H ]

because φ is a homomorphism. We argue that φ|D is locally surjective (bijective resp.)
by contradiction. Suppose φ|D is not locally surjective. Then there is a vertex u ∈ D

and a neighbour v ∈ Dk+c
H of φ|D(u) such that v /∈ φ|D(NG(u) ∩ D). Since φ is locally

surjective, there must be w ∈ NG(u) \D such that φ(w) = v. This contradicts the fact that
φ(V (G) \D) ∩Dk+c

H = ∅. Hence φ|D is a locally surjective homomorphism. In the bijective
case we just need to additionally observe that φ|D restricted to the neighbourhood of any
vertex v ∈ D must be injective. This completes the proof. J

Finally, we show that we can easily compute all possible pre-images of Dk+c
H in any locally

surjective (respectively bijective) homomorphism from G to H.



L. Bulteau, K. K. Dabrowski, N. Köhler, S. Ordyniak, D. Paulusma 11

I Lemma 10. Let G and H be non-empty connected graphs and let k, c be non-negative
integers. For any D ⊆ Dk+c

G , we can compute the set ΦD of all locally surjective (respectively
bijective) homomorphisms φP from G[D] to H[Dk+c

H ] in O(|D||D|+2) time. Furthermore,
|ΦD| ≤ |D||D|.

Proof. Let D ⊆ Dk+c
G and suppose there is a surjective map φP : D → Dk+c

H . Then for every
vertex v ∈ Dk+c

H , there must be a vertex x ∈ D such that φP (x) = v. Therefore |Dk+c
H | ≤ |D|,

so if this condition fails, then we can immediately return that ΦD = ∅.
Otherwise, for each vertex of |D|, there are |Dk+c

H | ≤ |D| possible choices for where a map
φP : D → Dk+c

H could map this vertex. We can list all of the at most |D||D| resulting maps
in O(|D||D|) time, and for each such map, we can check whether it is a locally surjective
(respectively bijective) homomorphism in O(|D|2) time. J

3.2 ILP Formulation

In this section, we will show how to formulate the subproblem obtained in the previous
subsection in terms of an ILP instance. More specifically, we will show that the following
problem can be formulated in terms of an ILP: given a partial locally surjective (respectively
bijective) homomorphism φP from some induced subgraph DG of G to some induced subgraph
DH of H, can this be augmented to a locally surjective (respectively bijective) homomorphism
from G to H? See the top of Figure 1 for an illustration of the subproblem for the simpler
case when DG is a vertex cover of G and we are looking for a locally bijective homomorphism.
Moreover, we will actually show that for this to work, the host graph H does not need to be
given explicitly, but can instead be defined by a certain system of linear constraints.

The main ideas behind our translation to ILP are as follows. Suppose that there is
a locally surjective (respectively bijective) homomorphism φ from G to H that augments
φP . Because φ augments φP , Observation 5 implies that φ maps every component CG of
G \ V (DG) entirely to some component CH of H \ V (DH), moreover, φ|V (DG)∪V (CG) is
already locally surjective (respectively bijective) for every vertex v ∈ V (CG). Our aim now
is to describe φ in terms of its parts consisting of locally surjective (respectively bijective)
homomorphisms from extensions of DG in G, i.e. sets of components of G \DG plus DG, to
simple extensions of DH in H, i.e. single components of H \DH plus DH . Note that the main
difficulty comes from the fact that we need to ensure that φ is locally surjective (respectively
bijective) for every d ∈ DG and not only for the vertices within the components of G \DG.
This is why we need to describe the parts of φ using sets of components of G \DG and not
just single components. However, as we will show, it will suffice to consider only minimal
extensions of DG in G, where an extension is minimal if no subset of it allows for a locally
surjective (respectively bijective) homomorphism from it to some simple extension of DH in
H. The fact that we only need to consider minimal extensions is important for showing that
we can compute the set of all possible parts of φ efficiently (see Section 3.3). Having shown
this, we can create an ILP that has one variable xExtGExtH for every minimal extension ExtG
and every simple extension ExtH such that there is a locally surjective (respectively bijective)
homomorphism from ExtG to ExtH that augments φP . The value of the variable xExtGExtH
now corresponds to the number of parts used by φ that map minimal extensions isomorphic
to ExtG to simple extensions isomorphic to ExtH that augment φP . We can then use linear
constraints on these variables to ensure that:
(SB2’) H contains exactly the right number of extensions isomorphic to ExtH required by

the assignment for xExtGExtH ,
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Figure 1 Top: A locally bijective homomorphism from a graph G (left) to a graph H (right),
augmenting a partial homomorphism mapping the vertices of the vertex cover DG into DH = {A,B}.
The ith vertex of G mapped to some vertex X of H is denoted xi. Vertices in G \DG are grouped by
type (e.g. {c1} and {f1} have type T 1

G), each T i
G is characterised by the neighbours of its vertices,

recalled below each column. Vertices in H \DH all have the same type TH . Rows Exti
G are extensions

that can be minimally φP -B-mapped to TH (in particular, each ai and bi must have a neighbour in
some type in Exti

g, which can be used as a pre-image of any vertex in {C,D,E,F}. Using Ext1
G once

(for colour C), Ext2
G twice (for colours D and E) and Ext3

G once (for colour F) yields the given locally
bijective homomorphism, and it can be verified that each ai and bi indeed has all four colours in its
neighbourhood.
Bottom: a locally surjective homomorphism from a graph G (left) to a graph H (right), where DG

is a 6-deletion set. The extensions Ext1
G,Ext2

G,Ext3
G can be minimally φP -S-mapped to T 1

H ; only
Ext3

G can also be minimally φP -S-mapped to T 2
H . Furthermore, T 1

G and T 2
G can each be weakly

φP -S-mapped to some type in H (respectively T 1
H and T 2

H). Using pair (Ext2
G, T

1
H) and (Ext3

G, T
2
H)

once is sufficient to ensure that the mapping is locally surjective for each ai.
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(B1’) G contains exactly the right number of minimal extensions isomorphic to ExtG required
by the assignment for xExtGExtH (if φ is locally bijective),

(S1’) G contains at least the number of minimal extensions isomorphic to ExtG required by
the assignment for xExtGExtH (if φ is locally surjective),

(S3’) for every simple extension ExtG of G that is not yet used in any part of φ, there is a
homomorphism from ExtG to some simple extension of DH in H that augments φP and
is locally surjective for every vertex in ExtG \DG (if φ is locally surjective).

Together, these constraints ensure that there is a locally surjective (respectively bijective)
homomorphism φ from G to H that augments φP . See also the bottom of Figure 1 for an
illustration of the main ideas. We are now ready to formalise these ideas. To do so, we need
the following additional notation.

Given a graph D, an extension for D is a graph E containing D as an induced subgraph.
It is simple if E \D is connected, and complex in general. Given two extensions Ext1,Ext2
of D, we write Ext1 ∼D Ext2 if there is an isomorphism τ from Ext1 to Ext2 with τ(d) = d

for every d ∈ D. Then ∼D is an equivalence relation. Let the types of D, denoted TD, be
the set of equivalence classes of ∼D of simple extensions of D. We write T cD to denote the
set of types of D of size at most |D|+ c, so |T cD| ≤ (|D|+ c)2(|D|+c2 ).

Given a complex extension E of D, let C be a connected component of E \D. Then C
has type T ∈ TD if E[D∪C] ∼D T (depending on the context, we also say that the extension
E[D ∪ C] has type T ). The type-count of E is the function tcE : TD → N such that tcE(T )
for T ∈ TD is the number of connected components of E \D with type T (in particular if
E is simple, the type-count is 1 for E and 0 for other types). Note that two extensions are
equivalent if and only if they have the same type-counts; this then also implies that there
is an isomorphism τ between the two extensions satisfying τ(d) = d for every d ∈ D. We
write E � E′ if tcE(T ) ≤ tcE′(T ) for all types T ∈ TD. If E is an extension of D, we write
TD(E) = {T ∈ TD | tcE(T ) ≥ 1} for the set of types of E and ED(E) for the set of simple
extensions of E. Moreover, for T ∈ TD, we write ED(E, T ) for the set of simple extensions in
E having type T .

A target description is a tuple (DH , c,CH) where DH is a graph, c is an integer and
CH is a set of linear constraints over variables xT , T ∈ T cDH . Note that a type-count for
DH is an integer assignment of the variables xT . A graph H satisfies the target description
(DH , c,CH) if it is an extension of DH , tcH(T ) = 0 for T /∈ T cDH , and setting xT = tcH(T )
for all T ∈ T cDH satisfies all constraints in CH.

In what follows, we assume that the following are given: the graphs DG, DH , an extension
G of DG, a target description D = (DH , c,CH), and a locally surjective (respectively bijective)
homomorphism φP : DG → DH . Let ExtG be an extension of DG with ExtG � G and let
TH ∈ T cDH ; note that we only consider TH ∈ T cDH , because we assume that TH is a type of a
simple extension of a graph H that satisfies the target description D. We say ExtG can be
weakly φP -S-mapped to a type TH if there exists an augmentation φ : ExtG → TH of φP such
that φ is locally surjective for every v ∈ ExtG \DG. We say that ExtG can be φP -S-mapped
(respectively φP -B-mapped) to a type TH if there exists an augmentation φ : ExtG → TH of
φP such that φ is locally surjective (respectively locally bijective). Furthermore, ExtG can be
minimally φP -S-mapped (respectively minimally φP -B-mapped) to TH if ExtG can be φP -S-
mapped (respectively φP -B-mapped) to TH and no other extension Ext′G with Ext′G � ExtG
can be φP -S-mapped (respectively φP -B-mapped) to TH . Let wSM(G,DG,D, φP ) be the
set of all pairs (TG, TH) such that TG ∈ TDG(G) can be weakly φP -S-mapped to TH . Let
SM(G,DG,D, φP ) be the set of all pairs (ExtG, TH) with ExtG � G, TH ∈ T cDH such that
ExtG can be minimally φP -S-mapped to TH and let BM(G,DG,D, φP ) be the set of all pairs
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(ExtG, TH) with ExtG � G, TH ∈ T cDH such that ExtG can be minimally φP -B-mapped to
TH . See also the bottom of Figure 1 for an illustration of these notions.

We now build a set of linear constraints. To this end, besides variables xT for T ∈ TH ,
we introduce variables xExtGTH for each (ExtG, TH) ∈ SM (respectively BM), where here
and in what follows wSM = wSM(G,DG,D, φP ), SM = SM(G,DG,D, φP ) and BM =
BM(G,DG,D, φP ).
(S1)

∑
(ExtG,TH)∈SM tcExtG(TG) ∗ xExtGTH ≤ tcG(TG) for every TG ∈ TDG(G),

(B1)
∑

(ExtG,TH)∈BM tcExtG(TG) ∗ xExtGTH = tcG(TG) for every TG ∈ TDG(G),
(S2)

∑
ExtG:(ExtG,TH)∈SM xExtG,TH = xTH for every TH ∈ TDH ,

(B2)
∑

ExtG:(ExtG,TH)∈BM xExtG,TH = xTH for every TH ∈ TDH ,
(S3)

∑
(TG,TH)∈wSM xTH ≥ 1 for every TG ∈ TDG(G).

We refer to the bottom of Figure 1 for an illustration and note that (S1) corresponds to
(S1’), (B1) corresponds to (B1’), (S2) and (B2) correspond to (SB2’), and (S3) corresponds
to (S3’).

I Lemma 11. Let DG and DH be graphs, let G be an extension of DG and let D =
(DH , c,CH) be a target description. Moreover, let φP : V (DG) → V (DH) be a locally
surjective (respectively bijective) homomorphism from DG to DH . There exists a graph H
satisfying D and a locally surjective (respectively bijective) homomorphism φ augmenting φP
if and only if the equation system (CH, S1, S2, S3) (respectively (CH, B1, B2)) admits a
solution.

Proof. Towards showing the forward direction of the claim, let H be a graph satisfying
D = (DH , c,CH) and let φ be a locally surjective (respectively bijective) homomorphism
that augments φP .

Consider TH ∈ TDH (H) and let ExtH ∈ EDH (H,TH). Let P = G[φ−1(ExtH)]; note that
DG ⊆ V (P ) and therefore P is a (possibly) complex extension of DG. Then because of
Observation 4, we obtain that φR = φ|P is a locally surjective (respectively bijective) homo-
morphism that augments φP from P to ExtH . Moreover, because of Observation 5, it follows
that P \DG is the union of a set Wφ(ExtH) of components of G−DG. Therefore, Wφ(ExtH)
can be φP -S-mapped (respectively φP -B-mapped) to TH . Moreover, if Wφ(ExtH) can be
φP -S-mapped to TH , then Wφ(ExtH) also contains a subset Wmin

φ (ExtH) of components
that can be minimally φP -S-mapped to TH .

Let wSM = wSM(G,DG,D, φP ), SM = SM(G,DG,D, φP ) and BM = BM(G,DG,D, φP ).
Let XT = {xTH : TH ∈ TDH (H) }, XM = : xExtGTH : (ExtG, TH) ∈ SM } (respectively
XM = {xExtGTH : (ExtG, TH) ∈ BM }), and X = XT ∪XM . Let α : X → N be defined by
setting:

α(xTH ) = tcH(TH) and
α(xExtGTH ) = |{ExtH ∈ EDH (H,TH) : tcExtG = tcWmin

φ
(ExtH) }| (in the locally surjective

case)
α(xExtGTH ) = |{ExtH ∈ EDH (H,TH) : tcExtG = tcWφ(ExtH) }| (in the locally bijective
case)

We claim that the assignment α satisfies the equation system (CH, S1, S2, S3) (respectively
the equation system (CH, B1, B2)). Because H satisfies D, it follows that α satisfies CH.

We start by showing the claim for the locally surjective case. Towards showing that (S3)
is satisfied, consider a type TG ∈ TDG(G) and let ExtG ∈ EDG(G,TG). Then, because of
Observation 5, the mapping φ|ExtG maps ExtG to some type TH ∈ TDH (H) and therefore
shows that ExtG can be φP -S-mapped to TH .
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Towards showing (S1), let TG ∈ TDG(G). Because of Observation 5, every extension
ExtG ∈ EDG(G,TG) satisfies φ(ExtG) ⊆ ExtH for some simple extension ExtH of DH . In
other words ExtG is contained in the pre-image of exactly one simple extension ExtH , showing
that every extension ExtG ∈ EDG(G,TG) is counted at most once on the left side of the
inequality in (S1) and therefore the left side is at most tcG(TG).

Towards showing (S2), let TH ∈ TDH . Then, because Wmin
φ (ExtH) 6= Wmin

φ (Ext′H) for
every two distinct ExtH ,Ext′H ∈ EDH (H,TH), we obtain:∑
ExtG:(ExtG,TH)∈SM

α(xExtGTH ) =
∑

ExtG:(ExtG,TH)∈SM

|{ExtH ∈ EDH (H,TH) : tcExtG = tcWmin
φ

(ExtH) }|

= tcH(TH)
= α(TH),

as required.
Finally, if φ is locally bijective, we only have to show (B1) and (B2), which can be shown

very similarly to (S1) and (S2). That is, (B1) can be shown very similarly to (S1) by using
the additional observation that due to the definition of α in terms of Wφ(ExtH) instead
of Wmin

φ (ExtH), every simple extension ExtG also occurs in the pre-image of at least one
simple extension ExtH . Moreover, (B2) can be shown in the same manner as (S2), since
Wφ(ExtH) 6= Wφ(Ext′H) also holds for every two distinct ExtH ,Ext′H ∈ EDH (H,TH).

Towards showing the reverse direction, let α : X → N be an assignment satisfying the
equation system (CH, S1, S2, S3) (respectively the equation system (CH,B1,B2)). Let H
be the unique graph consisting of DH and α(TH) extensions of DH of type TH for every
TH ∈ TDH . Then H satisfies (DH , c,CH) and tcH(TH) = α(xTH ).

We now define a function φ : V (G)→ V (H), which will be a locally surjective (respectively,
locally bijective) homomorphism that augments φP as follows.

Let A be the multiset containing each pair (ExtG, TH) ∈ SM (respectively BM) exactly
α(xExtSTH ) times. Because of (S2) (respectively (B2)), there is a bijection γTH betweenATH =
{ (ExtG, TH) : (ExtG, TH) ∈ A} and EDH (H,TH) for every TH ∈ TDH (H). Let γ be the
bijection between A and the extensions EDH (H) given by γ((ExtG, TH)) = γTH ((ExtG, TH)).

Because the proof now diverges quite significantly for the locally surjective and locally
bijective cases, we start by showing the remainder of the proof for the former case and then
show how to adapt the proof in latter (easier) case.

Because of (S1), there is a function β from A to the complex extensions of G such that:
tcβ((ExtG,TH)) = tcExtG for every (ExtG, TH) ∈ A,
β(A) ∩ β(A′) = ∅ for every two distinct A and A′ in A.

Let A = (ExtG, TH) ∈ A. We set PA = β(A) and IA = γ(A) Because A ∈ SM, there is
a locally surjective homomorphism φA from PA to IA that augments φP . Let EA be the
set of simple extensions ExtG in EDG(G) for which there is an A ∈ A such that ExtG is an
induced subgraph of β(A). Moreover, let ĒA be the set of all remaining simple extensions
in EDG(G), i.e. the set of all simple extensions ExtG in EDG(G) \ EA. Consider a simple
extension ExtG in ĒA. Then, because of (S3), there is a TH ∈ TDH (H) and a corresponding
extension ExtH ∈ EDH (H,TH) such that there is a homomorphism φExtG from ExtG to ExtH
that augments φP , which is locally surjective for every v ∈ V (ExtG − DG). We are now
ready to define φ : V (G)→ V (H). That is we set φ(v) to be equal to:

φP (v) if v ∈ DG,
φExtG(v) if v ∈ V (ExtG) for some simple extension ExtG ∈ ĒA, and
φA(v) if v ∈ V (ExtG −DG) for some ExtG = β(A) and A ∈ A.
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It remains to show that φ is a locally surjective homomorphism from G to H that augments
φP . Clearly, φ augments φP by definition and because φExtG does so too for every simple
extension ExtG in ĒA, as does φA for every A ∈ A. Moreover, φ is also a homomorphism,
because every edge {u, v} ∈ E(G) is contained in G[ExtG] for some simple extension ExtG in
EDG(G) and φ maps ExtG according to some homomorphism φExtG (if ExtG ∈ ĒA or some
homomorphism φA (otherwise). For basically the same reason, i.e. because every φExtG
and every φA is locally surjective for every vertex in V (G) \DG, φ is locally surjective for
every vertex v ∈ V (G) \ DG. Towards showing that φ is also locally surjective for every
d ∈ DG, let nH be any neighbour of φ(d) in H. If nH ∈ φP (DG), then there is a neighbour
nG of d in DG with φ(nG) = nH , because φP is locally surjective. If on the other hand
nH ∈ V (ExtH − DH) for some ExtH ∈ TDH (H,TH) with TH ∈ TDH (H), then there is a
neighbour nG of d in β(γ−1(TH)) with φ(nG) = nH , because φ (restricted to β(γ−1(TH))) is
a locally surjective homomorphism from β(γ−1(TH)) to ExtH .

This completes the proof for the locally surjective case. We now complete the proof
for the locally bijective case. First note that because of (B1), the function β from A to
the complex extensions of G is bijective. Moreover, if A = (ExtG, TH) ∈ A, then because
A ∈ BM, there is a locally bijective homomorphism φA from PA = β(A) to IA = γ(A) that
augments φP . This now allows us to directly define φ : V (G)→ V (H). That is, we set φ(v)
to be equal to:

φP (v) if v ∈ DG and
φA(v) if v ∈ V (ExtG −DG) for some ExtG = β(A) and A ∈ A.

It remains to show that φ is a locally bijective homomorphism from G to H that augments
φP . Note that we can assume that φ is already a locally surjective homomorphism that
augments φP , using the same arguments as for the locally surjective case. Thus it only
remains to show that φ is also locally injective for every d ∈ DG. Suppose not, then there are
two distinct neighbours nG and n′G that are mapped to the same neighbour nH of φ(d) in
H. This is clearly not possible if both nG and n′G are in DG because φP is locally bijective
on DG. Moreover, this can also not be the case if exactly one of nG and n′G is in DG,
because then nH ∈ V (DH), but because φ augments φP , the other cannot be mapped to
DH . Therefore, we can assume that nG and n′G are outside of DG. Let ExtH ∈ EDH (H) be
the simple extension containing nH . Then, nG and n′G must by mapped by φγ−1(ExtH), but
this is not possible because φγ−1(ExtH) is locally bijective. J

3.3 Constructing and Solving the ILP
The main aim of this section is to show the following theorem.

I Theorem 12. Let G be a graph, let DG be a (k, c)-extended deletion set (respectively a
c-deletion set) of size at most k for G, let D = (DH , c

′,CH) be a target description and let
φP : DG → DH be a locally surjective (respectively bijective) homomorphism from DG to DH .
Then, deciding whether there is a locally surjective (respectively bijective) homomorphism
that augments φP from G to any graph satisfying CH is fpt parameterized by k + c+ c′.

To prove Theorem 12, we need to show that we can construct and solve the ILP instance
given in the previous section. The main ingredient for the proof of Theorem 12 is Lemma 17,
which shows that we can efficiently compute the sets wSM, SM, and BM. We start by
showing that the set TDG(G) can be computed efficiently and has small size.

I Lemma 13. Let G be a graph and let DG be a (k, c)-extended deletion set of size at most
k for G. Then, TDG(G) has size at most k+ (|DG|+ c)2(|DG|+c2 ) and computing TDG(G) and
tcG is fpt parameterized by |DG|+ k + c.
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Proof. Because |TG(G) \ T cG| ≤ k and |T cG| ≤ (|DG|+ c)2(|DG|+c2 ), we obtain that |TDG(G)| ≤
k + (|DG| + c)2(|DG|+c2 ). Moreover, we can compute TDG(G) starting from the empty set
and adding a simple extension G[DG ∪ C] for some component C of G \DG if G[DG ∪ C]
is not equivalent with respect to ∼DG to any element already added to TDG(G). Note that
checking whether G[DG ∪ C] ∼D G[DG ∪ C ′] for two components C and C ′ of G \DG is
fpt parameterized by |DG|+ k + c, because G[DG ∪ C] has treewidth at most |DG|+ k + c

for every component C of G \DG (because of Proposition 2) and graph isomorphism is fpt
parameterized by treewidth [56]. The same procedure can now also be used to compute all
the non-zero entries of the function tcG (i.e. the entries where tcG(T ) 6= 0), which provides
us with a compact representation of tcG. J

The following lemma is crucial for computing the sets SM and BM that are required
to construct the ILP instance. Informally, we will show that if (ExtG,ExtH) ∈ SM (or
(ExtG,ExtH) ∈ BM), then ExtG consists of only boundedly many (in terms of some function
of the parameters) components, which will allow us to enumerate all possibilities for ExtG in
fpt-time.

I Lemma 14. Let DG and DH be graphs and let φP be a locally surjective (respectively
locally bijective) homomorphism from DG to DH . Moreover, let ExtG be an extension of DG

that can be minimally φP -S-mapped (respectively minimally φP -B-mapped) to an extension
ExtH of DH . Then, ExtG \DG consists of at most |DG||ExtH \DH | components.

Proof. We first show the statement of the lemma for the case when φP is locally surjective
and therefore ExtG can be minimally φP -S-mapped to ExtH . Let φ : V (ExtG)→ V (ExtH)
be a locally surjective homomorphism that augments φP and exists because ExtG can be
φP -S-mapped to ExtH . Let Ext′G be an extension of ExtG with Ext′G � ExtG. Then, because
of Observation 5, it follows that φ|Ext′

G
is a homomorphism from Ext′G to ExtH that is locally

surjective for every v ∈ Ext′G \DG. Therefore, φ|Ext′
G
is a locally surjective homomorphism

from Ext′G to ExtH if and only if Ext′G is such that φ|Ext′
G
is locally surjective for every

d ∈ DG. That is, for every d ∈ DG and every neighbour nH of φ(d) in Ext′H , there has
to exist a neighbour nG of d in Ext′G such that φ(nG) = nH . Since this clearly holds if
nH ∈ DH , because φP is a locally surjective homomorphism from DG to DH , we can assume
that the above only has to hold for every d ∈ DG and nH ∈ ExtH \ DH . Because φ is a
locally surjective homomorphism from ExtG to ExtH , it follows that for every d ∈ DG and
every neighbour nH of φ(d) in ExtH , there is a component, say Cd,nH , containing a neighbour
nG of d in ExtG such that φ(nG) = φ(nH); note that because φ augments φP , it follows that
nG /∈ DG because nH /∈ DH . Let Ext′G be the extension of DG consisting of DG and all
components Cd,nH for every d ∈ D and nH ∈ ExtH \DH as above. Then, φ|Ext′

G
is a locally

surjective homomorphism from Ext′G to ExtH and since ExtG is minimally φP -S-mapped to
ExtH and Ext′G � ExtG, it follows that Ext′G = ExtG. However, Ext′G \DG consists of at
most one component for every d ∈ DG and every nH ∈ ExtH \DH and therefore it consists
of at most |DG||ExtH \DH | components, which concludes the proof for the case when φP is
locally surjective.

It remains to show the statement of the lemma for the case when φP is locally bijective
and ExtG is minimally φP -B-mapped to ExtH . Let φ : V (ExtG) → V (ExtH) be a locally
bijective homomorphism that augments φP and exists because ExtG can be φP -B-mapped
to ExtH . Because φ is locally bijective, it is also locally surjective and therefore we can
obtain the components Cd,nH of ExtG \DG for d ∈ DH and nH ∈ ExtH \DH using the same
arguments as in the case when φ was locally surjective. As before, let Ext′G be the extension
of DG containing all components Cd,nH . Then, as we showed above, φ|Ext′

G
is a locally
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surjective homomorphism from Ext′G to ExtH . Moreover, φ|Ext′
G

is also locally injective,
because so is φ. Therefore, φ|Ext′

G
is a locally bijective homomorphism from Ext′G to ExtH ,

which because ExtG can be minimally φP -B-mapped to ExtH implies that ExtG = Ext′G,
which concludes the proof of the lemma, because Ext′G consists of at most |DG||ExtH \DH |
components. J

The following proposition is a slight generalisation of [15, Theorem 4] and will allow us
to efficiently decide whether an extension ExtG can be (weakly) S-mapped (respectively
B-mapped) to some extension ExtH .

I Lemma 15 ([15, Theorem 4]). Let G and H be graphs and let φP : DG → DH be
a locally surjective (respectively bijective) homomorphism from DG to DH for some sub-
graphs DG of G and DH of H. Then deciding whether there is a locally surjective (re-
spectively bijective) homomorphism from G to H that augments φP can be achieved in
O(|V (G)|((|V (H)2∆(H))ω)2ω∆(H)) time and is therefore fpt parameterized by ω + |V (H)|,
where ω is the treewidth of G.

Proof. In [15, Theorem 4], the authors provide an algorithm that, given a graph G and
a graph H, decides in O(|V (G)|((|V (H)2∆(H))ω)2ω∆(H)) time whether there is a locally
surjective homomorphism from G to H, where ω is the treewidth of G. The algorithm uses a
standard dynamic programming approach on a tree decomposition of G (of width ω), and it
is straightforward to verify that the algorithm can be adapted with only minor modifications
to an algorithm using the same run-time that decides whether there is a locally bijective
homomorphism from G to H. Similarly, it is straightforward to adapt their algorithm to the
case that one is additionally given a locally surjective (respectively bijective) homomorphism
φP from some induced subgraph DG of G to some induced subgraph DH of H and one
only looks for a locally surjective (respectively bijective) homomorphism from G to H that
augments φP . J

The following corollary now follows directly from Lemma 15 and the definition of (weakly)
S-mapped (respectively B-mapped).

I Corollary 16. Let DG and DH be graphs and let φP be a locally surjective (respectively
bijective) homomorphism from DG to DH . Let ExtG be an extension of DG having treewidth
at most ω and let ExtH be an extension of DH . Then, testing whether ExtG can be weakly
φP -S-mapped, φP -S-mapped, or φP -B-mapped to ExtH is fpt parameterized by ω + |ExtH |.

We are now ready to show that we can efficiently compute the sets wSM, SM, and BM,
which is the last crucial step towards constructing the ILP instance.

I Lemma 17. Let G be a graph, let DG be a (k, c)-extended deletion set (respectively a
c-deletion set) of size at most k for G, let D = (DH , c

′,CH) be a target description and
let φP be a locally surjective (respectively bijective) homomorphism from DG to DH . Then,
the sets wSM = wSM(G,DG,D, φP ) and SM = SM(G,DG,D, φP ) (respectively the set
BM = BM(G,DG,D, φP )) can be computed in fpt-time parameterized by k + c+ c′ and |SM|
(respectively |BM|) is bounded by a function depending only on k + c + c′. Moreover, the
number of variables in the equation system (CH, S1, S2, S3) (respectively (CH, B1, B2)) is
bounded by a function depending only on k + c+ c′.

Proof. We only show the lemma for the set SM, since the proof for the set wSM can be seen as
a special case and the proof for the set BM is identical. Let (ExtG, TH) ∈ SM. Then, ExtG is
an extension of DG with ExtG � G, TH ∈ T c

′

DH
, and ExtG can be minimally φP -S-mapped to
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TH . Because ExtG can be minimally φP -S-mapped to ExtH , Lemma 14 implies that ExtG\DG

consists of at most ` = |DG||ExtH \DH | components and, because ExtG � G, these are also
components of G \DG. Therefore, there are at most (|TDG(G)|)` non-isomorphic possibilities
for ExtG, which together with Lemma 13 and the facts that ` ≤ kc′ and |T c′DH | ≤ (k+c′)2(k+c′

2 )

shows that |SM| ≤ (|TDG(G)|)`|T c′DH | ≤ (k + (k + c)2(k+c
2 ))`((k + c′)2(k+c′

2 )). Therefore, |SM|
is bounded by a function depending only on k+ c+ c′. Towards showing that we can compute
SM is fpt-time parameterized by k + c+ c′, first note that the set TDG(G) can be computed
in fpt-time parameterized by k+ c using Lemma 13. Similarly, the set T c′DH can be computed
in fpt-time parameterized by k + c′ using the same idea as in Lemma 13. This now allows
us to compute the set A containing all non-isomorphic possibilities for ExtG, i.e. the set
of all extensions ExtG of DG with ExtG � G and

∑
TG∈TDG (G) tcExtG(TG) ≤ ` in fpt-time

parameterized by k + c+ c′, i.e. in time at most (|TDG(G)|)`. But then, SM is equal to the
set of all pairs (ExtG,ExtH) ∈ A× T c′DH such that ExtG can be minimally φP -S-mapped to
ExtH . Moreover, for every such pair (ExtG,ExtH) we can test in fpt-time parameterized
by k + c+ c′ whether ExtG can be φP -S-mapped to ExtH using Corollary 16, because the
treewidth of ExtG is at most k + c (Proposition 2). Therefore, we can compute SM by
enumerating all pairs (ExtG,ExtH) ∈ A× T c′DH , testing for each of them whether ExtG can
be φP -S-mapped to ExtH using Corollary 16, and keeping only those pairs (ExtG,ExtH)
such that ExtG can be φP -S-mapped to ExtH and ExtG is inclusion-wise minimal among all
pairs (Ext′G,ExtH). J

We are now ready to prove the main result of this subsection.

Proof of Theorem 12. We first compute the sets wSM and SM (respectively the set BM),
which because of Lemma 17 can be achieved in fpt-time parameterized by k + c+ c′. This
now allows us to construct the ILP instance I given by the equation system (CH,S1,S2,S3)
(respectively the equation system (CH,B1,B2)) in fpt-time parameterized by k + c + c′.
Moreover, because the number of variables in I is bounded by a function of k+ c+ c′ and we
can employ Proposition 7 to solve I in fpt-time parameterized by k+ c+ c′. Finally, because
of Lemma 11, it follows that I has a solution if and only if there is a locally surjective
(respectively bijective) homomorphism that augments φP from G to any graph satisfying
CH, which completes the proof of the theorem. J

4 Applications of Our Algorithmic Framework

In this section we show the main results of our paper, which can be obtained as an application
of our framework given in the previous section. Our first result implies that LSHom and
LBHom are fpt parameterized by the fracture number of the guest graph.

I Theorem 18. LSHom and LBHom are fpt parameterized by k + c, where k and c are
such that the guest graph G has a c-deletion set of size at most k.

Proof. Let G and H be non-empty connected graphs such that G has a c-deletion set of
size at most k. Let DH = H[Dk+c

H ]. We first verify whether H has a c-deletion set of size
at most k using Proposition 1. Because of Lemma 6, we can return that there is no locally
surjective (and therefore also no bijective) homomorphism from G to H if this is not the case.
Therefore, we can assume in what follows that H also has a c-deletion set of size at most k,
which together with Lemma 8 implies that V (DH) is a kc(k + c)-deletion set of size at most
k for H. Therefore, using Lemma 13, we can compute tcH in fpt-time parameterized by
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k+ c. This now allows us to obtain a target description D = (DH , c
′,CH) with c′ = kc(k+ c)

for H, i.e. D is satisfied only by the graph H, by adding the constraint xT = tcH(TH) to
CH for every simple extension type TH ∈ T c

′

DH
; note that T c′DH can be computed in fpt-time

parameterized by k + c because of Lemma 13.
Because of Lemma 9, we obtain that there is a locally surjective (respectively bijective)

homomorphism φ from G to H if and only if there is a set D ⊆ Dk+c
G and a locally surjective

(respectively bijective) homomorphism φP from DG = G[D] to DH such that φ augments
φP . Therefore, we can solve LSHom by checking, for every D ⊆ Dk+c

G and every locally
surjective homomorphism φP from DG = G[D] to DH , whether there is a locally surjective
homomorphism from G to H that augments φP . Note that there are at most 2k subsets D
and because of Lemma 10, we can compute the set ΦD for every such subset in O(kk+2) time.
Furthermore, because of Lemma 8, D is a (k− |D|, c)-extended deletion set of size at most k
for G. Therefore, for every D ⊆ Dk+c

G and φp ∈ ΦD, we can employ Theorem 12 to decide in
fpt-time parameterized by k+ c (because c′ = kc(k+ c)), whether there is a locally surjective
(respectively bijective) homomorphism from G to a graph satisfying D that augments φP .
Since H is the only graph satisfying D, this completes the proof of the theorem. J

The proof of the following theorem is similar to the proof of Theorem 18. The major
difference is that H is not given. Instead, we use Theorem 12 for a selected set of target
descriptions. Each of these target descriptions enforces that graphs satisfying it have to be
connected and have precisely h vertices, where h is part of the input for the Role Assignment
problem. Furthermore, we ensure that every graph H satisfying the requirements of the
Role Assignment problem must satisfy at least one of the selected target descriptions. The
size of the set of considered target descriptions depends only on c and k, as it is sufficient to
consider any small graph DH and types of small simple extensions of DH .

I Theorem 19. Role Assignment is fpt parameterized by k + c, where k and c are such
that G has a c-deletion set of size at most k.

Proof. Let G be a non-empty connected graph such that G has a c-deletion set of size at
most k and let h ≥ 1 be an integer.

In order to use Theorem 12 in this case, we need to ensure that the target descriptions used
enforce that H is connected and has h vertices. Therefore for a fixed graph D on at most k
vertices, we let COND be the set of all minimal sets S ⊆ T k+c

D such that any extension H of D,
which contains exactly the types in S is connected. Since |T k+c

D | is bounded by (2k+c)2(2k+c
2 ),

we can compute COND by considering every S ⊆ T k+c
D and checking whether an extension

T ∈ TD of D containing precisely the types in S is connected. Since |V (T )| ≤ k+ (k+ c) · |S|
and checking connectivity takes linear time (using BFS or DFS) we can compute COND in
time depending only on k and c. For S ∈ COND, we set CHS to be the set of equations
containing xT ≥ 1 for every T ∈ S and |V (DH)| +

∑
T∈T c

DH

(|V (T )| − |V (DH)|) ∗ xT = h.
Note that for D and S ∈ COND, any graph H satisfying the target description (D, c+k,CHS)
is connected and has h vertices.

If there is a connected graphH on h vertices and a locally surjective homomorphism φ from
G to H, then by Lemma 9 there is a set D ⊆ Dk+c

G and a locally surjective homomorphism
φP from DG = G[D] to DH = H[Dk+c

H ] such that φ augments φP . Note that by Lemmas 6
and 8, DH is a (k + c)-deletion set of size at most k. This implies firstly that DH is a
graph on at most k vertices. Secondly, H is an extension of DH such that tcH(T ) = 0 for
T /∈ T c+kDH

and, since H is also connected and has h vertices, H satisfies the target description
(DH , c+ k,CHS) for at least one S ∈ CONDH .
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Therefore, we can solve the Role Assignment problem by checking for every D ⊆ Dk+c
G ,

every graph DH on no more than k vertices, every S ∈ CONDH and every locally surjective
homomorphism φP from DG = G[D] to DH , whether there is a graph H satisfying the
target description (DH , k + c,CHS) and a locally surjective homomorphism from G to H
that augments φP . Note that there are at most 2k subsets D. Furthermore, there are at most
k2(k2) graphs on at most k vertices and for each we can compute COND in time depending

only on k and c. For each such graph DH , there are at most |COND| ≤ 2(2k+c)2(
2k+c

2 ) subsets
S to consider. Lastly, because of Lemma 10, for every D ⊆ Dk+c

G , and any graph DH on no
more than k vertices, we can compute the set of locally surjective homomorphisms φP from
G[D] to DH in time O(kk+2) time and there are at most |D||D| φP to consider.

By Lemma 8, D is a (k − |D|, c)-extended deletion set of size at most k for G. Therefore,
for every D ⊆ Dk+c

G , every graph DH on no more than k vertices, every S ∈ CONDH
and every locally surjective homomorphism φP from DG = G[D] to DH , we can employ
Theorem 12 to decide in fpt-time parameterized by k+c, whether there is a graph H satisfying
(DH , c+ k,CHS) and a locally surjective homomorphism from G to H that augments φP .
This completes the proof. J

5 Locally Injective Homomorphisms

The following result is well known. We include a proof for completeness.

I Theorem 20 (Folklore). LIHom is W[1]-hard parameterized by |V (G)|. In particular, it is
W[1]-hard for all structural parameters of G.

Proof. Let G be a complete graph on k vertices, and let H be an arbitrary graph. There
exists a locally injective homomorphism φ from G to H if and only if H contains a clique
K on k vertices. Indeed, for the forward direction, pick K to be the image of V (G) under
φ. Then |K| = |V (G)| = k by the local injectivity of φ, and K is a clique. For the reverse
direction, let φ be any bijection between V (G) and K. The result follows from the fact that
Clique is W[1]-hard. J

The locally injective case is more difficult in our setting since, in general, surjectivity
helps to transfer structural parameters on G to similar structures on H (for example, in
LSHom and LBHom the image of a deletion set is also a deletion set by Lemma 6). In
LIHom however, and even in the restricted case of graphs with bounded vertex cover number,
no such property can be used to help find the image of a vertex cover, and exponential-time
enumerations appear to be necessary. On the positive side, once such a partial mapping from
a vertex cover of G to H has been found, our ILP framework can still be applied to map
the remaining vertices in FPT-time. This leads to an XP algorithm for vertex cover number
(Theorem 21). Interestingly, this result does not extend to c-deletion set number for c > 1:
even if the mapping of the deletion set can be guessed, the fact that the non-trivial remaining
components must be mapped to distinct subgraphs of H makes the problem difficult (see
Theorem 24).

I Theorem 21. LIHom is in XP parameterized by the vertex cover number of G.

Proof. As for the surjective and bijective cases, we employ a two-step algorithm that first
guesses the image of the vertex cover through a partial homomorphism, then runs an ILP to
map the remaining vertices. The ILP only requires FPT-time, however the first step needs
an exhaustive enumeration of subsets of H (in the injective case, the image of a vertex cover
does not have to be a vertex cover), hence the XP running time.
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We use the definitions of types and extensions from Section 3.2. Let G be a connected
graph with a vertex cover DG of size k. Note that connected components of G \ DG are
single vertices. We can thus define the type of a vertex v ∈ G \DG to be the type of the
component {v}. Note that there are at most nt = |TDG(G)| ≤ 2|DG| types in G.

The first step of the algorithm consists of guessing a partial homomorphism φP between
DG and H (there are |V (G)||DG| such homomorphisms). From now on, we look for locally
injective homomorphisms φ from G to H such that φ(v) ∈ DH ⇒ v ∈ DG (such a function
φ is more simply called a solution). We write DH = φP (DG). φ is stable if if it is an
augmentation of φP (i.e. if φ(v) ∈ DH ⇔ v ∈ DG).

Let φ be a solution. For a vertex h ∈ V (H), let Ph = φ−1(h) be the pre-image of h. Sets
Ph form a partition of V (G), two distinct vertices of Ph may not share a neighbour in G
(otherwise, φ would not be locally injective for this common neighbour). Thus, Ph \ DG

has size at most |DG| (since by connectivity of G, each vertex in G \DG has at least one
neighbour in DG), and may not contain two vertices with the same type. In particular there
are at most n|DG|t distinct pre-images (up to equivalence).

Guess the pre-image of each h ∈ DH (for a total of n|DG|
2

t branches), and let D′G =⋃
h∈DH Ph. Then D

′
G is a vertex cover of G with size at most |DG|2. Define φ′P : D′G → DH

such that φ′P (v) = h whenever v ∈ Ph. Thus φ is a locally injective homomorphism extending
φ′P and φ(v) ∈ DH ⇔ v ∈ D′G. Without loss of generality, we thus assume that we look for
a stable solution φ (equivalently, we can set DG := D′G and φP := φ′P ). Also note that all
edges in H \DH can be safely ignored (since no solution φ would map an edge {u, v} of G
to such an edge of H, and there is no surjectivity constraint), so that DH is a vertex cover
of H. Finally, we can assume that φP is locally injective (on its domain DG), and that two
vertices u, u′ with φP (u) = φP (u′) do not share a neighbour in G, since otherwise no stable
solution exist.

A (possibly empty) subset P of V (G \DG) is a candidate pre-image of h ∈ V (H \DH) if
the following conditions hold:
1. φP (NG(P )) ⊆ NH(h) ∩DH ,
2. any two vertices in P do not share a neighbour,
3. P contains at most one vertex from every type in G and
4. P has size at most |DG|.
By the remarks above, given a stable solution φ, Ph = φ−1(h) is a candidate pre-image of
h. Conversely, building φ using candidate pre-images only leads to a stable solution, as
formalised below.

B Claim 22. If φ : G → H satisfies φ(v) = φP (v) for v ∈ DG and φ−1(h) is a candidate
pre-image of h for each h ∈ V (H \DH), then φ is a stable solution.

Proof. First note that φ is a homomorphism, i.e. (φ(u), φ(v)) is an edge in H for each edge
(u, v) in G (since φP is a homomorphism for u, v ∈ DG, by Condition 1 for u ∈ DG and
v /∈ DG, and the case u, v /∈ DG is impossible since DG is a vertex cover). Pick v ∈ V (G)
and u, u′ ∈ NG(v). We prove that φ(u) 6= φ(u′). If u, u′ ∈ DG, then u, u′ share a neighbour
and φP (u) 6= φP (u′). If u ∈ DG and u′ /∈ DG, then φ(u) ∈ DH and φ(u′) /∈ DH . If
u, u′ /∈ DG, then u, u′ share a neighbour and they cannot be in the same candidate pre-image
(by Condition 2). C

Also note that if DG ∪ P ∼DG DG ∪ P ′ and DH ∪ {h} ∼DH DH ∪ {h′}, then P is a
candidate pre-image of h if and only if P ′ is a candidate pre-image of h′. Let ICM be the set
of pairs (ExtG, TH),ExtG ∈ EDG(G), TH ∈ TH such that ExtG contains an extension DG∪P ,
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TH contains an extension DH ∪ {h}, and P is a candidate pre-image of h (note that there is
no minimality constraint for pairs in ICM).

We now build the ILP computing the pre-images of vertices in H \ DH . Introduce a
variable xExtG,TH for each pair (ExtG, TH) ∈ ICM. This variable represents the number of
vertices h with type Th whose pre-image Ph has Ph ∪DG ∈ ExtG. We introduce two types
of constraints (see below). Constraint (I1) enforces that the pre-images Ph form a partition
of V (G \DG) by counting vertices of each type in each ExtG and checking that the sum
corresponds to the count in G. Constraint (I2) corresponds to the fact that each vertex in H
needs to be assigned a (possibly empty) pre-image (the number of pairs involving a type TH
must correspond to the type-count of TH in H).
(I1)

∑
(ExtG,TH)∈ICM tcExtG(TG) ∗ xExtG,TH = tcG(TG) for every TG ∈ TDG(G),

(I2)
∑

ExtG:(ExtG,TH)∈ICM xExtG,TH = tcH(TH) for every TH ∈ TDH .

From the above remarks, a stable solution φ yields a feasible solution for constraints
(I1,I2). Conversely, a solution to the ILP gives integers xExtG,TH : for each pair (ExtG, TH),
pick x = xExtG,TH new vertices h1, . . . , hx with type TH , pick x sets P1, . . . , Px in G \DG

such that Pi ∪ DG ∈ ExtG (each Pi being disjoint from previously selected sets). Assign
φ(v) = hi for each v ∈ Pi, and φ(v) = φP (v) for v ∈ DG. Then, over all pairs (ExtG, TH),
the sets Pi form a partition of V (G \DG) so φ is well defined, and each φ−1(h) is a candidate
pre-image of H. By the claim above, φ is indeed a locally injective homomorphism from G

to H. J

I Corollary 23. For any constant k, LIHom is polynomial-time solvable for graphs G with
1-deletion set number at most k.

We actually obtain the following dichotomy for the complexity of LIHom, where the
c = 1, k ≥ 1 case is already given by Corollary 23.

I Theorem 24. Let c, k ≥ 1. Then LIHom is polynomial-time solvable on guest graphs with
a c-deletion set of size at most k if either c = 1 and k ≥ 1 or c = 2 and k = 1; otherwise, it
is NP-complete.

Theorem 24 follows from Corollary 23 and the following three lemmas.

I Lemma 25. LIHom is polynomial-time solvable for graphs G with a 2-deletion set number
at most 1.

Proof. Let G and H be connected graphs such that G has 2-deletion set number at most 1.
If G has a 2-deletion set containing no vertices, then G contains at most two vertices, in which
case we can solve LIHom in polynomial time. Otherwise, we can find a 2-deletion set {v} in
polynomial time by trying all possibilities for v. Let p be the number of edges in G[NG(v)]
and let w be a vertex of H. We claim that there is a locally injective homomorphism φ

from G to H such that φ(v) = w if and only if H[NH(w)] has a matching on at least p edges
and dG(v) ≤ dH(w).

Indeed, if such a locally injective homomorphism φ exists, then dG(v) ≤ dH(w) because φ
is locally injective. Furthermore, for every edge xy in G[NG(v)], the homomorphism φ maps
the vertices x and y to adjacent vertices of H[NH(w)], and since φ is locally injective, it
cannot map two vertices of NG(v) to the same vertex in NH(w). Therefore H[NH(w)] must
have a matching on at least p edges.

Now suppose that H[NH(w)] has a matching M on at least p edges and dG(v) ≤ dH(w).
For each edge xy in G[NG(v)], let φ(x) and φ(y) be the endpoints of an edge in M (choosing
a different edge of M for each edge xy). For the remaining vertices x ∈ NG(v), assign the
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remaining vertices of NH(w) arbitrarily, such that no two vertices of NG(v) are assigned the
same value (this can be done since dG(v) ≤ dH(w)). Let φ(x) = w for all remaining vertices
of G (i.e. the vertex v and all vertices non-adjacent to v that have a common neighbour
with v). By construction, φ is a locally injective homomorphism from G to H.

The size of a maximum matching in a graph can be found in polynomial time [25]. Thus,
by branching over the possible vertices w ∈ V (H), we obtain a polynomial-time algorithm
for LIHom. J

To prove NP-hardness for results in Lemmas 26 and 27 below, we use a reduction from
the H ′-Partition problem when H ′ = P3 (the 3-vertex path) or K3 (the 3-vertex complete
graph), respectively. Let H ′ be a fixed graph on h vertices. The H ′-Partition problem takes
as input a graph G′ on hn vertices and the task is to decide whether the vertex set of G′ can
be partitioned into sets V1, . . . , Vn, each of size h, such that G′[Vi] contains H ′ as a subgraph
for all i ∈ {1, . . . , n}. This problem is known to be NP-complete if H ′ ∈ {K3, P3} [38, 46].

I Lemma 26. For c ≥ 2 and k ≥ 2, LIHom is NP-hard on graphs G with c-deletion set
number k.

Proof. We first consider the case when k = 2. Consider an instance G′ of the P3-Partition
problem on 3n vertices, where n ≥ c. We construct a graph G as follows. For i ∈ {1, . . . , n},
add vertices ai, bi, ci and di and edges aibi and cidi. Then add vertices u and v and make u
adjacent to ai, bi and di and v adjacent to ai, ci and di for all i ∈ {1, . . . , n}. Finally, add the
edge uv. Note that {u, v} is a minimum-size c-deletion set for G since degG(u) = degG(v) > c.
Now let H be the graph obtained from G′ by adding two vertices u′ and v′ that are adjacent
to all the vertices in V (G′) and to each other. We claim that there is a locally injective
homomorphism φ from G to H if and only if G′ is a yes-instance of the P3-Partition
problem.

Suppose that G′ is a yes-instance of the P3-Partition problem and, for i ∈ {1, . . . , n},
let v1

i , v
2
i , v

3
i be the three vertices in Vi, such that v2

i is adjacent to v1
i and v3

i (v1
i may or

may not be adjacent to v3
i ). Let φ : V (G) → V (H) be the function such that φ(u) = u′,

φ(v) = v′, and for i ∈ {1, . . . , n}, φ(ai) = v1
i , φ(bi) = φ(ci) = v2

i and φ(di) = v3
i . Then φ is a

locally injective homomorphism from G to H.
Now suppose that φ is a locally injective homomorphism from G to H. Now degG(u) =

degG(v) = 3n+ 1. Since H has 3n+ 2 vertices and φ is a locally injective homomorphism, it
follows that φ(u) and φ(v) must be universal vertices in H. By symmetry, we may therefore
assume that φ(u) = u′ and φ(v) = v′. Now u is adjacent to v and the vertices ai, bi
and di for all i ∈ {1, . . . , n}. Similarly, v is adjacent to u and the vertices ai, ci and di
for all i ∈ {1, . . . , n}. Since degG(u) = 3n + 1, and φ is locally injective, it follows that
φ({ai, bi, di | i ∈ {1, . . . , n}}) = V (G′). Similarly, since degG(v) = 3n + 1, it follows that
φ({ai, ci, di | i ∈ {1, . . . , n}}) = V (G′). Therefore φ({bi | i ∈ {1, . . . , n}}) = φ({ci | i ∈
{1, . . . , n}}). Renumbering the indices of the ci and di vertices if necessary, we may therefore
assume by symmetry that φ(bi) = φ(ci) for all i ∈ {1, . . . , n}. Now, for all i ∈ {1, . . . , n},
the vertices ai and bi are adjacent in G, so φ(ai) and φ(bi) are adjacent in H. Furthermore
the vertices ci and di are adjacent in G, so φ(ci) = φ(bi) and φ(di) are adjacent in H. We
now set Vi = {φ(ai), φ(bi), φ(di)} and note that the Vi sets partition V (G′), and that G′[Vi]
contains a P3 subgraph for all i ∈ {1, . . . , n}. This completes the proof of the case when
k = 2.

To extend the proof to graphs with c-deletion number k > 2, we add (k − 1) universal
vertices to H and replace u with a k-clique K each of whose vertices is adjacent to v and ai,
bi and di for all i ∈ {1, . . . , n}. J
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I Lemma 27. For c ≥ 3 and k ≥ 1, LIHom is NP-hard on graphs G with c-deletion set
number k.

Proof. We first consider the case when k = 1. Consider an instance G′ of the K3-Partition
problem on 3n vertices, where n ≥ c. Let H be the graph obtained from G′ by adding a
universal vertex w. Let G be the graph obtained by taking the disjoint union of n copies
of K3 and adding a universal vertex v. Note that {v} forms a minimum-size c-deletion set
for G since degG(v) > c. We claim that there is a locally injective homomorphism φ from G

to H if and only if G′ is a yes-instance of the K3-Partition problem.
Indeed, suppose there is such a φ. Since φ is locally injective and the graphs G and H

each have 3n vertices, the universal vertex v must be mapped to a universal vertex of H;
without loss of generality, we may therefore assume that φ(v) = w. Since v and w are
universal vertices of the same degree, it follows that φ is a bijection from V (G) to V (H).
Every K3 in the disjoint union part of G must therefore be mapped to a K3 in H \ {w} = G′.
Therefore G′ is a yes-instance of the K3-Partition problem.

Now suppose that G′ is a yes-instance of the K3-Partition problem. We let φ(v) = w,
and map the vertices of each K3 in the disjoint union part of G to some Vi from the K3-
partition of H, mapping each K3 to a different set Vi. Clearly this is a locally injective
homomorphism. This completes the proof of the case when k = 1. To extend the proof to
graphs with c-deletion number k > 1, we add (k − 1) universal vertices to G and H. J

6 Bounded Tree-depth and Feedback Vertex Set Number

By Theorem 24, we already obtained paraNP-hardness for LIHom parameterized by tree-
depth or feedback vertex set number. In this section we show that our tractability results
for LSHom and LBHom cannot be significantly extended, since both problems become
paraNP-hard parameterized by tree-depth. Furthermore, the reduction we give here also
provides paraNP-hardness for both LSHom and LBHom parameterized by the feedback
vertex set number. We show this by replacing cycles with stars in the reduction provided
in [15] for path-width. This strengthens their result from path-width to tree-depth and
feedback vertex set number.

I Theorem 28. LBHom, or more specifically, 3-FoldCover, and LSHom are NP-complete
on input pairs (G,H) where G has tree-depth at most 6 and H has tree-depth at most 4.

Proof. First note that LBHom, 3-FoldCover and LSHom are in NP. To prove NP-
hardness for 3-FoldCover and LSHom we use a reduction from the 3-Partition problem.
This problem takes as input a multiset A of 3m integers, denoted in what follows by
{a1, a2, . . . , a3m}, and a positive integer b, such that b

4 < ai <
b
2 for all i ∈ {1, . . . , 3m} and∑

1≤i≤3m ai = mb. The task is to determine whether A can be partitioned into m disjoint
sets A1, . . . , Am such that

∑
a∈Ai a = b for all i ∈ {1, . . . ,m}. Note that the restrictions on

the size of each element in A implies that each set Ai in the desired partition must contain
exactly three elements, which is why such a partition A1, . . . , Am is called a 3-partition of A.
The 3-Partition problem is strongly NP-complete [38], i.e. it remains NP-complete even if
the problem is encoded in unary.

We first prove NP-hardness for 3-FoldCover, which implies NP-hardness for LBHom.
Given an instance (A, b) of 3-Partition, we construct an instance of 3-FoldCover consisting
of connected graphs G and H with |V (G)| = 3|V (H)| as follows. To construct G we take 3m
disjoint copies S1, . . . , S3m ofK1,b (stars), one for each element of A. For each i ∈ {1, . . . , 3m},
the vertices of Si are labelled ci, ui1, . . . , uib, where ci is the vertex of degree b in Si (the centre
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x

y z

S1
S2

S3

x̃

S̃1

Figure 2 An instance of LBHom consisting of the graph G (left) and the graph H (right)
corresponding to the instance (A, b) of 3-Partition, where A = {2, 3, 2} and b = 7. As (A, b) is a
yes-instance of the 3-Partition problem, there is a locally bijective homomorphism from G to H
which is indicated by colours.

of the star). We add two new vertices pij and qij for each i ∈ {1, . . . , 3m}, j ∈ {1, . . . , b}, as
well as two new edges uijpij and uijqij . We then add three new vertices x, y and z. The vertex
x is made adjacent to the vertices pi1, pi2 . . . , piai and q

i
1, q

i
2 . . . , q

i
ai for every i ∈ {1, . . . , 3m}.

Finally, the vertex y is made adjacent to every vertex pij that is not adjacent to x, and the
vertex z is made adjacent to every vertex qij that is not adjacent to x. This completes the
construction of G. Note that |V (G)| = 3|V (H)|. For an example see Figure 2.

To construct H, we take m disjoint copies S̃1, . . . , S̃m of K1,b, where the vertices of each
star S̃i are labelled c̃i, ũi1, . . . , ũib. For each i ∈ {1, . . . ,m} and j ∈ {1, . . . , b}, we add two
vertices p̃ij and q̃ij and make both of them adjacent to ũij . Finally, we add a vertex x̃ and
make it adjacent to each of the vertices p̃ij and q̃ij . This finishes the construction of H. For
an illustration see Figure 2.

We now show that there exists a locally bijective homomorphism from G to H if and
only if (A, b) is a yes-instance of 3-Partition. Let us first assume that there exists a locally
bijective homomorphism φ from G to H. Since φ is a degree-preserving mapping, we must
have φ(x) = x̃. Moreover, since φ is locally bijective, the restriction of φ to NG(x) is a
bijection from NG(x) to NH(x̃). Again using the definition of a locally bijective mapping,
this time considering the neighbourhoods of the vertices in NH(x̃), we deduce that there is a
bijection from the set N2

G(x) := {uij | 1 ≤ i ≤ 3m, 1 ≤ j ≤ ai}, i.e. from the set of vertices
in G at distance 2 from x, to the set N2

H(x̃) := {ũkj | 1 ≤ k ≤ m, 1 ≤ j ≤ b} of vertices
that are at distance 2 from x̃ in H. For every k ∈ {1, . . . ,m}, we define a set Ak ⊆ A such
that Ak contains element ai ∈ A if and only if φ(ui1) ∈ {ũk1 , . . . , ũkb}. Since φ is a bijection
from N2

G(x) to N2
H(x̃), the sets A1, . . . , Am are disjoint; moreover each element ai ∈ A is

contained in exactly one of them. Since φ is degree preserving, each ci has to be mapped
onto a c̃j (in the special case when b = 3, we can argue this using the distance to x as before).
Additionally, since φ is locally bijective for every i ∈ {1, . . . , 3m}, there is a bijection from
NG(ci) = {ui1, . . . , uib} to NH(c̃j) = {ũj1, . . . , ũ

j
b} for the j ∈ {1, . . . ,m} for which φ(ci) = c̃j .

Combining this and the previous argument implies that
∑
a∈Ai a = b for all i ∈ {1, . . . ,m}.

Hence A1, . . . , Am is a 3-partition of A.
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For the reverse direction, suppose there exists a 3-partition A1, . . . , Am of A. We define
a mapping φ as follows. We first set φ(x) = φ(y) = φ(z) = x̃. Let Ai = {ar, as, at} be any
set of the 3-partition. We map the vertices of Sr, Ss, St to the vertices of S̃i in the following
way: φ(cr) = φ(cs) = φ(ct) = c̃i; φ(urj) = ũij for each j ∈ {1, . . . , b}; φ(usj) = ũiar+j for each
j ∈ {1, . . . , as + at} and φ(usj) = ũiar+j−b for j ∈ {as + at + 1, . . . , b}; and φ(utj) = ũiar+as+j
for each j ∈ {1, . . . , at} and φ(usj) = ũiar+j−b for j ∈ {at + 1, . . . , b}. It remains to map
the vertices pij and qij for each i ∈ {1, . . . , 3m} and j ∈ {1, . . . , b}. Let pij , qij be a pair of
vertices in G that are adjacent to x, and let uij be the second common neighbour of pij and
qij . Suppose ũk` is the image of uij , i.e. suppose that φ(uij) = ũk` . Then we map pij and qij to
p̃k` and q̃k` , respectively. We now consider the neighbours of y and z in G. By construction,
the neighbourhood of y consists of the 2mb vertices in the set {pij | ai+1 ≤ j ≤ b}, while
NG(z) = {qij | ai+1 ≤ j ≤ b}.

Observe that x̃, the image of y and z, is adjacent to two sets of mb vertices: one of the
form p̃k` , the other of the form q̃k` . Hence, we need to map half the neighbours of y to vertices
of the form p̃k` and half the neighbours of y to vertices of the form q̃k` in order to make φ a
locally bijective homomorphism. The same should be done with the neighbours of z. For
every vertex ũk` in H, we do as follows. By construction, exactly three vertices of G are
mapped to ũk` , and exactly two of these vertices, say uij and ugh, are at distance 2 from y

in G. We set φ(pij) = p̃k` and φ(pgh) = q̃k` . We also set φ(qij) = q̃k` and φ(qgh) = p̃k` . This
completes the definition of the mapping φ. For an illustration of the map φ, see Figure 2.

Since the mapping φ preserves adjacencies, it clearly is a homomorphism. In order to
show that φ is locally bijective, we first observe that the degree of every vertex in G is equal
to the degree of its image in H, in particular, dG(x) = dG(y) = dG(z) = dH(x̃) = 2mb.
From the above description of φ we get a bijection between the vertices of NH(x̃) and the
vertices of NG(v) for each v ∈ {x, y, z}. For every vertex pij that is adjacent to x and
uij in G, its image p̃k` is adjacent to the images x̃ of x and ũk` of uij . For every vertex pij
that is adjacent to y (respectively z) and uij in G, its image p̃k` or q̃k` is adjacent to x̃ of
y (respectively z) and ũk` of uij . Hence the restriction of φ to NG(pij) is bijective for every
i ∈ {1, . . . , 3m} and j ∈ {1, . . . , b}, and the same clearly holds for the restriction of φ to
NG(qij). The vertices of each star Si are mapped to the vertices of some star S̃k in such a
way that the centres are mapped to centres. This, together with the fact that the image ũk` of
every vertex uij is adjacent to the images p̃k` and q̃k` of the neighbours pij and qij of uij , shows
that the restriction of φ to NG(uij) is bijective for every i ∈ {1, . . . , 3m} and j ∈ {1, . . . , b}.
Finally, the neighbourhood of ci is clearly mapped to the neighbourhood of φ(ci) for every
i ∈ {1, . . . , 3m}. We conclude that φ is a locally bijective homomorphism from G to H.

In order to show that the tree-depth of G is at most 6, we construct a rooted tree T
as follows. We let z be the root of T and add one child y. For y we add one child x. We
construct 3m children c1, . . . , c3m of x. Furthermore, to each ci we add b children ui1, . . . , uib.
Finally, each uij gets two children pij and qij . It is easy to observe that G is a subgraph of
C(T ) and since T has depth 5, this implies td(G) ≤ 6. Furthermore, for H we can use a
very similar approach. We let T̃ be the tree obtained from T by removing z, y from T and
letting x be the root. After renaming the vertices appropriately, H is a subgraph of C(T̃ )
and hence td(H) ≤ 4. This completes the proof for 3-FoldCover and therefore LBHom.

In order to prove NP-hardness for LSHom we can use the same reduction as for LBHom.
For this we can argue that there is a locally bijective homomorphism from G to H, for the
graphs G and H constructed above, if and only if there is a locally surjective homomorphism
from G to H. While the one direction is clear, if G B−→ H then G S−→ H, for the converse
direction we can make use of the following statement due to Kristiansen and Telle [52]:
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(*) If G S−→ H and drm(G) = drm(H), then G B−→ H.
Here drm(G), drm(H) refers to the degree refinement matrix of G or H respectively, which
is defined as follows. An equitable partition of a connected graph G is a partition of its
vertex set into blocks B1, . . . , Bk such that every vertex in Bi has the same number mi,j of
neighbours in Bj . Then drm(G) = (mi,j) for mi,j corresponding to the coarsest equitable
partition of G. We can easily observe that

drm(G) = drm(H) =


0 0 2mb 0
0 0 2 1
1 1 0 0
0 b 0 0

 ,

corresponding to the equitable partitions B1 = {x, y, z}, B2 = {uij | i ∈ {1, . . . , 3m}, j ∈
{1, . . . , b}}, B3 = {pij , qij | i ∈ {1, . . . , 3m}, j ∈ {1, . . . , b}} and B4 = {ci | i ∈ {1, . . . , 3m}} in
G and a similar equitable partition in H. Hence by (*) we find that G B−→ H if and only if
G

S−→ H, completing the proof for LSHom. J

I Theorem 29. LBHom, or more specifically, 3-FoldCover, and LSHom are NP-complete
on input pairs (G,H) where G and H have feedback vertex set number at most 3 and 1,
respectively.

Proof. To prove the statement we use the same reductions as in the proof of Theorem 28.
This is sufficient, as the set {x, y, z} is a feedback vertex set of G and the set {x̃} is a feedback
vertex set of H for graphs G and H defined in the proof of Theorem 28. J

7 Conclusions

We introduced a general algorithmic framework that can be employed for a wide variety
of problems related to homomorphisms on graphs that have a small fracture number. We
already illustrated the applicability of the framework for three well-known variants of the
locally constrained homomorphism problem, i.e. LSHom, LBHom, and LIHom, as well
as the Role Assignment problem, by giving three FPT results and one XP result. Our
complementary hardness results provide a fairly comprehensive picture concerning the
parameterized complexity of the three locally constrained homomorphism problems (see also
Table 1).

For future work we aim to extend our ILP-based framework. If successful, this will
then also enable us to address the parameterized complexity of other graph homomorphism
variants such as quasi-covers [34] and pseudo-covers [11, 13, 14]. We also recall an interesting
open problem from [15]. Namely, are LBHom and LSHom in FPT when parameterized by
the treewidth of the guest graph plus the maximum degree of the guest graph?
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