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ABSTRACT

Recent advances in machine learning applied to structural
magnetic resonance imaging (sMRI) may highlight abnor-
malities in brain anatomy associated with mental disorders.
These disorders are multifactorial, resulting from a complex
combination of neurodevelopmental and environmental fac-
tors. In particular, such factors are present in cortical sulci,
whose shapes are determined very early in brain development
and are a valuable proxy for capturing specifically the neu-
rodevelopmental contribution of brain anatomy. This paper
explores whether the shapes of cortical sulci can be used
for diagnosis prediction using deep learning models. These
models are applied to three mental disorders (autism spec-
trum disorder, bipolar disorder, and schizophrenia) in large
multicentric datasets. We demonstrate that the neurodevelop-
mental underpinnings of these disorders can be captured with
sMRI. Finally, we show the potential of visual explanations
of models’ decisions in discovering biomarkers for mental
disorders.

Index Terms— deep learning, cortical sulci, psychiatric
disorders, neurodevelopment

1. INTRODUCTION

Brain anatomy is an imprint of an individual’s neurodevel-
opmental and environmental backgrounds. Brain anatomy
abnormalities might feature either neurodevelopmental tra-
jectories to psychiatric disorders or later deviations in non-
pathological brain maturation that are harmful consequences
of environmental interactions (excessive stress, abuse, etc.).
Researching the disentanglement of these variability sources
may offer essential insights concerning the individual predic-
tion of clinical outcomes (e.g., treatment response), identifi-
cation of prognostic brain signatures, and prevention of early
negative influences on the developing child.

Machine Learning (ML) models offer a useful approach
for more personalized diagnostic practices in psychiatry (i.e.,
precision psychiatry). Several models trained on structural
MRI (sMRI) have highlighted abnormalities in brain anatomy
that correlate with various mental disorders [1, 2]. Most

works that developed ML models use voxel-based morphom-
etry (VBM) to wrap the T1-weighted (T1w) images into a
standard template to produce registered and comparable in-
puts for ML models. Unfortunately, these models cannot
determine whether the abnormalities come from environ-
mental or neurodevelopmental factors because VBM features
retain information related to both factors [3, 4, 5].

To identify neurodevelopmental abnormalities, previous
studies focused on folding patterns of cortical sulci, which are
features of brain anatomy primarily impacted by early brain
development [6]. Cortical sulci are a valuable proxy for cap-
turing the neurodevelopmental contribution of brain anatomy
because their shapes are set very early in brain development.
Sulcus shapes are particularly relevant features as they are al-
ready known to keep crucial information about brain develop-
ment and have already been linked to mental diseases [7, 8, 9].

This article explores whether such worthwhile brain land-
marks can be used for diagnosis prediction using deep learn-
ing models (see Fig. 1). Our model was tested on three mental
disorders: autism spectrum disorder (ASD), bipolar disorder
(BD) and schizophrenia (SCZ). We compared several training
strategies and image preprocessing to address the sparsity and
nature of the input data. Results show that cortical sulci con-
tain sufficient information for reliable predictions. Finally,
we showed the potential of feature importance techniques in
highlighting cortical sulci potentially linked to mental disor-
ders.

2. MATERIAL AND METHODS

2.1. Datasets

Three pooled clinical studies with sMRI were considered, one
for each of the psychiatric pathologies: SCZ, BD, and ASD
(for details, see Table 1). Each dataset consists of T1w im-
ages from patients and healthy controls (HC). Each image
is processed through the Brainvisa/Morphologist pipeline1,
which provides a sulcus skeleton for each individual. The
sulcus skeleton is a binary image in which non-zeros vox-

1https://brainvisa.info
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Fig. 1. sMRI T1w images are pre-processed with the Brain-
visa/Morphologist pipeline to obtain sulcus skeletons. Skele-
tons represent cortical folding. They are shown in blue in
the 3D view. A 3D Convolutional Neural Network (CNN) is
trained to predict the diagnosis based on these skeletons.

Dataset # Subjects # Sites Pooled studies
HC PT

SCZ 761 532 12 schizconnect-vip-prague
cnp, candi, bsnip1

BD 695 469 15 biobd, bsnip1, cnp, candi

ASD 926 813 30 abide 1 & 2

Table 1. Number of healthy controls (HC), patients (PT) and
sites in each considered SCZ, BD, and ASD dataset.

els form a negative cast of the brain’s folds [10, 11] (see
Fig. 1). The ventricles are removed, and the resulting skele-
tons are affinely registered to the MNI template space with an
isotropic resolution of 1.5 mm³ using the DeepFolding tool-
box 2. A visual quality check was performed on the outlier
skeletons detected by thresholding their size, calculated as the
number of non-zero voxels in the image.

Each dataset was split into training, validation, and test
sets. We used an iterative algorithm to stratify these splits
on diagnosis, age, sex, and site [12]. The algorithm attempts
to keep the histograms of the selected variables unchanged
between the training and test sets. Note that the splits for all
experiments are kept unchanged for fair comparisons.

2.2. Skeleton image pre-processing

Sulcus skeleton images contain binary values and are very
sparse (i.e., less than 5% of the voxels are non-zero), which is

2https://github.com/neurospin/deep_folding

(a) Binary skeleton (b) Smooth skeleton

Fig. 2. Zoom in on a sulcus skeleton a) with and b) without
Gaussian smoothing.

not optimal for neural network training. To tackle this prob-
lem, we tried applying Gaussian smoothing to sulcus skele-
tons. The goal was to thicken the cortical sulci while preserv-
ing their shapes (e.g., we did not want to merge two parallel
sulci). For this purpose, we chose a Gaussian kernel with a
moderate full width at half maximum (FWHM) of 3.5mm and
a small kernel size of 5x5x5 voxels (see Fig. 2). A visual qual-
ity check was performed to ensure that the sulcus shapes were
preserved. Note that such a transformation converts skeleton
images from binary to continuous values.

2.3. Network Training

Our goal is to build the best deep learning model to predict
the clinical status of subjects in a supervised setting.

Supervised learning: First, we tried the straightfor-
ward approach by optimizing convolutional neural network
(CNN) weights with a binary cross-entropy (BCE) loss. We
benchmarked three well-known CNN architectures, namely
AlexNet [13, 14], ResNet18 [15], and DenseNet121 [16].
While Alexnet consists of only a few convolutional lay-
ers, the other two architectures integrate skip connections to
maintain information across layers.

Weakly supervised learning: Recent results show better
stability with supervised contrastive learning over supervised
learning with a BCE loss [17]. In contrastive learning, train-
ing attempts to bring positive pairs of augmented images to-
gether in the latent space and push negative pairs away [18].
In weakly supervised setups, labels are used to define pairs.
In that case, positive pairs are images from the same class in
the mini-batch.

We proposed to use the SupCon supervised contrastive
model [17]. The SupCon loss is defined as:

LSupCon =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)

where I is the set with all the samples, A(i) is the set of sam-
ples in the mini-batch that contains the sample i, P (i) is the
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set of positive samples in the mini-batch A(i) (samples from
the same class as i), and τ is the temperature. Note that the
temperature is an experimentally determined hyperparameter.

Training settings: When training the models, we used a
grid search to find the best combination of hyperparameters:
learning rate, scheduler, and temperature for weakly super-
vised learning models. For each set of hyperparameters, the
model was trained three times with different random initial-
izations. In this way, the epistemic variability was captured.
An L2 penalty on the weights was added to the loss, ponder-
ated by 5 · 10−5. The models were trained for 50 epochs. For
contrastive learning models, data augmentation was added as
in [17]. In our case, we tried adding rotations, cutouts, and
combinations of both.

Evaluation settings: We computed the area under the re-
ceiver operating characteristic curve (ROC AUC) of model
predictions on test sets to evaluate model performance. For
contrastive learning models, we trained a logistic regression
from the latent representations of the training set to predict
the diagnosis. We then evaluated the trained models on the
test set and calculated the ROC AUC. To test if our results
were above randomness, we computed the pvalue from the
U Mann-Whitney test between predicted probabilities of HC
and those of patients.

Feature importance: Perturbation-based visual explana-
tions are one of the approaches to interpreting the decision-
making process of deep learning models. These approaches
indicate the importance of different voxels for the final deci-
sion taken by models. Among these approaches, we chose
occlusion sensitivity [19]. Different regions of skeleton im-
ages were occluded, and the changes in the prediction scores
were recorded. We used a patch size of 16×16×16 and a stride
of 4 voxels. We chose a large patch size because skeletons
were registered using a coarse affine transformation. The im-
portance of each patch was measured by computing the dif-
ference between the binary cross entropy of predictions with
and without occlusion, averaged over test set subjects.

The experiments’ reproducing codes are available here.

3. RESULTS

Cortical folding is predictive of diagnosis: All trained mod-
els can predict the diagnosis on the test set with a ROC AUC
greater than 0.57 (see Fig. 3). Thus, cortical skeleton im-
ages contain sufficient information to predict the diagnosis of
SCZ, BD, and ASD. In addition, the three classification tasks
can be ordered by difficulty: SCZ vs HC, BD vs HC, and
ASD vs HC. The same conclusion was reported in a simi-
lar VBM classification study [20]. In particular, the drop in
performance on the ASD dataset can be attributed to the com-
plexity of the pathology, which is known to have many differ-
ent symptoms.

Deeper models improve predictions: The three bench-
marked CNN architectures (see section 2.3) have close per-

(a) Architecture selection (b) Image pre-processing

Fig. 3. (a) Comparison of three CNN architectures: AlexNet,
ResNet, and DenseNet for diagnosis prediction. (b) Com-
parison of models trained with smooth skeletons and binary
skeletons for diagnosis prediction. In both cases, ROC AUC
values are averaged on three training sets, error bars are stan-
dard deviations and red stars mean pval < 0.05.

SCZ BD ASD

BCE 0.656 ±0.034 0.661 ±0.038 0.595 ±0.008

SupCon 0.675 ±0.006 0.656 ±0.044 0.609 ±0.001

Table 2. Comparison of models trained with BCE and Sup-
Con loss. The models are trained to predict diagnosis on the
SCZ, BD, and ASD datasets. Mean ROC AUC values and
associated standard deviations are calculated from the three
training iterations on the test set.

formances on the three classification tasks considered (see
Fig. 3a). DenseNet is the only architecture that gives signif-
icant predictions (above chance pval < 0.05) on all test sets.
Specifically, it can predict the diagnosis with an ROC AUC of
0.661 for BD vs HC, 0.656 for SCZ vs HC, and 0.595 for the
ASD vs HC predictions. For the following experiments, we
kept the DenseNet architecture.

Weakly supervised and supervised learning perform
similarly: Models were trained by optimizing a SupCon loss
(see section 2.3) to make diagnosis predictions on the three
datasets. We got comparable results with the three tested data
augmentations, so we kept only cutouts to save computation
time. The performances were compared with those obtained
with a supervised model implementing a BCE loss (see Table
2). The Supcon loss performs better on SCZ and ASD but
worse on BD. Thus, we kept a supervised model with binary
BCE loss in the following experiments.

Thickening skeletons does not help model training:
Gaussian smoothing was applied to the skeleton images (see
section 2.2), and models were trained and evaluated with
these newly transformed datasets. No data augmentation
was performed at this stage, and the Gaussian smoothing
parameters were fixed. We compared these results with those
obtained without Gaussian smoothing (see Fig. 3b). The
two settings gave close performances on the three test sets.

https://github.com/neurospin-projects/2023_pauriau_diag_pred_from_sulci


Fig. 4. Sulci importance on the model’s diagnosis prediction
for subjects of the SCZ test set. Positive (red) values corre-
spond to an increase in error when the region is occluded, re-
vealing important regions for the prediction. Negative (blue)
values highlight a decrease in error when the region is oc-
cluded, revealing regions that bring noize in the model.

We decided not to use Gaussian smoothing in the following
experiments.

Explainable artificial intelligence (XAI): As deep learn-
ing based methods proliferate, there is a growing demand for
their explainability, especially in high-stakes decision areas
such as medical image analysis. As part of XAI, we com-
puted occlusion sensitivity maps from the test set of the SCZ
dataset (see section 2.3). To further improve interpretabil-
ity, the resulting map was projected back onto a mean sulci
template [21] (see Fig. 4). In this preliminary work, we can
already see parts of cortical sulci brought out by the model.
Such a feature importance technique can highlight part of
sulci implicated in mental disorders.

4. CONCLUSION AND FUTURE WORKS

We established a deep learning framework that can predict
the diagnosis from cortical sulci for three mental disorders:
ASD, BD and SCZ. Our results confirm a neurodevelopmen-
tal contribution to each of these mental disorders that can be
observed in sMRI. Compared to state-of-the-art predictions,
the predictions obtained are weaker but still significant. It
could be explained as sulcal skeleton images contain less in-
formation than other features inferred from sMRI T1w im-
ages. Interestingly, the most straightforward approach works
best. The best model results from supervised training that
optimizes a binary cross-entropy loss with binary skeletons
as inputs. Data transformations with Gaussian smoothing did
not improve the prediction performance. Note that supervised
contrastive learning does not help improve our predictions

over fully supervised learning, perhaps because classical data
augmentations are not well suited to skeleton images. In fu-
ture works, we would like to develop skeleton-specific data
augmentations by drawing inspiration from data augmenta-
tions developed for brain sMRI [22].

All cortical sulcus deviations related to psychiatric disor-
ders described in the literature are found between neurodevel-
opmental patients and other patients or HC [7, 9]. Based on
this analysis, our model may correctly classify only neurode-
velopmental patients among the whole patient population. In
our work, patients cannot be split into two sub-groups be-
cause images come from aggregated studies that do not have
the same phenotyping of patients. Our model predictions may
have reached a glass ceiling with patients as a whole group.
To further investigate this hypothesis, we would like to ap-
ply our model to a dataset from which we can split patients
into a neurodevelopmental sub-group and compare the predic-
tion performances of the two sub-groups of patients. On the
other hand, we would like to try to improve our model predic-
tions by taking advantage of a weakly supervised contrastive
pre-training on a large dataset of HC, which has already been
shown to improve significantly the performance and stability
of the deep learning predictions [20].

Finally, the ability to explain the model is of fundamental
importance in machine learning. Keeping a machine learning
model as a ”black box” is no longer an option, especially in
neuroimaging. The proposed average maps allow us to high-
light sulci associated with psychiatric disorders. However, the
occlusion sensitivity approach fails to capture long-range de-
pendencies between brain regions. A finner approach should
be used to state cortical sulci involved in mental disorders, for
instance, the SHAP approach [23]. In addition, our fixed-size
patch approach may be too simple because a patch may oc-
clude different brain areas across subjects. In future work, we
would like to use more advanced techniques to define patches,
for instance, by taking advantage of brain atlases.
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