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SOME APPLICATIONS OF THE GEOMETRIC SATAKE

EQUIVALENCE TO MODULAR REPRESENTATION THEORY

Simon Riche

Abstract. These notes present an application of the geometric Satake equivalence to

the description of characters of indecomposable tilting modules for reductive algebraic

groups over fields of positive characteristic, obtained in joint work with G. Williamson.

Introduction

0.1. Geometric Satake equivalence and Representation Theory. The geomet-

ric Satake equivalence is an equivalence of categories relating the category of perverse

sheaves on the affine Grassmannian of a connected reductive algebraic group and the

category of representations of the Langlands dual group. This equivalence was initially

considered (following ideas of Lusztig and Drinfeld) in the case of sheaves with coefficients

in a field of characteristic 0, and found in this setting celebrated applications in various

directions, including the geometric Langlands program and representation theory (in

particular via the notion of Mirković–Vilonen cycles). However, the construction of this

equivalence by Mirković–Vilonen [21] applies to more general coefficients, in particular

fields of positive characteristic. In this setting, applications of this result were developed

only recently. The goal of these notes is to explain such an application in representation

theory, found in recent joint work with Geordie Williamson [26]. More explicitly, using

Smith–Treumann theory we were able to extract from the geometric Satake equivalence

a character formula for indecomposable tilting modules in all blocks of representations

of a reductive algebraic group over a field of arbitrary characteristic ℓ, in terms of the

ℓ-canonical basis [14]. This solved a conjecture of ours formulated in [25].

0.2. Contents. Sections 1 and 2 are devoted to a brief presentation of the geometric

Satake equivalence. There already exist a number of reviews of this subject of various

lengths and degrees of technicality, among which [29, 4, 9] and [2, §1]. We do not

feel it is worth writing another such account; instead we have tried to be as direct as

possible, getting as fast as possible to the main statements, and discussing in detail only

some important technical constructions which are sometimes omitted in the standard

references on this subject.

Sections 3 and 4 are concerned with the application of this construction to modular

representation theory of reductive algebraic groups. Here we discuss the study of perverse

sheaves corresponding to tilting modules under the geometric Satake equivalence (which
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involves the “Iwahori–Whittaker model” for the Satake category studied in joint work

with Bezrukavnikov, Gaitsgory, Mirković and Rider [7]), and the use of Smith–Treumann

theory to “extract” combinatorial information using this realization, obtained in [26].

0.3. Some notation. We will use the following (standard) notations for categories:

• Sets: category of sets;

• SchS : category of S-schemes (for S a base scheme);

• AlgR: category of commutative R-algebras (for R a fixed commutative ring);

• AffSchR: category of affine schemes over Spec(R) (for R a fixed commutative

ring).

If R is a commutative ring, we will also write SchR for SchSpec(R).

0.4. Acknowledgements. This text grew up of the notes prepared for the mini-course

Applications of the geometric Satake correspondence given at the conference Théorie des

representations à Lyon in June 2023, which were typed by Quan Situ. We thank him for

offering to type these notes, which offered an indispensable input for this project, and

Florence Fauquant-Millet and Philippe Gille for organizing this event and offerring me

the opportunity to give these lectures.

This project has received funding from the European Research Council (ERC) under

the European Union’s Horizon 2020 research and innovation programme (grant agree-

ments No 101002592).

1. Technical preliminaries

In this section we recall some general definitions and results regarding ind-schemes

(in §1.1), affine Grassmannians (in §1.2), and attractors for actions of the multiplicative

group Gm on schemes (in §1.3). Our main references are [22] for the first two topics,

and [23] for the third one. (All of these results have earlier variants, but often with

stronger assumptions. See [22, 23, 29] for references.)

1.1. Ind-schemes. Let k be a field. Consider the category Schk of k-schemes, and the

subcategory AffSchk of affine schemes, which is equivalent to the opposite category of

the category Algk. Recall that to any k-scheme X one can attach its functor(s) of points

hX = HomSchSpec(k)(−, X) : Schopk → Sets, h′X = HomSchSpec(k)(−, X) : AffSchopk → Sets.

By the Yoneda lemma the assignment X 7→ hX is fully-faithful, and the fact that any

scheme admits an affine open cover implies that the assignment X 7→ h′X is also fully-

faithful. In other words, a scheme is determined by each version of its functor of points.

For simplicity, we will say that a functor “is a scheme” if it is representable by a scheme,

i.e. of the form hX (or h′X) for some k-scheme X, and in this case we will write X for

hX (or h′X).
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Remark 1.1. Depending on the contexts, one might want to work with the functors

hX (defined on Schopk ) or h′X (defined on AffSchopk ). The latter one seems to be the best

choice in the setting we consider here, as illustrated in [22] (and below). Note that,

as explained in [22, Remark 1.6], any functor AffSchopk → Sets which is a Zariski sheaf

extends in a unique way to a functor Schopk → Sets which is a Zariski sheaf.

Definition 1.2. An ind-scheme over k is a functor

X : AffSchopk → Sets

which admits a presentation X = colim
i

Xi for some filtered poset (I,≤) and some family

of schemes (Xi : i ∈ I), where each transition morphism hXi → hXj (i ≤ j) is (induced

by) a closed immersion of schemes.

Note that colimits of functors are computed pointwise, so that the fact that X =

colim
i

Xi means that for any S ∈ AffSchk we have

X(S) = colim
i

Hom(S,Xi).

If X, Y are ind-schemes, a morphism of ind-schemes X → Y is simply a morphism

of functors from X to Y . Ind-schemes in this sense are sometimes called strict ind-

schemes. Since all the ind-schemes we want to consider will be of this form, we will

omit the adjective “strict.” Given an ind-scheme X, the datum of a poset I, a family of

scheme (Xi : i ∈ I) and transition morphisms Xi → Xj such that X = colim
i

Xi is called

a presentation of X.

Example 1.3. (1) Each scheme naturally defines an ind-scheme (with the set “I”

having only one element).

(2) For any set I, the functor

AIk :

{
AffSchopk → Sets

Y 7→
⊕
i∈I

Γ(Y,OY )

is an ind-scheme. Indeed, we have AIk = colim
J⊂I

AJk , where J runs over all finite

subsets of I.

Remark 1.4. Regarding Example 1.3(2), in case I is finite the ind-scheme AIk is of course
a scheme (an affine space of dimension #I). But if I is infinite AIk is not a scheme. In

fact, assume for a contradiction that it were, and denote this scheme by X. Then there

exists a ring A and an open immersion Spec(A)→ X. By definition there exists a finite

subset J ⊂ I such that j factors through a morphism Spec(A) → AJk . Then, for any

finite subset K ⊂ I containing J we have

Spec(A) = Spec(A)×X AKk ,

hence we have an open immersion Spec(A)→ AKk . This implies that dim(A) = #K for

any such K (e.g. by [15, Theorem 5.22(3)]), which is absurd.
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In particular, one should not confuse the ind-scheme AIk with the affine space given

by Spec(k[Xi : i ∈ I]).

Remark 1.5. (1) An ind-scheme is automatically a sheaf for the fpqc topology;

see [22, Lemma 1.4].

(2) Let X be an ind-scheme, and consider a presentation X = colim
i

Xi. For any

scheme Y we have a natural morphism

colim
i

Hom(Y,Xi)→ Hom(Y,X).

This morphism is always injective, but not always a bijection; it is so however if

Y is quasi-compact. (This easily follows from the similar claim when Y is affine,

which is a tautology.) As a consequence, if X, Y are ind-schemes with respective

presentations X = colim
i

Xi, Y = colim
j

Yi, and if each Xi is quasi-compact, we

have

(1.1) Hom(X,Y ) = lim
i
colim
j

Hom(Xi, Yj).

By definition, ind-schemes are functors from AffSchopk to Sets. One can form in the

obvious way fiber products of functors. It turns out that given ind-schemes X, Y , Z

and morphisms X → Z, Y → Z, the fiber product X ×Z Y is an ind-scheme; for details

see [22, Lemma 1.10(1)].

Definition 1.6. Let X,Y be functors from AffSchopk to Sets (e.g. ind-schemes). A

morphism of functors f : X → Y is said to be representable by a closed, resp. open,

resp. locally-closed immersion, if for any scheme Z and any morphism Z → Y the

product X ×Y Z is a scheme and the induced morphism X ×Y Z → Z is a closed,

resp. open, resp. locally-closed, immersion of schemes.

Definition 1.7. Let X be an ind-scheme. We will say that X is separated, resp. ind-

affine, resp. of ind-finite type, resp. ind-proper, if it admits a presentation X = colim
i

Xi

where each Xi is separated, resp. affine, resp. of finite type, resp. proper.

For an explanation why we do not add “ind” to the adjective “separated,” see [22,

Exercise 1.31].

1.2. Affine Grassmannians.

1.2.1. Definition. We start by recalling the definition of a torsor for a group scheme. For

a base scheme S, we denote by SchS the category of S-schemes.

Definition 1.8. Let S be a scheme, and consider a group scheme G → S. A G-torsor

is a fppf sheaf P on the category SchS endowed with a right action of G such that:

(1) for any X ∈ SchS , there exists a fppf covering (Xi → X)i∈I such that P(Xi) ̸= ∅
for all i;
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(2) the map P ×S G → P ×S P defined by (x, g) 7→ (x, x · g) is an isomorphism of

sheaves.

Any group scheme G → S has a trivial torsor, namely G itself (for the action given

by mutliplication on the right). We note the following properties (for details, see [2,

§2.1.2]):

• given a morphism of schemes T → S, for any G-torsor P we have an associated

G×S T -torsor P ×S T ;
• if G→ S is affine, then any G-torsor is represented by a scheme over S;

• if moreover G→ S is smooth, then any G-torsor is étale locally trivial. (In other

words, the covering in Item (1) of Definition 1.8 can be chosen to be an étale

covering.)

From now on we fix a field k. For R ∈ Algk, we set

DR = Spec(R[[z]]), D×
R = Spec(R((z))).

Given an algebra morphism R → S we have induced algebra morphisms R[[z]] → S[[z]]

and R((z))→ S((z)), hence morphisms of schemes

DS → DR, D×
S → D×

R.

We now consider a flat affine group scheme G→ Dk of finite type.

Definition 1.9. The affine Grassmannian for G is the functor

GrG : Algk → Sets

which sends R ∈ Algk to the set of isomorphism classes of pairs (E , α) where E → DR is

a (G ×Dk DR)-torsor and α : D×
R → E is a section of E over D×

R (i.e. a morphism whose

composition with the projection E → DR is the natural embedding D×
R ↪→ DR).

Remark 1.10. Given a bundle E , the datum of the section α is equivalent to the datum

of an isomorphism (called a trivialization)

E|D×
R

∼−→ (G×Dk DR)×DR
D×
R = G×Dk D

×
R.

An important special case of this construction is when G = H ×Spec(k) Dk for some

group scheme H over k. We introduce a special notation for this case, setting

GrH = GrH×Spec(k)Dk .

1.2.2. Representablity. We continue with our flat affine group scheme G → Dk of finite

type. The following result is [22, Theorem 3.4].

Theorem 1.11. (1) The affine Grassmannian GrG is represented by a separated

ind-scheme of ind-finite type over k.
(2) If G is reductive, then GrG is ind-projective.

5



The idea of the proof of this theorem goes as follows. First, one checks the statement

directly in case G = GLn,k[[z]], by describing the affine Grassmannian as a moduli space

of lattices. Then one shows that if H → G is a closed immersion of flat affine group

schemes of finite type such that the fppf quotient G/H is representable by a quasi-

affine (resp. affine) scheme, then the induced morphism GrH → GrG is representable

by a quasi-compact immersion (resp. a closed immersion). Finally, one shows that for

any G as in the theorem there exists n ≥ 1 and a closed immersion of group schemes

G → GLn,k[[z]] such that the fppf quotient GLn,k[[z]]/G is representable by a quasi-affine

scheme, which is automatically affine in case G is reductive.

The idea of this proof goes back at least to [6, §4.5]. This idea has been repeated in

various degrees of generality since; see e.g. [16, §3] or [29, §1.2].

1.2.3. Beauville–Laszlo gluing. LetX → Spec(k) be a scheme, and let x ∈ X be a k-point
of X such that the local ring OX,x of X at x is regular of dimension 1. (In practice X will

be chosen to be a smooth curve over k; in fact the case when X = A1
k suffices.) In this

setting, as explained in [22, §3.2], the completion of the local ring OX,x is isomorphic (as

a k-algebra) to k[[z]]. We fix such an isomorphism; this provides a morphism of schemes

Dk → X.

Let G → X be a flat affine group scheme of finite presentation. Consider the functor

GrG,x : Algk → Sets

sending R ∈ Algk to the set of isomorphism classes of pairs (E , α) where E is a G×Spec(k)
Spec(R)-torsor and

α : (X ∖ {x})×Spec(k) Spec(R)→ E
is a section of E over (X ∖ {x})×Spec(k) Spec(R).

The following result is often called the Beauville–Laszlo gluing theorem (because the

first version of such a statement is due to Beauville–Laszlo, see [5]). See [22, Theo-

rem 3.15] or [29, Theorem 1.4.3].

Theorem 1.12. Set G = G ×X Dk. Then there exists a canonical isomorphism

GrG,x
∼−→ GrG.

This theorem is important because it allows to pass from the “local” problem described

by GrG (in terms of torsors over the infinitesimal disc Dk) to a “global” problem described

in terms of torsors over the scheme X.

1.2.4. Loop spaces. For a functor X : Algk((z)) → Sets, we define the associated loop

functor

LX : Algk → Sets, R 7→ X
(
R((z))

)
.

For a functor X : Algk[[z]] → Sets, we define the associated arc functor

L+X : Algk → Sets, R 7→ X
(
R[[z]]

)
.
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For i ≥ 0 and a functor X : Affk[z]/(zi+1) → Sets, we define the associated jet functor

L+
i X : Algk → Sets, R 7→ X

(
R[z]/(zi+1)

)
.

We will mainly consider these functors in case the functor is constructed from a scheme

over Dk. In this case we will simplify the notation as follows: for a scheme X over Dk
and i ∈ Z≥0 we write

LX := L
(
X ×Dk D

×
k
)
, L+

i X = L+
i

(
X ×Dk Spec(k[z]/(z

i+1))
)
.

In this case, if i ≥ j we have a natural “reduction” morphism L+
j X → L+

i X. An even

more specific case is when the scheme X is obtained by base change from a k-scheme Y .

In this case we set

LY = L
(
Y ×Spec(k) Dk

)
, L+Y = L

(
Y ×Spec(k) Dk

)
, L+

i Y = L+
i (Y ×Spec(k) Dk).

The functor LY should be thought of as “infinitesimal loops in Y ”, i.e. maps from the

punctured infinitesimal disc D×
k to Y . A similar mental picture for L+Y can be obtained

by replacing infinitesimal loops by infinitesimal arcs, i.e. maps from the infinitesimal disc

Dk to Y .

The following statement is standard; see [22, Lemma 3.17] and [10, §1.1].

Proposition 1.13. (1) Let X be a scheme over Dk. Then each L+
i X is a scheme

over k, which is smooth, resp. of finite type, if X is, each reduction morphism

L+
j X → L+

i X is an affine morphism, and

L+X ≃ lim←−
i

L+
i X

is a scheme. If X is affine, then L+X is also affine.

(2) If X → D×
k is an affine scheme, then LX is an ind-affine ind-scheme.

1.2.5. Uniformization. Let G → Dk be a smooth affine group scheme of finite type.

Then LG and L+G naturally factor through group-valued functors. In fact, by Propo-

sition 1.13, LG is an ind-affine group ind-scheme over k, and L+G is an affine group

scheme over k. We also have a canonical inclusion L+G ⊂ LG. We can therefore con-

sider the presheaf quotient LG/L+G, i.e. the functor on Algk sending R to the quotient

group (LG)(R)/(L+G)(R). We will denote by (LG/L+G)ét the étale sheafification of

this presheaf.

For the following statement we refer to [22, Proposition 3.18].

Theorem 1.14. There exists a canonical isomorphism of étale sheaves(
LG/L+G

)
ét

∼−→ GrG

induced by g 7→ (E0, g−1), where E0 is the trivial torsor.

Remark 1.15. (1) This theorem is closely related to the property that if E → DR is

a (G×Dk DR)-torsor then there exists an étale cover R→ R′ such that E ×DR
DR′

is isomorphic to the trivial (G×Dk DR′)-torsor.
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(2) In view of Remark 1.5(1), this theorem shows in particular that the étale sheaf

(LG/L+G)ét is in fact an fpqc sheaf. One can say more in the (important!)

special case whenG = H×Spec(k)Dk for some connected reductive groupH over k:
in this case, the Zariski sheafification (LH/L+H)Zar coincides with (LH/L+H)ét
(hence is a fpqc sheaf), see [10, Theorem 2.5], and if H is split over k (e.g. if

k is algebraically closed) then the presheaf quotient LH/L+H coincides with

(LH/L+H)ét, see [10, Theorem 3.4 and Example 3.2].

1.3. Attractors and Braden’s theorem.

1.3.1. Definition. Let X → Spec(k) be a scheme endowed with an action of the multi-

plicative group Gm,k. For a k-scheme T we set Gm,T = Gm,k ×Spec(k) T . We also denote

by (A1
T )

+, resp. (A1
T )

−, the scheme given by the affine line over T , endowed with the

natural action of Gm,T , resp. the opposite of the natural action.

We define the attractor, repeller, and fixed points of the action as follows.

Definition 1.16. (1) The functor of fixed points X◦ is the functor

X◦ : AffSchopk → Sets

sending a k-scheme T to the set of T -morphisms T → X×Spec(k) T such that the

diagram

Gm,T Gm,T ×T (X ×Spec(k) T )

T X ×Spec(k) T

commutes, where the right-hand side is induced by the action morphism

Gm,k ×Spec(k) X → X.

(2) The attractor X+ is the functor

X+ : AffSchopk → Sets

sending T to the sets of T -morphisms (A1
T )

+ → X ×Spec(k) T such that the

diagram

Gm,T ×T (A1
T )

+ Gm,T ×T (X ×Spec(k) T )

(A1
T )

+ X ×Spec(k) T

commutes, where the vertical arrows are induced by the actions of Gm,T .

(3) The repeller X− is the functor

X− : AffSchopk → Sets
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sending T to the sets of T -morphisms (A1
T )

− → X ×Spec(k) T such that the

diagram

Gm,T ×T (A1
T )

− Gm,T ×T (X ×Spec(k) T )

(A1
T )

− X ×Spec(k) T

commutes, where the vertical arrows are induced by the actions of Gm,T .

Remark 1.17. (1) Clearly the definitions of X◦(T ), X+(T ), X−(T ) make sense for

any k-scheme T , even if T is not affine. These “extended” functors are considered

in [23], rather than those in Definition 1.16. This does not lead to any difference

in the theory; in factX◦, X+ andX− as defined above are clearly Zariski sheaves,

and the versions considered in [23, Definition 1.3] are the unique extensions of

these functors to Zariski sheaves from Schk to Sets mentioned in Remark 1.1.

In particular, if X◦ = h′Y for some k-scheme Y , then the corresponding functor

in [23] is hY , and vice versa. Similar considerations apply to X+ and X−.

(2) The definitions above can be considered also in the more general setting of al-

gebraic spaces, as is done in [23]. We will restrict to schemes here, since this is

sufficient for the applications we want to consider. One can also work over a base

scheme S instead of Spec(k) (as is also done in [23]); this is important in some

contexts related to the geometric Satake equivalence, which will however not be

discussed here.

It is clear that if Y is the scheme X endowed with the opposite action of Gm,k we have

identifications Y ◦ = X◦, Y + = X−, Y − = X+. In particular, the study of repellers can

therefore be reduced to that of attractors.

We have natural morphisms of functors

(1.2) q+ : X+ → X◦, q− : X− → X◦

induced by evaluation at 0 ∈ A1
k(k), natural morphisms of functors

(1.3) p+ : X+ → X, p− : X− → X

induced by evaluation at 1 ∈ A1
k(k), and a natural morphism of functors

(1.4) X◦ → X.

There are also natural actions of the functor-in-groups Gm,k on X◦, X+ and X− such

that the morphisms in (1.2), (1.3) and (1.4) are equivariant.

Remark 1.18. Recall that a morphism of schemes Y → Z is called a monomorphism

if it is a monomorphism in the category of schemes, i.e. for any scheme T the morphism

Hom(T, Y ) → Hom(T,Z) is injective. If Y and Z are k-schemes, then it is equivalent

to require that for any T ∈ Schk the morphism HomSchk(T, Y ) → HomSchk(T,Z) is
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injective; in fact this follows from the characterization of monomorphisms in terms of

fiber products (see [28, Tag 08LR]) and the fact that the fiber product of Y and Z in

Schk is the same as in the category of all schemes. Using the fact that any scheme admits

an affine open cover, one sees that it is equivalent to require that for any T ∈ AffSchk
the morphism HomSchk(T, Y )→ HomSchk(T,Z) is injective.

If X is a separated k-scheme, then the morphisms (1.3) are monomorphisms. In

fact, by the characterization explained above it suffices to show that for any affine k-
scheme T the morphism HomSchk(T,X

+) → HomSchk(T,X) is injective. Now elements

of HomSchk(T,X
+) are in particular morphisms of T -schemes A1

T → X ×Spec(k) T , and

two elements whose images in HomSchk(T,X) are equal coincide on the open subscheme

Gm,T ⊂ A1
T . Now the scheme theoretic closure of Gm,T in A1

T is A1
T (see [28, Tag 056C]),

which allows to conclude using [28, Tag 01RH].

1.3.2. Representability. The following technical conditions on the action (introduced

in [23]) turn out to be extremely useful in the study of the functors X◦, X+ and X−.

Definition 1.19. The Gm,k-action on X is said to be étale (resp. Zariski) locally lin-

earizable if there exists a Gm,k-equivariant cover (Ui → X)i∈I where each Ui is affine and

the maps Ui → X are étale (resp. open embeddings).

Remark 1.20. Of course, if the action is Zariski locally linearizable then it is étale locally

linearizable. Celebrated results of Sumihiro imply that if X is a normal variety then any

action of Gm,k is Zariski locally linearizable; see [22, §0.2] for references. More recent

results of Alper–Hall–Rydh show that étale local linearizability is automatic under very

mild assumptions on X, see again [22, §0.2] for references. In any case, for the schemes

and actions appearing in the construction of the geometric Satake equivalence, one can

check explicitly that the actions are Zariski locally linearizable; see §2.1.2 below.

The following theorem gathers results from [23, Theorem 1.8 and Corollary 1.12].

Theorem 1.21. Assume that the Gm,k-action on X is étale locally linearizable. Then

X◦, X+ and X− are schemes over k, and the morphism (1.4) is a closed immersion.

Moreover:

(1) if X is of finite type over k, then so are X◦, X+ and X−,

(2) the morphisms in (1.2) are affine, with geometrically connected fibers, and they

induce bijections between sets of connected components of the underlying topolog-

ical spaces.

Example 1.22. To get a feeling of what fixed points, attractors and repellers look like,

one can consider the following examples.

(1) Assume that X = Spec(A) is an affine k-scheme endowed with an action of Gm,k.

The datum of this action is equivalent to the datum of a grading A =
⊕

n∈ZA
n

such that multiplication is homogeneous (of degree 0). Any such action is clearly

Zariski locally linearizable, and we have the following descriptions:
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• X◦ is the closed subscheme of X determined by the ideal of A generated by

the subspace
⊕

n∈Z∖{0}
An;

• X+ is the closed subscheme of X determined by the ideal of A generated by

the subspace
⊕

n∈Z<0

An;

• X− is the closed subscheme of X determined by the ideal of A generated by

the subspace
⊕

n∈Z>0

An.

(This—easy—special case is in fact an important ingredient of the proof of The-

orem 1.21; see [23, Lemma 1.9].)

(2) Let V be a k-vector space with a linear action of Gm,k, and consider the cor-

responding decomposition into eigenspaces: V =
⊕
j∈Z

Vj . For i ∈ Z we also set

V≥i :=
⊕
j≥i

Vj . Then the action of Gm,k on P(V ) is Zariski locally linearizable,

and we have

P(V )◦ =
⊔
i∈Z,
Vi ̸=0

P(Vi) and P(V )+ =
⊔
i∈Z,
Vi ̸=0

P(V≥i)∖ P(V≥i+1).

In case 1 the morphisms 1.3 are closed immersions, but as illustrated in case 2 this is not

the case in general. In fact the latter case illustrates another general phenomenon: if X

is a proper k-scheme (with an étale locally linearizable action) then the morphisms 1.3

induce bijections on the underlying topological spaces, see [2, Lemma 1.1.4]. Hence one

can think of X+ and X− as “the same space as X with a different topology.” This case is

more representative of what happens in the setting of the geometric Satake equivalence.

The lemma is an easy exercise in the manipulation of the main results of [23]; for

details, see [2, Lemma 1.1.3].

Lemma 1.23. Let X be a k-scheme equipped with an étale (resp. Zariski) locally lin-

earizable action of Gm,k, and let Y ⊂ X be a Gm,k-stable closed subscheme. Then the

action of Gm,k on Y is étale (resp. Zariski) locally linearizable, and moreover we have

isomorphisms

Y ◦ ≃ Y ×X X◦, Y ± ≃ Y ×X X±.

Lemma 1.23 allows us to generalize Theorem 1.21 to ind-schemes, as follows. If X is

an ind-scheme over k, an action of Gm,k on X is the datum of an “action morphism”

Gm,k ×Spec(k) X → X which satisfies the obvious axioms. Given such a datum, one can

define the functors X◦, X+ and X− as in Definition 1.16.

In practice one often wants to consider actions that “come from actions on schemes.”

In particular, we will say the action is étale (resp. Zariski) locally linearizable if X admits

a presentation X = colim
i

Xi such that the action of Gm,k on X factors through an action

on Xi for any i, and if moreover the action of Gm,k on Xi is étale (resp. Zariski) locally
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linearizable for any i. The following result is an easy consequence of Lemma 1.23; for

details, see [2, Theorem 1.1.6].

Theorem 1.24. Let X be an ind-scheme over k equipped with an étale locally linearizable

of Gm,k, and consider a presentation X = colim
i

Xi as in the definition preceding the

theorem.

(1) The functor X◦ is an ind-scheme over k, which admits a presentation

X◦ = colim
i

(Xi)
◦.

Moreover, the natural morphism X◦ → X (similar to (1.4)) is representable by

a closed immersion.

(2) The functor X+ is an ind-scheme over k, which admits a presentation

X+ = colim
i

(Xi)
+.

(3) The functor X− is an ind-scheme over k, which admits a presentation

X− = colim
i

(Xi)
−.

Remark 1.25. In the setting of Theorem 1.24, the natural morphism X+ → X (similar

to the left-hand side in (1.3)) is “representable by schemes” in the sense that for any

scheme Z and any morphism Z → X the fiber product X+×XZ is a scheme; see again [2,

Theorem 1.1.6] for details.

1.3.3. Braden’s Theorem. By a “ring of coefficients” we mean a ring of one of the fol-

lowing forms:

• a finite field of characteristic invertible in k, or an algebraic closure of such a

field;

• the ring of integers in a finite extension ofQp, where p is a prime number invertible

in k;
• a finite extension or an algebraic closure of Qp, where p is a prime number

invertible in k.
If Λ is such a ring, for any k-scheme of finite type we will denote byDb

c (Y,Λ) the bounded

derived category1 of étale Λ-sheaves on Y .

Fix now X a scheme of finite type over k, endowed with an étale locally linearizable

action of Gm,k, and a ring of coefficients Λ. Recall the morphisms q± and p± considered

in (1.2)–(1.3). We define the hyperbolic localization functors as the following functors

from Db
c (X,Λ) to D

b
c (X

◦,Λ)

HL+
X = (q+)!(p

+)∗, HL−
X = (q−)∗(p

−)!.

1We make the usual abuse of terminology in this setting: unless Λ is a finite field, this category is not

the bounded derived category of the abelian category of étale Λ-sheaves, but something more complicated

constructed using an appropriate limit procedure.
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As explained in [23, Construction 2.2], there exists a canonical morphism of functors

(1.5) HL−
X → HL+

X .

Let a, p : Gm,k ×Spec(k) X → X be the action and projection maps, respectively. We

will denote by

Db
c (X,Λ)

Gm,k-mon

the full triangulated subcategory of Db
c (X,Λ) generated by the complexes F such that

there exists an isomorphism a∗F
∼−→ p∗F . (This condition should be seen as a “weak

equivariance” condition.)

The following theorem is proved in [23, Theorem 2.6]. Earlier variants are due to

Braden and Drinfeld–Gaitsgory; see [23] for precise references.

Theorem 1.26. For any F ∈ Db
c (X,Λ)

Gm,k-mon, the morphism

HL−
X(F )→ HL+

X(F )

induced by (1.5) is an isomorphism.

Remark 1.27. (1) The morphism (1.4) factors natural through morphisms

i+ : X◦ → X+ and i− : X◦ → X−

(given by “constant maps”). As explained in [23, (2.4)], there exists canonical

morphisms of functors from Db
c (X

−,Λ) to Db
c (X

◦,Λ), resp. from Db
c (X

+,Λ) to

Db
c (X

◦,Λ),

(q−)∗ → (i−)∗, resp. (i+)! → (q+)!.

There exists natural actions of Gm,k on X− and X+ (see the comments preceding

1.18), so that as above one can consider the subcategories Db
c (X

−,Λ)Gm,k-mon and

Db
c (X

+,Λ)Gm,k-mon. If F belongs to Db
c (X

−,Λ)Gm,k-mon, resp. if F ′ belongs to

Db
c (X

+,Λ)Gm,k-mon, then the morphism above induces an isomorphism

(q−)∗F
∼−→ (i−)∗F , resp. (i+)!F ′ ∼−→ (q+)!F

′.

In fact this claim can be checked étale locally, so that using [23, Lemma 1.11]

one can assume that X is affine. This claim is proved in [23, Lemma 2.19] in case

X is a vector space with a linear action. Using [23, Lemmas 2.21, 2.23, 2.25], we

deduce that its holds for any affine X, as desired.

Using this claim, we obtain that for any F ∈ Db
c (X,Λ)

Gm,k-mon we have canon-

ical isomorphisms

(1.6) HL−
X(F ) ≃ (i−)∗(p−)!F and HL+

X(F ) ≃ (i+)!(p+)∗F .

Hence one can consider that the hyperbolic localization functors are obtained by

“taking a !-pullback functor in some directions, followed by a ∗-pullback functor

in other directions.”
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(2) In practice, one can often prove that appropriate functors commute (in the ap-

propriate sense) with the hyperbolic localization functor by using the flexibility

to pass between !- and ∗-functors using the isomorphism in Theorem 1.26, or

push and pull functors using the isomorphisms (1.6). For concrete applications

of this idea, see [23, Proposition 3.1 and Theorem 3.3].

2. The geometric Satake equivalence

In this section, we introduce the geometric Satake equivalence. What we understand

of the history of this construction is discussed in full detail in the introduction of [2],

hence will not be repeated here. We will only cite the names of the main contributors

in this story, in chronological order, namely Lusztig, Ginzburg, Bĕılinson–Drinfeld and

Mirković–Vilonen. The first complete proof of this equivalence, which is also the only

one known in the generality that we require, is to be found in [21]. See the introduction

for references to more detailed surveys of this proof.

2.1. More on the geometry of affine Grassmannians.

2.1.1. Sheaves on affine Grassmannians. Let G be a smooth affine group scheme of finite

type over Dk. Recall (see Proposition 1.13) that

L+G = lim←−
i

L+
i G

is an affine group scheme over k, with each L+
i G smooth affine of finite type. It is also

known that for any i ≥ 1 the morphism L+
i+1G→ L+

i G is surjective, and that its kernel

is a vector group, i.e. the k-algebraic group associated with a finite-dimensional vector

space over k, hence in particular a smooth connected unipotent group. (See e.g. [13,

§VI.1] for a statement of this form.)

Consider also the affine Grassmannian GrG, which is a separated ind-scheme of ind-

finite type, see Theorem 1.11. We have an action of LG, hence of L+G, on GrG by

twisting the section α. In fact, a look at the proof of this theorem shows that we have a

presentation

(2.1) GrG = colim
i

GrG,i

such that each GrG,i is separated of finite type, stable under the action of L+G, and

moreover the action factors through an action of L+
ni
G for some ni ≥ 0. Then if Λ

is a ring of coefficients (see §1.3.3), for any m ≥ ni we can consider the constructible

L+
mG-equivariant derived category Db

L+
mG

(GrG,i,Λ) of étale Λ-sheaves on GrG,i. (This

category can be constructed either using the Bernstein–Lunts construction, or using the

theory of étale sheaves on stacks, applies to the algebraic stack of finite type L+
mG\GrG,i.)

Using the fact that the quotient morphisms L+
j+1G → L+

j G have connected unipotent
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kernels, one sees that this category does not depend on the choice of m up to canonical

equivalence, hence can be denoted

Db
L+G(GrG,i,Λ).

If i ≤ j we have a fully-faithful functor

Db
L+G(GrG,i,Λ)→ Db

L+G(GrG,j ,Λ)

given by pushforward along the closed immersion GrG,i → GrG,j . Therefore, we can

consider the derived Satake category, given as the colimit

Db
L+G(GrG,Λ) := colim

i≥0
Db

L+G(GrG,i,Λ).

Using (1.1) one can check that this category does not depend (up to canonical equiv-

alence) on the choice of the presentation (2.1) satisfying the properties stated above.

Below we will also sometimes consider the category

Db
c (GrG,Λ) := colim

i≥0
Db

c (GrG,i,Λ).

In practice, to avoid trivial but cumbersome discussions, one often works with this

category by “pretending that GrG is a scheme,” i.e. writing formulas that do not actually

make sense as is, but would make sense if all the (ind-)schemes under consideration were

schemes of finite type, and can be easily modified to make actual sense. A similar

comment applies to other ind-schemes to be introduced below.

For any i ≥ 0 the categoryDb
c (GrG,i,Λ) has a canonical perverse t-structure, and there

exists a unique t-structure on Db
L+G(GrG,i,Λ) such that the natural forgetful functor

Db
L+G(GrG,i,Λ)→ Db

c (GrG,i,Λ)

is t-exact.2 Then there exists a unique t-structure on Db
L+G(GrG,Λ) such that each

natural functor

Db
L+G(GrG,i,Λ)→ Db

L+G(GrG,Λ)

is t-exact. Again, this t-structure does not depend on the choice of presentation (2.1).

The heart of this t-structure will be denoted PervL+G(GrG,Λ), and the associated coho-

mology functors will be denoted (pH n : n ∈ Z). Similar comments apply in the category

Db
c (GrG,Λ).

Remark 2.1. In these notes we work with étale sheaves, because this is the setting we

will require for our main application later. However the geometric Satake equivalence

can also be stated (and proved) in the setting where k = C, working with sheaves of

Λ-modules on the associated analytic space. This is the setting considered explicitly

in [21, 4]. The two settings can be treated with essentially identical methods.

2Often, the definition of the perverse t-structure on sheaves on a stacks is normalized in such a way

that for a quotient stack X/H the pullback functor Db
c (X/H,Λ) → Db

c (X,Λ) is t-exact up to a shift. In

the present context it is more convenient to add this shift in the definition of the t-structure, so that the

pullback functor becomes t-exact.
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2.1.2. Attractors. From now on, we assume that k is algebraically closed, and fix a

connected reductive algebraic group G over k. For a moment, we will only consider the

constructions above applied to the group G×Spec(k) Dk.

We also fix opposite Borel subgroups B+, B−, and denote by T their intersection (a

maximal torus in G). Let W = NG(T )/T be the Weyl group of (G,T ). We will also

consider the character and cocharacter lattices

X = X∗(T ), X∨ = X∗(T ),

and denote the root and coroot systems by R ⊂ X and R∨ ⊂ X∨ respectively. The

T -weights in the Lie algebra of B+ determine a system of positive roots R+ ⊂ R, and we

denote by X∨
+ ⊂ X∨ the corresponding set of dominant coweights. There is a partial order

≤ on X∨ such that λ ≤ µ if and only if µ−λ ∈ Z≥0R
∨. W set ρ = 1

2

∑
α∈R+

α ∈ Q⊗ZX.
Let us fix a strictly dominant coweight, i.e. an element ν ∈ X∨ such that ⟨ν, α⟩ > 0

for any α ∈ R+. Then we have a Gm,k-action on G given by for g ∈ G and t ∈ Gm,k by

t · g = ν(t)gν(t)−1. It is a classical fact that for this action the attractor, repeller and

fixed points can be described as follows:

G+ = B+, G− = B−, G◦ = T ;

see e.g. [12, §2.1]. We also have an action of Gm,k on the ind-scheme GrG obtained by

restriction of the action of LG via the composition Gm,k
ν−→ G ↪→ L+G, where the second

morphism is given by taking constant loops.

The following statement is implicit in [21], and was proved in this form by Haines–

Richarz. For a description of this proof, and precise references, see [2, §1.2.2].

Theorem 2.2. (1) The action of Gm,k on GrG is Zariski locally linearizable.

(2) We have canonical identifications

GrB+ ≃ (GrG)
+, GrB− ≃ (GrG)

− and GrT ≃ (GrG)
◦.

In particular, this theorem and the comments in Example 1.22 show that the natural

maps GrB+ → GrG and GrB− → GrG are bijections (but not isomorphisms, and not

even homeomorphisms).

2.1.3. Schubert cells. For each λ ∈ X∨ we consider the composition

LGm,k
Lλ−→ LG→ GrG

where the second map is the quotient morphism (see Theorem 1.14). The element

z ∈ LGm,k(k) = k((z))× maps to a k-point of GrG, denoted Lλ ∈ GrG(k). For µ ∈ X∨
+

we will denote by

GrG,≤µ

the closure of the L+G-orbit of Lµ, endowed with the reduced scheme structure. (This

definition makes sense because GrG is a colimit of schemes on which the action factors

through a quotient of finite type.) This scheme is a projective k-variety.
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It is a standard fact that for µ, µ′ ∈ X∨
+, we have

GrG,≤µ′ ⊂ GrG,≤µ if and only if µ ≤ µ′.

For µ ∈ X∨
+ we set

GrG,µ := GrG,≤µ\
⋃

µ′∈X∨
+

µ′<µ

GrG,≤µ′ .

Then GrG,µ is an open subscheme in GrG,≤µ, hence a quasi-projective scheme over k.
It is known that GrG,µ is smooth, of dimension ⟨µ, 2ρ⟩, and that its k-points consist of

the orbit of Lµ under the action of L+G(k). Moreover the stabilizer of Lµ in L+G is

connected. In particular, for the underlying topological spaces we have a stratification

|GrG| =
⊔
λ∈X∨

+

|GrG,λ|.

The decomposition of GrG into its connected components is of the form

GrG =
⊔

c∈X∨/ZR∨

GrcG,

where GrG,µ ⊂ GrcG if and only if µ ∈ c.

2.1.4. Semi-infinite orbits. Consider the morphisms

(2.2) GrB+ → GrT , GrB− → GrT

induced by the natural morphisms B+ → T , B− → T (given by the quotient by the

unipotent radical). It is a standard fact that |GrT | is discrete, with underlying set X∨.

It can be easily deduced from Theorem 1.21 that the maps in (2.2) induce bijections

between the corresponding sets of connected components; see [2, §1.2.2.3] for details.

In this way, we obtain a bijection between the set of connected components of |GrB+ |,
resp. |GrB− |, and X∨. For any λ ∈ X∨, we will denote by

Sλ, resp. Tλ,

the connected component3 of GrB+ , resp. GrB− , corresponding to λ. Then we have

morphisms

(2.3) sλ : Sλ → GrG and tλ : Tλ → GrG

which are representable by locally closed immersions. We also have

Sλ(k) = B+
(
k((z))

)
·Lλ = U+

(
k((z))

)
·Lλ, Tλ(k) = B−(k((z))) ·Lλ = U−(k((z))) ·Lλ,

where U+ is the unipotent radical of B+ and U− is the unipotent radical of B−.

3See [2, §1.1.1.3] for comments on the ind-scheme structure on connected components of ind-schemes.
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2.1.5. Dimension estimate. For λ ∈ X∨, we denote by dom(λ) the unique dominant

W -conjugate of λ. For any µ ∈ X∨
+, we set X∨

µ := {λ ∈ X∨ | dom(λ) ≤ µ}. The

following statement is a reformulation of a crucial result in [21]; see [4, Theorem 1.5.2], [2,

Remark 1.2.9] and [9, Talk 8].

Theorem 2.3. For any λ ∈ X∨ and µ ∈ X∨
+, the fiber product

Sλ ×GrG GrG,≤µ

is a connected affine scheme of finite type, which is nonempty if and only if λ ∈ X∨
µ . In

this case, each of its irreducible components has dimension ⟨ρ, µ+ λ⟩.

2.2. The geometric Satake equivalence.

2.2.1. Dual group. The root datum of the pair (G,T ) is the quadruple (X,X∨, R,R∨), to-

gether with the natural bijection between roots and coroots and the natural perfect pair-

ing between X and X∨. One can obtain another root datum (X∨,X, R∨, R) by switching

the roles of weights/roots and coweights/coroots. By the work of Chevalley, Demazure

and Grothendieck, there exists a unique split reductive group scheme G∨
Z over Spec(Z)

with a split maximal torus T∨
Z , such that for any algebraically closed field F, the pair

(G∨
F , T

∨
F ) obtained by base change has root datum (X∨,X, R∨, R); see [4, §1.14.1] for

comments and references. For any commutative ring Λ we set

G∨
Λ = Spec(Λ)×Spec(Z) G

∨
Z,

seen as a (reductive) group scheme over Spec(Λ).

2.2.2. Convolution. Let us consider the “convolution affine Grassmannian”

ConvG := (LG×GrG
/
L+G)ét,

where L+G acts on LG×GrG via the formula g ·(h, x) = (hg−1, gx) for g ∈ L+G, h ∈ LG

and x ∈ GrG. Here the automorphism of LG×GrG given by (h, x) 7→ (h, h · x) identifies
this action with the action induced by multiplication on the right on the left-hand factor,

so that this étale quotient is an ind-scheme (isomorphic to GrG×GrG, but which should

not be confused with it). It is not difficult to describe a moduli problem (in terms of

torsors) that this ind-scheme represents; see e.g. [4, §1.7.2]. If Λ is a ring of coefficients,

one defines the L+G-equivariant derived category Db
L+G(ConvG,Λ) as in the case of the

affine Grassmannian in §2.1.1.
The morphism LG×GrG → GrG given by (g, x) 7→ g · x factors through a morphism

m : ConvG → GrG.

Consider also the natural projection morphism p : LG→ GrG. Given complexes F ,G ∈
Db

L+G(GrG,Λ), there exists a unique complex

F ⊠̃ G ∈ Db
L+G(ConvG,Λ)
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whose pullback to LG×GrG is p∗F ⊠L
Λ G (as an equivariant complex). We set

F ⋆ G := m∗(F ⊠̃ G ).

It is a standard fact that the bifunctor ⋆ defines a monoidal structure on the category

Db
L+G(GrG,Λ).

The following property is crucial; for a discussion of the proof, see [4, §1.10.3].

Proposition 2.4. If F ,G ∈ PervL+G(GrG,Λ), then we have

pH n(F ⋆ G ) = 0 if n > 0.

An easy consequence of this proposition is that the bifunctor ⋆0 on PervL+G(GrG,Λ)

defined by

F ⋆0 G = pH 0(F ⋆ G )

admits canonical unitality and associativity constraints which define a monoidal structure

on the abelian category PervL+G(GrG,Λ). (The monoidal product is exact in case Λ is

a field, but not otherwise.)

2.2.3. Statement. We can finally state the geometric Satake equivalence. Fix a ring of

coefficients Λ, and denote by Rep(G∨
Λ) the category of G∨

Λ-representations (i.e., O(G∨
Λ)-

comodules) that are finitely generated as Λ-modules. We will also denote by

ForG∨
Λ
: Rep(G∨

Λ)→ Λ-Mod

the functor of forgetting the action.

Theorem 2.5. There exists an equivalence of monoidal categories

Sat :
(
PervL+G(GrG,Λ), ⋆

0
) ∼−→

(
Rep(G∨

Λ),⊗Λ

)
together with an isomorphism of functors

ForG∨
Λ
◦ Sat ≃ H•(GrG,−).

2.2.4. Commutativity constraint (fusion product). Note that the monoidal category(
Rep(G∨

Λ),⊗Λ

)
has a commutativity constraint. Hence in view of Theorem 2.5, the monoidal category(

PervL+G(GrG,Λ), ⋆
0
)

should also have a commutativity constraint. In fact, the prior construction of this

structure is a crucial step in the proof of Theorem 2.5.

To construct the desired commutativity constraint, one needs to work over the curve

C = A1
k = Spec(k[x]).

For R ∈ Algk, we set CR := C ×Spec(k) Spec(R). For any y ∈ C(R) (resp. y1, y2 ∈ C(R))
we denote by Γ̂y (resp. Γ̂y1,y2) the spectrum of the completion of R[x] with respect to

the ideal defining the graph Γy of y (resp. the union Γy1∪Γy2). Variants of Theorem 1.11

imply that there exist ind-schemes GrG,C and FusG such that, for R ∈ Algk,
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• GrG,C(R) is given by the set of isomorphism classes of triples (y, E , β) where

y ∈ C(R), E is a (G×Spec(k) Γ̂y)-torsor, and β is a trivialization of this torsor on

Γ̂y\Γy;
• FusG(R) is given by the set of isomorphism classes of quadruples (y1, y2, E , β)
where y1, y2 ∈ C(R), E is a (G×Spec(k) Γ̂y1,y2)-torsor, and β is a trivialization of

this torsor on Γ̂y1,y2\(Γy1 ∪ Γy2).

These ind-schemes are equipped with canonical morphisms GrG,C → C and FusG → C2.

The following statement is standard; see [4, §1.7.3] for a discussion. Here we denote

by ∆C the diagonal copy of C in C2.

Proposition 2.6. (1) There exists a canonical isomorphism GrG,C ≃ GrG × C.
(2) We have isomorphisms

FusG ×C2 ∆C ≃ GrG,C , FusG ×C2 (C2\∆C) ≃ (GrG,C ×GrG,C)×C2 (C2 ∖∆C).

In view of this proposition we have a canonical morphism representable by an open

immersion

j : GrG ×GrG × (C2 ∖∆C) ↪→ FusG,

and a canonical morphism representable by a closed immersion

i : GrG,C ↪→ FusG.

We will consider the middle extension functor j!∗ associated with j, and the pullback

functor i∗ associated with i.

For the following statement, we refer to [4, Lemma 1.7.10].

Proposition 2.7. For F ,G ∈ PervL+G(GrG,Λ) there is a canonical isomorphism

i∗j!∗
(
pH 0(F

L
⊠Λ G )

L
⊠Λ ΛC2∖∆C [2]

)
≃ (F ⋆0 G )

L
⊠Λ Λ∆C

.

The description of the convolution product obtained from this proposition is the crucial

ingredient in the construction of the commutativity constraint for the product ⋆0, which

takes advantage of the possibility to switch the factors in the product GrG×GrG×(C2∖
∆C).

2.2.5. Weight functors. Recall the morphisms (2.3). Given λ ∈ X∨ and an object F ∈
PervL+G(GrG,Λ) we consider the graded Λ-modules

H•
c(Sλ, s

∗
λF ) and H•

Tλ
(F ) := H•(Tλ, t

!
λF ).

In view of Theorem 2.2, the direct sums over all λ of these functors are hyperbolic

localization functors in the sense of §1.3.3.
For the proof of the following statement, we refer to [4, §§1.5.3–1.5.4].

Theorem 2.8. (1) For any λ ∈ X∨ and F ∈ PervL+G(GrG,Λ), there exists a canon-

ical isomorphism of graded Λ-modules

H•
c(Sλ, s

∗
λF ) ≃ H•

Tλ
(F ).
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Moreover, these graded modules vanish in all degrees except possibly ⟨λ, 2ρ⟩.
(2) For F ∈ PervL+G(GrG,Λ), there exists canonical isomorphisms

H•(GrG,F ) ≃
⊕
λ∈X∨

H⟨λ,2ρ⟩
c (Sλ,F ) ≃

⊕
λ∈X∨

H
⟨λ,2ρ⟩
Tλ

(F ).

In this theorem, the isomorphism in (1) follows from Theorem 1.26. For the vanishing

statement, one sees that the computation of the dimension of Sλ∩GrG,≤µ in Theorem 2.3

implies that H•
c(Sλ, s

∗
λF ) vanishes in degrees larger than ⟨λ, 2ρ⟩, while the computation

of the dimension of Tλ ∩GrG,≤µ in the same statement implies that H•
Tλ

(F ) vanishes in

degrees less that ⟨λ, 2ρ⟩. The isomorphisms in (2) are obtained as a consequence.

Using standard “long exact sequence” arguments, the vanishing statement in (1) im-

plies that the functors

H⟨λ,2ρ⟩
c (Sλ, s

∗
λ(−)) ≃ H

⟨λ,2ρ⟩
Tλ

(−)

are exact. (These functors are called “weight functors.”)

2.2.6. Outline of the proof. The proof of Theorem 2.5 is based on ideas from the tan-

nakian formalism: one constructs structures on the category PervL+G(GrG,Λ) that will

eventually “force it” to be the category of representations of a group scheme, and then

one shows that this group scheme must be G∨
Λ.

There are some general “tannakian reconstruction” results asserting that monoidal

categories possessing a number of structures are necessarily categories of representations

of a group scheme; see [4, §1.2] for a discussion. These results play a role in the proof

of Theorem 2.5, but they usually require the category to be linear over a field. The

possibility to treat “integral” coefficients is crucial for the proof of Theorem 2.5 (see

Remark 2.9 below), so that the “tannakian reconstruction” that is performed for the

proof of that theorem is done “by hand,” exploiting special features of the situation,

rather than by an application of a general statement. Namely, if Z ⊂ GrG is a closed

subscheme which is a finite union of L+G-orbits, one checks that the functor

PervL+G(Z,Λ)→ PervL+G(GrG,Λ)
H
⟨λ,2ρ⟩
Tλ

(−)

−−−−−−→ Λ-Mod

(where the first map is given by pushforward) is representable by an object PZ(λ),

see [4, §1.12.1]. Then one considers

PZ =
⊕
ν∈X∨,

Z∩Tν ̸=∅

PZ(ν),

which is shown to be a projective generator of the category PervL+G(Z,Λ). Once this

is known, considering the algebra AZ = End(PZ)
op we have an equivalence of abelian

categories

PervL+G(Z,Λ)
∼−→ AZ-Mof
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where the right-hand side is the category of finitely generated AZ-modules; see [4,

§1.13.1]. One checks also that AZ is free of finite rank over Λ, so that the dual Λ-

module BZ := HomΛ(AZ ,Λ) has a canonical structure of Λ-coalgebra, and we have a

canonical equivalence of categories

AZ-Mof ≃ Comof-BZ

where the right-hand side is the category of right BZ which are finitely generated over

Λ.

If Y is another closed subscheme as above which contains Z, then there is a canonical

injective morphism BZ ↪→ BY such that the pushforward functor

PervL+G(Z,Λ)→ PervL+G(Y,Λ)

corresponds under the equivalences above to the functor

Comof-BZ → Comof-BY

induced by this morphism. One can therefore consider the coalgebra

B = colim
Z

BZ ,

and we have an equivalence of abelian categories

PervL+G(GrG,Λ)
∼−→ Comof-B.

From the monoidal structure on PervL+G(GrG,Λ) and its commutativity constraint, we

obtain a commutative algebra structure on B which makes it a Hopf algebra (so that

Spec(B) is a group scheme over Spec(Λ)) and equivalences of monoidal categories(
PervL+G(GrG,Λ), ⋆

0
) ∼−→

(
Comof-B,⊗Λ

) ∼−→
(
Rep(Spec(B)),⊗Λ

)
.

Finally, one checks that the formation of B is compatible in the obvious way with ex-

tension of scalars, and proves that when Λ = Zp for a prime p invertible in k we have

B = O(G∨
Zp
), which finishes the proof.

Remark 2.9. (1) In the course of the proof outlined above, one constructs a closed

immersion of group schemes T∨
Λ ⊂ Spec(B); this construction uses the weight

functors of §2.2.5, and more specifically the decomposition in Theorem 2.8(2).

(2) The identification of B (in case Λ = Zp) with O(G∨
Zp
) relies on results of Prasad–

Yu and a special analysis of the case when Λ is an algebraically closed field;

see [4, §1.14] for details. For the application discussed below, the important

case is when Λ is a field of positive characteristic, but the only known proof of

Theorem 2.5 in this case requires to treat the case of Zp in parallel. On the other

hand, if one only cares about the case when Λ is a field of characteristic 0, the

proof can be shortened quite a bit; in [4] the proof of this case only requires the

first 9 sections.
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3. Representations of reductive groups and the Iwahori–Whittaker

model

From now on, we assume that k has positive characteristic ℓ, and we take for Λ an

algebraically closed field F of characteristic p > 0, with ℓ ̸= p. In this section, we recall

some standard results on representations of reductive algebraic groups over F, and then

we discuss the Iwahori–Whittaker model for the Satake category, following [7].

3.1. Representations of G∨
F . In this section we state some results from representation

theory of reductive groups that will be used later. For a full treatment of these questions

see [17, Part II]. For a shorter overview, see [24].

3.1.1. Standard, costandard and simple representations. Recall that in §2.1.2 we have

fixed a system of positive roots R+ ⊂ R ⊂ X = X∗(T ). Let R∨
+ ⊂ R∨ ⊂ X∨ = X∗(T∨

F )

be the corresponding subset of positive coroots. We will denote by B∨
F ⊂ G∨

F the Borel

subgroup containing T∨
F such that the T∨

F -weights in the Lie algebra of B∨
F are −R∨

+.

If U∨
F is the unipotent radical of B∨

F , the composition T∨
F ↪→ B∨

F ↠ B∨
F /U

∨
F is an

isomorphism; hence any character of T∨
F extends in a unique way to a character of B∨

F .

Hence each element λ ∈ X∨ determines a 1-dimensional B∨
F -module FB∨

F
(λ). We consider

the associated costandard module

N(λ) = Ind
G∨

F
B∨

F
(FB∨

F
(λ)) = {f ∈ O(G∨

F ) | ∀g ∈ G∨
F , ∀b ∈ B∨

F , f(gb) = λ(b)−1f(g)}.

(In [17] this module is denoted H0(λ).)

These modules satisfy the following properties.

Facts 3.1. (1) We have N(λ) ̸= 0 if and only if λ ∈ X∨
+. In this case N(λ) is finite

dimensional.

(2) For any λ ∈ X∨
+, there exists a unique simple submodule L(λ) ⊂ N(λ).

(3) The assignment λ 7→ L(λ) induces a bijection between X∨
+ and the set of isomor-

phism classes of simple objects in the category Rep(G∨
F ).

For the proof of (1), see [17, §II.2.1 and Proposition II.2.6]. For (2), see [17, Corol-

lary II.2.3]. For (3), see [17, Proposition II.2.4].

For λ ∈ X∨
+, we also consider the standard module

M(λ) := N(−w0λ)
∗,

where w0 is the longest element in the Weyl group W (for the Coxeter structure deter-

mined by our choice of Borel subgroups). For any λ ∈ X∨
+ we have

L(λ)∗ ≃ L(−w0λ),

see [17, Corollary II.2.5]. Hence M(λ) has a unique simple quotient, isomorphic to L(λ).

We have

(3.1) dimFHom(M(λ),N(µ)) = δλ,µ,

23



see [17, Proposition II.4.13]. Since we have a nonzero composition

M(λ) ↠ L(λ) ↪→ N(µ),

it follows that L(λ) is the image of any nonzero morphism M(λ)→ N(λ).

3.1.2. Corresponding perverse sheaves. Now we come back to the geometry of the affine

Grassmannian GrG. For any µ ∈ X∨, we have a (morphism representable by a) lo-

cally closed immersion jµ : GrG,µ → GrG, see §2.1.3. We define the following objects in

PervL+G(GrG,F):

J∗(µ) =
pH 0(jµ∗FGrG,µ

[⟨2ρ, µ⟩]),

J!(µ) =
pH 0(jµ!FGrG,µ

[⟨2ρ, µ⟩]),
J!∗(µ) = (jµ)!∗(FGrG,µ

[⟨2ρ, µ⟩]).

The general theory of perverse sheaves guarantees that each J!∗(µ) is a simple perverse

sheaf, isomorphic to the image of any nonzero morphism from J!(µ) to J∗(µ), and that

moreover these objects are representatives for the isomorphism classes of simple objects

in PervL+G(GrG,F). The following statement says that these objects are “geometric

incarnations” of the representations considered in §3.1.1.

Proposition 3.2. For any µ ∈ X∨
+ there are canonical isomorphisms

Sat(J∗(µ)) ≃ N(µ), Sat(J!(µ)) ≃ M(µ), Sat(J!∗(µ)) ≃ L(µ).

For a proof, see [21, Proposition 13.1] or [2, §1.5.1].

3.1.3. Tilting representations. It turns out that, in addition to (3.1), one can describe

all Ext-groups in Rep(G∨
F ) from a standard module to a costandard module: we have

ExtnRep(G∨
F )
(M(λ),N(µ)) = 0 for any λ, µ ∈ X∨

+ and n > 0.

In fact, this statement4 is part of the claim that Rep(G∨
F ) is a highest weight category,

see [24, §2.2 in Chap. 1]. In this context, it is natural to study the tilting objects, defined

as follows.

Definition 3.3. A representation V ∈ Rep(G∨
F ) is called tilting if it admits both a

filtration with subquotients of the form N(λ) (λ ∈ X∨
+) and a filtration with subquotients

of the form M(λ) (λ ∈ X∨
+).

The following properties are part of the general theory of tilting objects in highest

weight categories, see [24, §5 in Appendix A]. In the context of representations of reduc-

tive groups they were first observed by Donkin; see [17, Chap. II.E].

4This statement is closely related to, but different from, [17, Proposition II.4.13], which claims a

similar vanishing in the category of all (not necessarily finite-dimensional) algebraic G∨
F -modules.

24



Facts 3.4. (1) If V ∈ Rep(G∨
F) is a tilting representation, then the number (V :

N(λ)) of occurrences of N(λ) in a filtration with costandard subquotients does not

depend on the filtration. In fact we have

(V : N(λ)) = dimFHom(M(λ), V ).

(2) If V ∈ Rep(G∨
F ) is a tilting representation, then the number (V : M(λ)) of occur-

rences of M(λ) in a filtration with standard subquotients does not depend on the

filtration. In fact we have

(V : M(λ)) = dimFHom(V,N(λ)).

(3) For any λ ∈ X∨
+, there exists a unique indecomposable tilting representation

T(λ) ∈ Rep(G∨
F ) such that (T(λ) : N(λ)) = 1 and (T(λ) : N(µ)) = 0 unless

µ ≤ λ. Moreover, the assignment λ 7→ T(λ) induces a bijection from X∨
+ to the

set of isomorphism classes of indecomposable tilting G∨
F -modules.

(4) Any tilting representation is isomorphic to a direct sum of indecomposable tilting

representations, and this decomposition is unique up to isomorphism and permu-

tation of the factors.

3.1.4. Affine Weyl group. From now on we assume that the characteristic p of k is

positive. Let

Waff =W ⋉ ZR∨

be the affine Weyl group. For λ ∈ ZR∨, the corresponding element in Waff will be

denoted tλ. We will consider the action of Waff on V = X∨ ⊗Z R given by

wtλ • v = w(v + pλ+ ρ)− ρ, for w ∈W , λ ∈ ZR∨ and v ∈ V .

It can be easily seen that this action stabilizes X∨ ⊂ V , and realizes Waff as a group of

affine transformations of V generated by the reflections tnβ∨sβ for β ∈ R and n ∈ Z,
where sβ ∈ W is the reflection associated with β. The corresponding intersections of

reflection hyperplanes provides a decomposition of V as a disjoint union of the facets,

i.e. the nonempty subsets of the form

F =

{
v ∈ V

∣∣∣∣∣ ⟨v + ρ, α⟩ = nαp, ∀α ∈ R0(F )

(nα − 1)p < ⟨v + ρ, α⟩ < nαp, ∀α ∈ R1(F )

}
for some decomposition R+ = R0(F ) ⊔R1(F ) and some collection of numbers (nα : α ∈
R+). (We insist that a subset defined in this way might be empty; we will call facet

those which are nonempty.) A facet is called an alcove if R0(F ) = ∅, and a wall if

|R0(F )| = 1. To a wall we can associate in a natural way a reflection sF ∈ Waff which

acts as the identity of this wall.

Example 3.5. An important example of alcove is the fundamental alcove, defined as

C = {v ∈ V | 0 < ⟨v + ρ, α⟩ < p, ∀α ∈ R}.
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We have X∨ ∩C ̸= ∅ if and only if p ≥ h, where h is the Coxeter number of G∨
F , see [17,

Equation (8) in §II.6.2].

The following properties are deduced from the general theory of (discrete) groups of

affine transformations of an affine space, see [17, §II.6.2].

Facts 3.6. (1) C is a fundamental domain for the action of Waff on V .

(2) Denote by Saff the set of reflections sF where F runs over the (finitely many)

walls F contained in C. Then (Waff , Saff) is a Coxeter system.

(3) For v ∈ C, the stabilizer of v in Waff is the subgroup generated by Saff,v := {s ∈
Saff | s • v = v}.

In particular, from these properties we obtain a bijection⊔
λ∈X∨∩C

Waff/⟨Saff,λ⟩
∼−→ X∨

sending the class of w in Waff/⟨Saff,λ⟩ to w • λ.
Recall that given a subset I ⊂ Saff we can consider the (parabolic) subgroup ⟨I⟩ ⊂Waff

generated by I. Then each coset in ⟨I⟩\Waff , resp. inWaff/⟨I⟩, contains a unique element

of minimal length (called the minimal element of that coset) and, if ⟨I⟩ is finite, a unique

element of maximal length (called the maximal element of the coset). For λ ∈ X∨ ∩ C,
we set

W
(λ)
aff =

{
w ∈Waff

∣∣∣∣∣ w is minimal in Ww

w is maximal in w⟨Saff,λ⟩

}
.

Then the assignment w 7→ w • λ induces a bijection

(3.2) W
(λ)
aff

∼−→ (Waff • λ) ∩ X∨
+,

see [24, Chap. 1, §2.8]. More specifically, if w is maximal in w⟨Saff,λ⟩, then w • λ is

dominant if and only if w ∈W (λ)
aff .

Example 3.7. If p ≥ h (where h is as in Example 3.5) we have 0 ∈ X∨ ∩ C, and

W
(0)
aff = {w ∈Waff | w is minimal in Ww}.

3.1.5. Linkage principle. The following statement was first conjectured by Verma, and

then proved in increasing degrees of generality by Humphreys, Carter–Lusztig (for the

group GLn), Jantzen, and finally Andersen. (See [26] for precise references.) It has

had a deep influence on the modern approach to the representation theory of reductive

algebraic groups.

Theorem 3.8. For λ, µ ∈ X∨
+, we have the implication

Ext1Rep(G∨
F )
(L(λ), L(µ)) ̸= 0 ⇒ Waff • λ =Waff • µ.

This theorem can be proved rather easily under mild assumptions by consideration of

the central characters for the action of the Lie algebra of G∨
F (see [24, Chap. 1, §2.5]),

but the proof in full generality is much more subtle.
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Theorem 3.8 allows to break the category Rep(G∨
F) into smaller pieces (often called

blocks, although this terminology is somehow not appropriate; see [26, Remark 1.1]), as

follows. For λ ∈ X∨ ∩C, we define Repλ(G
∨
F ) as the Serre subcategory of Rep(G∨

F) gen-

erated by the simple modules L(ν) with ν ∈ (Waff •λ)∩X∨
+. Then it follows immediately

from Theorem 3.8 that we have a decomposition

(3.3) Rep(G∨
F ) =

⊕
λ∈X∨∩C

Repλ(G
∨
F ).

(For details, see e.g. [24, Chap. 1, §2.5].) Note that:

• in view of (3.2), the isomorphism classes of simple objects in Repλ(G
∨
F ) are in a

canonical bijection with W
(λ)
aff ;

• for µ ∈ (Waff •λ)∩X∨
+, the object T(µ) belongs to Repλ(G

∨
F ), which implies that

for ν ∈ X∨
+ we have (T(µ) : N(ν)) = 0 unless ν ∈Waff • λ.

3.1.6. Characters. Recall any algebraic representation of T∨
F is the direct sum of its

weight spaces: in other words, for any M ∈ Rep(T∨
F ), we have

M =
⊕
µ∈X∨

Mµ where Mµ = {v ∈M | ∀t ∈ T∨
F , t · v = λ(t)v}.

We define the character of M as the element

ch(M) =
∑
µ∈X∨

dim(Mµ)e
µ ∈ Z[X∨].

We will consider these characters in case M is the restriction of a G∨
F -module, and will

write in this case ch(M) for ch(M|T∨
F
).

A crucial question in the representation theory of reductive groups is the following.

Question 3.9. Compute the characters ch(L(µ)) for all µ ∈ X∨
+, or in other words

compute the characters ch(L(w • λ)) for all λ ∈ X∨ ∩ C and all w ∈W (λ)
aff .

This question is the subject of a highly influential conjecture of Lusztig, see §4.3.1
below or [17, Chap. II.C]. This conjecture is now known to be true in large character-

istic (i.e. when p is larger than a bound depending on the root system R∨) thanks to

works of Kazhdan–Lusztig, Kashiwara–Tanisaki and Andersen–Jantzen–Soergel, but not

in any satisfactory generality (due to more recent work of Williamson.) See [24, Chap. 1,

§4.4] for historical details. In any case, we expect an answer to this question express-

ing ch(L(w • λ)) in terms of some combinatorial data attached to the Coxeter system

(Waff , Saff), evaluated for w.

Here we are interested in a different way of formulating an answer to this question, first

proposed by Andersen. Namely, thanks to results of Andersen (and a recent improvement

due to Sobaje), one knows that to give an answer to this question it suffices to compute

the characters ch(T(µ)) for all µ ∈ X∨
+, see [27] for details. (The concrete way to deduce

simple characters from tilting characters is admitedly not easy to explain.) Recall that
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the characters ch(N(ν)) (ν ∈ X∨
+) are known, and given by Weyl’s character formula,

see [17, Corollary II.5.11]. Therefore, the problem of computing ch(T(µ)) is (in theory)

equivalent to that of computing (T(µ) : N(ν)) for all ν ∈ X∨
+. Hence Question 3.9 is

equivalent to the following question.

Question 3.10. Compute the multiplicities (T(µ) : N(ν)) for all µ, ν ∈ X∨
+, or equiv-

alently compute the multiplicities
(
T(w • λ) : N(y • λ)

)
for all λ ∈ X∨ ∩ C and all

w, y ∈W (λ)
aff .

Here again, the answer we expect should express
(
T(w•λ) : N(y•λ)

)
in terms of some

Coxeter-theoretic data attached to w and y.

3.2. Iwahori–Whittaker model. In this section we explain the main result of [7],

which provides “another incarnation of the Satake category PervL+G(GrG,F)”, i.e. an
equivalence between PervL+G(GrG,F) and another category of perverse sheaves on GrG.

The latter category is not monoidal, but only a right module over PervL+G(GrG,F); this
equivalence will be an equivalence of module categories over PervL+G(GrG,F). Never-

theless this category sometimes has some advantages over PervL+G(GrG,F), as we will

explain in §3.2.4.

3.2.1. Iwahori subgroup. Consider the evaluation map evz=0 : L
+G → G induced by

sending z to 0, i.e. given at the level of R-points by the morphism G(R[[z]]) → G(R)

induced by the ring morphism R[[z]]→ R[[z]]/(z) = R. The Iwahori subgroup associated

with B+ is the subgroup scheme

I+ := (evz=0)
−1(B+) ⊂ L+G.

We will also consider the pro-unipotent radical of I+, defined as I+u = (evz=0)
−1(U+)

where, as in §2.1.4, U+ is the unipotent radical of B+. For λ ∈ X∨, we set

Oλ = I+ · Lλ = I+u · Lλ,

and let j′λ : Oλ → Gr be the embedding. Here Oλ is a locally closed subscheme of the

projective scheme Gr≤dom(λ), and it is well known to be isomorphic to an affine space

over k. We have

|GrG| =
⊔
λ∈X∨

|Oλ|,

and, for all µ ∈ X∨
+,

|GrG,µ| =
⊔

λ∈Wµ

|Oλ|.
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3.2.2. Artin–Schreier sheaf. Consider the morphism

AS: A1
k → A1

k

given by x 7→ xℓ − x. This morphism is a Galois covering with Galois group Fℓ. Since

ℓ is invertible in F, pushing forward the constant sheaf along this map provides a local

system with a decomposition

AS∗FA1
k

=
⊕

ψ : Fℓ→F×

Lψ.

We fix a choice of non-trivial morphism ψ : Fℓ → F×, and set LAS = Lψ. Since, the

local system associated with the trivial morphism ψ is the constant local system, this

local system must satisfy

(3.4) H•(A1
k,LAS) = 0 = H•

c(A1
k,LAS).

Remark 3.11. In an analytic setting (as discussed in Remark 2.1), there exists no local

system on A1 which satisfies (3.4). This is the main reason why we need to work with

étale sheaves in [7] and [26] (and, therefore, in these notes).

3.2.3. Iwahori–Whittaker sheaves. For any simple root α, we will denote by Uα ⊂ U+

the corresponding 1-parameter subgroup. We consider the composition of morphisms of

group schemes

I+u
evz=0−−−→ U+ → U+/[U+, U+] =

∏
α simple root

Uα → Ga,k,

where the second morphism is the obvious quotient map, and the last morphism is a

morphism which is nontrivial on each Uα. Pulling back LAS through this morphism we

get a local system on I+u , which will also be denoted LAS. Let a : I+u ×GrG → GrG be

the action map. We will denote by

Db
IW(GrG,F)

the full subcategory of Db
c (GrG,F) whose objects are the complexes F such that there

exists an isomorphism

(3.5) a∗F
∼−→ LAS ⊠F F .

The same formulation as for the convolution product ⋆ in §2.2.2 provides a bifunctor

Db
c (GrG,F)×Db

L+G(GrG,F)→ Db
c (GrG,F)

which defines a right action of the monoidal category Db
L+G(GrG,F) on Db

c (GrG,F). It is
well known that this bifunctor is t-exact, in the sense that the image of a pair of perverse

sheaves is again perverse, see [7, Lemma 2.3]. It is also restricts to a bifunctor

Db
IW(GrG,F)×Db

L+G(GrG,F)→ Db
IW(GrG,F)

which defines a right action of Db
L+G(GrG,F) on Db

IW(GrG,F).
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For any λ ∈ X∨ we can define an a similar way the full subcategory Db
IW(Oλ,F) ⊂

Db
c (Oλ,F). We set

X∨
++ = {λ ∈ X∨ | ∀α ∈ R+, ⟨λ, α⟩ > 0}.

The following are basic properties of these categories. For references, see [26, §5.1].

Facts 3.12. (1) Db
IW(GrG,F) is a triangulated subcategory of Db

c (GrG,F). More-

over, the perverse t-structure on Db
c (GrG,F) restricts to a t-structure on the

subcategory Db
IW(GrG,F).

(2) For λ ∈ X∨ we have Db
IW(Oλ,F) = 0 unless λ ∈ X∨

++.

(3) Let λ ∈ X∨
++. There exists a unique (up to isomorphism) local system LAS,λ on

Oλ whose pullback under the morphism I+u → Oλ given by g 7→ g · Lλ is LAS.

The proof of (2) is based on the observation that if λ ∈ X∨ ∖ X∨
++, the stabilizer of

Lλ in I+u contains a simple root subgroup Uα, so that the orbit Oλ cannot support any

nonzero complex F which satisfies (3.5). This vanishing implies that all complexes in

Db
IW(GrG,F) have trivial restrictions and corestrictions to all Oλ with λ ∈ X∨ ∖ X∨

++.

In other words, the category Db
IW(GrG,F) “does not see these orbits.”

For any λ ∈ X∨
++, we set

∆IW
λ = (j′λ)!LAS,λ[dimOλ],

∇IW
λ = (j′λ)∗LAS,λ[dimOλ],

ICIW
λ = (j′λ)!∗(LAS,λ[dimOλ]).

Here, in constrast with the situation considered in §3.1.2, we do not need to take perverse

cohomology in the definition of ∆IW
λ and ∇IW

λ : these complexes are perverse sheaves be-

cause j′λ is an affine morphism. These objects can be used to characterize the restriction

of the perverse t-structure to Db
IW(GrG,F): we have

pD≤0
IW(GrG,F) = ⟨∆IW

λ [n] : λ ∈ X∨
++, n ∈ Z≥0⟩ext,

pD≥0
IW(GrG,F) = ⟨∇IW

λ [n] : λ ∈ X∨
++, n ∈ Z≤0⟩ext

where ⟨−⟩ext means the full subcategory generated under extensions (in the sense of

triangulated categories) by the collection of objects under consideration. As in the

setting of §3.1.2, the assignment λ 7→ ICIW
λ induces a bijection between X∨

++ and the

set of isomorphism classes of simple objects in PervIW(GrG,F), and there exist natural

morphisms

∆IW
λ ↠ ICIW

λ ↪→ ∇IW
λ .

3.2.4. Iwahori–Whittaker model. From now on we will assume that there exists ξ ∈ X∨

such that ⟨ξ, α⟩ = 1 for all simple root α. This assumption holds at least if the quotient

X/ZR is torsion-free, e.g. if G is semisimple of adjoint type; this is a very mild assumption

since essentially any question one can ask about the representation theory of G∨
F can be

reduced to the case this condition is satisfied. We fix such a ξ; then Oξ is minimal (for
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the order given by inclusions of closures) among all the orbits {Oλ}λ∈X∨
++

, so that we

have isomorphisms

∆IW
ξ = ICIW

ξ = ∇IW
ξ .

The following statement is the main result of [7].

Theorem 3.13. The functor F 7→ ∆IW
ξ ⋆F induces an equivalence of categories

PervL+G(GrG,F)
∼−→ PervIW(GrG,F)

which, for any λ ∈ X∨
+, sends the object J!(λ), resp. J∗(λ), resp. J!∗(λ), to ∆IW

λ+ξ,

resp. ∇IW
λ+ξ, resp. IC

IW
λ+ξ.

Remark 3.14. A version of this statement for characteristic-0 coefficients was proved

earlier by Arkhipov–Bezrukavnikov–Braverman–Gaitsgory–Mirković, see [3]. In this

case, both categories in this theorem are semisimple.

Theorem 3.13 should be thought of as giving a different incarnation of the Satake

category PervL+G(GrG,F), where the tensor structure is not visible but which has other

avantages. In particular, being equivalent to Rep(G∨
F ), the category PervL+G(GrG,F) is a

highest weight category. This property is in fact (implicitly) proved by Mirković–Vilonen

in the course of their proof of Theorem 2.5, see [4, Proposition 1.12.4], but this proof

relies on a very clever use of some specific properties of the geometry of GrG. On the

other hand, the fact that the category PervIW(GrG,F) has a highest weight structure

has a transparent explanation: using standard results of Bĕılinson–Ginzburg–Soergel,

this is simply a consequence of the fact that the I+u -orbits on GrG are affine spaces,

see [7, Corollary 3.6]. This observation is crucial for the applications discussed below.

3.2.5. Application to tilting representations. Let us now consider the category

Db
(L+G)(GrG,F)

as the category of “L+G-constructible” (rather than equivariant) complexes on GrG,

i.e. the full triangulated subcategory of Db
c (GrG,F) generated by the objects J!∗(λ) for

λ ∈ X∨
+. The perverse t-structure restricts to a t-structure on Db

(L+G)(GrG,F), whose
heart is denoted by Perv(L+G)(GrG,F). We also have a natural t-exact “forgetful” functor

(3.6) Db
L+G(GrG,F)→ Db

(L+G)(GrG,F).

The following result is due to Mirković–Vilonen; see [21, Proposition 2.1] or [4, §1.10.2].

Proposition 3.15. The functor (3.6) restricts to an equivalence of categories

PervL+G(GrG,F)
∼−→ Perv(L+G)(GrG,F).

Remark 3.16. Let us insist that the functor (3.6) is far from being fully faithful; only

its restriction to perverse sheaves is. The fully faithfulness statement in Proposition 3.15

follows from the general theory of perverse sheaves, but the fact that this functor is

essentially surjective uses some specific geometric features of GrG.
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The following definition is due to Juteau–Mautner–Williamson [18]. (This definition

makes sense, and is useful, in a larger geometric setting; here we specialize it to the

setting we will require.)

Definition 3.17. A complex F ∈ Db
(L+G)(GrG,F) is called even (resp. odd) if

H n(j∗λF ) = 0 = H n(j!λF )

for all λ ∈ X∨
+ unless n is even (resp. odd). A parity complex is a direct sum of an even

and an odd object.

Remark 3.18. The definition of an even complex can equivalently be stated as requiring

that H n(F ) = 0 = H n(D(F )) unless n is even, where D is the Verdier duality functor.

The following theorem is the special case, in our current setting, of the classification

theorem for parity complexes established by Juteau–Mautner–Williamson in [18].

Theorem 3.19. For any λ ∈ X∨
+, there exists a unique indecomposable parity complex

Eλ ∈ Db
(L+G)(GrG,F) supported on GrG,≤λ and such that j∗λEλ = FGrG,λ

[⟨2ρ, λ⟩]. More-

over, the assignment (λ, n) 7→ Eλ[n] induces a bijection between X∨
+ × Z and the set of

isomorphism classes of indecomposable parity complexes in Db
(L+G)(GrG,F).

Remark 3.20. (1) In the general geometric setting studied in [18], there is a unicity

statement for parity complexes, see [18, Theorem 2.12], but the object associated

with some strata might not exist, see [18, §2.3.4]. This problem does not occur

for Kac–Moody (possibly partial) flag varieties or (possibly parahoric) affine flag

varieties, by the considerations in [18, §4.1].
(2) Definition 3.17 also makes sense for coefficients Qp rather than F, and Theo-

rem 3.19 also holds in this setting. In this case, the analogue of Eλ turns out to

be the intersection cohomology complex associated with the constant local system

on the orgit GrG,λ. This description no longer holds for positive-characteristic

coefficients.

The following statement makes a connection between parity complexes and tilting

representations.

Theorem 3.21. (1) The inverse images under Sat of the tilting G∨
F -representations

are the direct sums of direct summands of objects pH 0(Eλ) for λ ∈ X∨
+.

(2) If p is good for G, then each Eλ is perverse, and we have Sat(Eλ) = T(λ) for any

λ ∈ X∨
+.

Both statements in this theorem were conjectured by Juteau–Mautner–Williamson,

and proved by them under some technical assumptions on p in [19]. The general case

of (1) was proved in [7, §4.3], as an application of Theorem 3.13. The general case of (2)

is proved in [20]. (It is known that this statement does not hold in general if p is bad;

see [19, §3.5].)
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Remark 3.22. (1) In Theorem 3.21 we implicitly use Theorem 3.15 to “lift” per-

verse sheaves in Db
(L+G)(GrG,F) to objects of PervL+G(GrG,F).

(2) The prime numbers which are bad (i.e. not good) are given by the following table

in terms of simple constituents in the root system of G (or of G∨
F ):

An Bn,Cn,Dn E6,E7,F4,G2 E8

∅ 2 2, 3 2, 3, 5

(3) From Theorem 3.21(1) one can obtain a simple proof of an important result

due to Donkin in most cases and Mathieu in full generality, namely that the

tensor product of two tilting G∨
F -modules is again tilting. For details, see [7,

Theorem 4.16].

4. Smith–Treumann theory and tilting character formula

In this section, we explain how to use Smith–Treumann theory on the affine Grass-

mannian and the geometric Satake equivalence (Theorem 2.5) to provide some answer

to Question 3.10. The main reference for this section is [26].

4.1. Preliminaries.

4.1.1. Smith–Treuman theory. Smith–Treuman theory originates in the work of Smith

in topology from 1930’s, and a re-interpretation of these constructions in a more sheaf-

theoretic context by D. Treumann;5 see [26] for references.

The geometric setting is the following. Let X be a separated k-scheme of finite type

endowed with an action6 of Gm,k. We consider as in Section 3 étale sheaves with coeffi-

cients in F, an algebraically closed field of characteristic p which is invertible in k. Let

µp ⊂ Gm,k be the subgroup of p-th root of unity (a smooth constant group scheme over

k), and consider the embedding i : Xµp ↪→ X. (Here, Xµp denotes the closed subscheme

of fixed points for the action.)

Then if † ∈ {∗, !} we can consider the following composition, where the right-hand

equivalence follows from standard results on equivariant derived categories:

Db
Gm,k(X,F)

Res
Gm,k
µp−−−−−→ Db

µp(X,F)
i†−→ Db

µp(X
µp ,F) ≃ Db

c (X
µp ,F[µp]).

(Here, Db
c (X

µp ,F[µp]) is the bounded derived category of sheaves of F[µp]-modules on

Xµp with constructible cohomology.)

Recall that a complex of modules over a ring is called perfect if it is isomorphic, in

the derived category of modules over that ring, to a bounded complex of projective

modules. In case the ring has finite homological dimension this definition is pointless (it

is equivalent to requiring that the complex be bounded), but when this is not the case

5Treumann works in an analytic setting, while we rather want to work with étale sheaves. But the

two versions have similar properties.
6For technical reasons we will assume that this action is admissible in the sense recalled in [26, §2.3].

This condition is automatic if X is quasi-projective over k.
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this is an important notion. One of the simplest examples of a ring which is not of finite

homological dimension is F[µp]; for this example, it is a standard observation that the

trivial module F (i.e. the module associated with the trivial representation of µp), seen

as a complex concentrated in degree 0, is not perfect.

Definition 4.1. A complex F ∈ Db
µp(X

µp ,F) = Db
c (X

µp ,F[µp]) is said to have perfect

geometric stalks, if for any geometric point x of Xµp the complex Fx ∈ Db(F[µp]-Mod)

is perfect.

We define the Smith category

(4.1) Sm(Xµp ,F)

as the (Verdier) quotient of Db
Gm,k

(Xµp ,F) by the full subcategory of complexes whose

images in Db
µp(X

µp ,F) have perfect geometric stalks. This category is triangulated, but

it really looks different from derived categories of abelian categories; in fact, in this

category we have [2] = id.

Remark 4.2. A notable difference between our considerations on Smith–Treumann

theory and earlier treatments in the literature is that we define Sm(Xµp ,F) as a quotient

of the Gm,k-equivariant derived category rather than the µp-equivariant version. This is

required for our considerations of parity complexes in this category.

Here comes a crucial observation of Treumann.

Proposition 4.3. The compositions

Db
Gm,k(X,F)

i∗−→ Db
Gm,k(X

µp ,F)→ Sm(Xµp ,F)

and

Db
Gm,k(X,F)

i!−→ Db
Gm,k(X

µp ,F)→ Sm(Xµp ,F)
(where, in each case, the second functor is the natural quotient functor) are canonically

isomorphic to each other.

The functor of Proposition 4.3 will be denoted i!∗. This functor “commutes with all

sheaf operations” in a sense similar to that discussed in Remark 1.27(2), because it can

be written both a ∗- and as a !-pullback.

The rough idea of the proof of Proposition 4.3 is to express the difference between the

two functors in terms of a complex on X ∖Xµp , where the action is free, which forces

this difference to involve only perfect complexes.

4.1.2. Bruhat–Tits theory. We now consider the reductive group

G×Spec(k) Spec(k((zp)))

over k((zp)) with its maximal torus T ×Spec(k) Spec(k((zp))). The apartment in the

associated Bruhat–Tits building identifies with V = X∨ ⊗Z R. We have a hyperplane

34



arrangement in V , hence a system of facets, which is the same as that considered in §3.1.4,
up to a shift by ρ. In particular, we have an alcove

a0 = {v ∈ V | ∀α ∈ R+, −p < ⟨v, α⟩ < 0}.

For each facet f ⊂ a0, Bruhat–Tits theory provides us with a parahoric subgroup scheme

Pf over Spec(k[[zp]]) with generic fiber G ×Spec(k) Spec(k[[zp]]). We can consider the

associated affine Grassmannian

GrPf
=

(
LpG/L+

p Pf

)
ét
,

where LpG is loop group with z replaced by zp, and similarly L+
p is defined as for L+,

but for group schemes over k[[zp]].

Example 4.4. (1) If f = a0, then Pa0 is the Iwahori group scheme associated with

B−, and we have

L+
p Pa0 = I−p = (evzp=0)

−1(B−) ⊂ L+
p G.

(Here, evzp=0 is similar to evz=0, with z replaced by zp. The corresponding affine

Grassmannian will be denoted FlG,p in this case. (This ind-scheme is often called

the affine flag variety.)

(2) If f = {ν ∈ V | ∀α ∈ R, ⟨ν, α⟩ = 0}, then we have Pf = G ×Spec(k) Spec(k[[zp]]),
hence L+

p Pf = L+
p G. The corresponding affine Grassmannian will be denoted

GrG,p in this case; it is isomorphic to GrG.

In general if f ′ ⊂ f , then we have a natural closed immersion Pf ⊂ Pf ′ , hence a

canonical morphism GrPf
→ GrPf ′ .

Remark 4.5. From Bruhat–Tits theory we have an action of Waff on V . If we define

an action □p by setting, for w ∈W , µ ∈ ZR∨, and v ∈ V ,

(wtµ)□pv = w(v + pµ),

then the action of w is given by v 7→ −w□p(−v).

4.1.3. p-canonical basis. Recall (from Facts 3.6) that the pair (Waff , Saff) is a Coxeter

system. As such, there is an associated Hecke algebra, called the affine Hecke algebra,

and denoted Haff . This is a Z[v±1]-algebra, which is free with basis {Hw : w ∈ Waff}
over Z[v±1], and with multiplication determined by the following rules:

(Hs + v)(Hs − v−1) = 0 for all s ∈ Saff ,
Hw ·Hy = Hwy, for all w, y ∈Waff such that ℓ(wy) = ℓ(w) + ℓ(y).

Consider the affine flag variety FlG,p from Example 4.4(1), and denote by Fl0G,p the

connected component of the base point. There is a canonical action of I−p on FlG,p,
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induced by multiplication on the left on LpG; this action stabilizes Fl0G,p, and the orbits

on this sub-ind-scheme are parametrized in a natural way by Waff : we will denote by

Fl0G,p =
⊔

w∈Waff

FlG,p,w

the corresponding decomposition into orbits. (Here, each Flp,w is a scheme, isomorphic to

an affine space of dimension ℓ(w).) In the I−p -equivariant derived category Db
I−p

(Fl0G,p,F)
of sheaves on FlG,p, we have a theory of parity complexes, defined by an obvious variant

of Definition 3.17, and a classification of indecomposable parity complexes similar to

Theorem 3.19, as follows.

Theorem 4.6. For any w ∈ Waff , there exists a unique indecomposable parity complex

Ew ∈ Db
I−p

(Fl0G,p,F) supported on FlG,p,w and whose restriction to FlG,p,w is FFlG,p,w
[ℓ(w)].

Moreover, the assignment (w, n) 7→ Ew[n] induces a bijection between Waff × Z and the

set of isomorphism classes of indecomposable parity complexes in Db
I−p

(Fl0G,p,F).

For w ∈Waff we set

(4.2) pHw =
∑

y∈Waff ,
n∈Z

rkH −l(y)−n(Ew |FlG,p,y
) · vn ·Hy.

Then (pHw : w ∈ Waff) is a Z[v±1]-basis of Haff , called the p-canonical basis. The p-

Kazhdan–Lusztig polynomials (phy,w : y, w ∈Waff) are defined by the following formula:

pHw =
∑

y∈Waff

phy,w ·Hy.

Remark 4.7. As in Remark 3.20(2), Theorem 4.6 also holds for coefficients Qp. In this

case, the counterpart of Ew is the intersection cohomology complex associated with the

constant local system on FlG,p,w, and the formula in (4.2) provides the element Hw of

the Kazhdan–Lusztig basis of Haff associated with w. For coefficients F this is no longer

true, but the following properties holds.

(1) For any w ∈ Waff , the coefficients of the expansion of pHw in the Kazhdan–

Lusztig basis (Hw : w ∈Waff) belong to Z≥0[v
±1].

(2) For any fixed w ∈ Waff , there exists a bound N(w) such that for any prime

p ≥ N(w) we have pHw = Hw.

(3) There exists an algorithm, implemented by Gibson, Jensen and Williamson, that

performs the computation of the elements pHw (in the more general setting of

crystallographic Coxeter groups); see [14].

It is very difficult (but, also, very important) to say anything more specific about this

basis. For a more systematic study of this subject, see [24, Chap. 2, §2.13–2.14].

If w, y ∈Waff are minimal in Ww,Wy respectively, then we also set

pny,w =
∑
x∈W

(−1)ℓ(x) · phxy,w.
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These polynomials are called the antispherical p-Kazhdan–Lusztig polynomials attached

toWaff andW . (They can be interpreted as coefficients of the expansion of a p-canonical

basis in a standard basis in the antispherical Haff -module.)

4.2. Smith–Treumann theory on the affine Grassmannian.

4.2.1. Fixed points. There exists a natural Gm,k-action on LG by “loop rotation”, i.e. res-

caling of z. This action stabilizes L+G, hence provides an action on GrG. We consider

the action of µp ⊂ Gm,k; for this action we have (LG)µp = LpG.

The following result is due to Bezrukavnikov, and is crucial for what follows. For a

proof, see [26, Proposition 4.5].

Theorem 4.8. We have

(GrG)
µp =

⊔
λ∈−a0∩X∨

Gr
(λ)
G , with Gr

(λ)
G = LpG · Lλ ≃ Gr◦Pfλ

,

where Gr◦Pfλ
is the connected component of the base point in GrPfλ

, and fλ ⊂ a0 is the

facet containing −λ.

Example 4.9. Consider the case G = PGL2. Then there are canonical identifications

X∨ = Z, V = R, and we have a0 = (−p, 0). Hence (GrG)
µp has p + 1 connected

components, p − 1 of which are isomorphic to FlG,p and 2 of which are isomorphic to

Grp. More precisely, for λ = 0 the component Gr
(0)
G identifies with LpG/L

+
p G, and for

λ = p the component Gr
(p)
G identifies with

LpG

/(
zp 0

0 1

)
· L+

p G ·
(
z−p 0

0 1

)
.

Consider the group scheme I+, and its action on GrG. We have

(I+)µp = (evzp=0)
−1(B+);

this group scheme will be denoted I+p . For any ν ∈ X∨, we have (Oν)µp = I+p ·Lν , see [26,
Lemma 4.4]. Hence we have a decomposition

(GrG)
µp =

⊔
ν∈X∨

(Oν)µp =
⊔
ν∈X∨

I+p · Lν .

On the other hand, the I+p -orbits on Gr◦Pfλ
are naturally parametrized by the quotient

Waff/W
fλ
aff , where W

fλ
aff ⊂ Waff is the parabolic subgroup generated by the simple reflec-

tions s satisfying s□pλ = λ: this decomposition will be written as

Gr◦Pfλ
=

⊔
w∈Waff/W

fλ
aff

Gr◦Pfλ,w
.

In the decomposition of Theorem 4.8, these orbits are related by

Gr◦Pfλ,w
↔ I+p · Lw□pλ.
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Below we will consider “Iwahori–Whittaker sheaves” with respect to the action of I+p ,

i.e. complexes which satisfy the analogue of (3.5) where I+ is replaced by I+p . The orbit

I+p ·Lw□pλ supports a nonzero Iwahori–Whittaker local system if and only if w□pλ ∈ X∨
++.

If w is assumed to be maximal in the coset wW fλ
aff , this is equivalent to the condition

that w ∈W (λ−ξ)
aff (see (3.2)).

4.2.2. Application to the Iwahori–Whittaker model. Recall the Iwahori–Whittaker de-

rived category Db
IW(GrG,F) from §3.2.3. The subcategory PervIW(GrG,F) has a high-

est weight structure with standard, resp. costandard, objects the perverse sheaves ∆IW
λ ,

resp. ∇IW
λ (λ ∈ X∨

++), see §3.2.4. So we can consider the tilting objects in this cate-

gory, i.e. the objects which admits both a filtration with standard subquotients, and a

filtration with costandard subquotients. The general theory of highest weight categories

provides a parametrization of the isomorphism classes of tilting objects by X∨
++: the

object associated with λ will be denoted T IW
λ . Under the geometric Satake equivalence

(Theorem 2.5) and the Iwahori–Whittaker model (Theorem 3.13)

Rep(G∨
F )

∼−→ PervL+G(GrG,F)
∼−→ PervIW(GrG,F),

we have the folowing identifications for λ ∈ X∨
+:

M(λ) 7→ J!(λ) 7→ ∆IW
λ+ξ,

N(λ) 7→ J∗(λ) 7→ ∇IW
λ+ξ.

Hence the object T(λ) ∈ Rep(G∨
F ) corresponds to T IW

λ+ξ ∈ PervIW(GrG,F).
Consider the category

Db
IW,Gm,k(GrG,F)

consisting of objects in the Gm,k-equivariant derived category of sheaves on GrG which

satisfy (3.5). As in Facts 3.12, the category Db
IW,Gm,k

(GrG,F) has a natural triangu-

lated structure, and a natural perverse t-structure. The heart of this t-structure will be

denoted PervIW,Gm,k(GrG,F).
The following lemma is not difficult to check, see [26, Theorem 5.2].

Lemma 4.10. The forgetful functor

PervIW,Gm,k(GrG,F)→ PervIW(GrG,F)

is an equivalence of categories.

We set I+p,u = I+p ∩ I+u . Then we have natural morphisms I+p,u ↪→ I+u → U+. We can

play the same game as in the definition of Db
IW,Gm,k

(GrG,F), now the action of I+p,u on

(GrG)
µp ; the corresponding category will be denoted

Db
IWp,Gm,k((GrG)

µp ,F).
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One can also consider the Smith category SmIWp((GrG)
µp ,F), defined as a Verdier quo-

tient of this category as in (4.1), and the corresponding functor i!∗. We will denote

by

Q : Db
IWp,Gm,k((GrG)

µp ,F)→ SmIWp((GrG)
µp ,F)

the quotient functor.

For any λ ∈ −a0 ∩ X∨, we have the subcategory

Db
IWp,Gm,k(Gr

(λ)
G ,F) ⊂ Db

IWp,Gm,k((GrG)
µp ,F)

of complexes supported on Gr
(λ)
G . Now Gr

(λ)
G identifies with the connected component of

the base point in a partial affine flag variety, see Theorem 4.8. In Db
IWp,Gm,k

(Gr
(λ)
G ,F) we

have a notion of parity complexes, defined by the obvious analogue of Definition 3.17,

and a classification theorem similar to Theorem 3.19. In particular, for any w ∈W (λ−ξ)
aff

we have a “normalized” indecomposable parity object E
IWp

λ,w ∈ Db
IWp,Gm,k

(Gr
(λ)
G ,F) cor-

responding to the orbit labelled by w.

Consider now the composition

Φ: PervIW(GrG,F) ≃ PervIW,Gm,k(GrG,F)

↪→ Db
IWp,Gm,k(GrG,F)

i!∗−→ SmIWp((GrG)
µp ,F).

The following result is the main geometric result from [26].

Theorem 4.11. (1) The restriction of Φ to tilting perverse sheaves is fully-faithful.

(2) For any λ ∈ −a0 ∩ X∨ and w ∈W (λ−ξ)
aff , we have an isomorphism

Q(E
IWp

λ,w ) ≃ Φ(T IW
w□pλ).

The main ingredient of the proof of Theorem 4.11(1) is the observation that each T IW
µ

is a parity complex (in the sense that, once again, it satisfies the obvious analogue of the

conditions in Definition 3.17), because the dimension of “relevant” I+u -orbits, i.e. those

which support a nonzero Iwahori–Whittaker local system, is of constant parity on each

connected component of GrG. For the proof of Theorem 4.11(2), ones observes that we

have a theory of parity complexes in SmIWp((GrG)
µp ,F) (simply by analysis of the Smith

category of a point), with a classification theorem similar to Theorem 3.19. We also use

the fact that the Gm,k-action on (GrG)
µp factors through the morphism t 7→ tp, hence

“looks like the trivial action for coefficient of characteristic p.”

4.2.3. Applications in representation theory. The first application of Theorem 4.11 given

in [26] is to a new proof of the linkage principle (Theorem 3.8). In fact, for λ, µ ∈ X∨
++,

we have

HomPervIW (GrG,F)(T
IW
λ , T IW

µ ) ̸= 0 ⇒ Waff□pλ =Waff□pµ,
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because if Waff□pλ ̸= Waff□pµ the objects Φ(T IW
λ ) and Φ(T IW

µ ) are supported on

distinct connected components of (GrG)
µp , hence there cannot exist a nonzero morphism

between them. By fully faithfulness of Φ (see Theorem 4.11(1)), this implies that

HomPervIW (GrG,F)(T
IW
λ , T IW

µ ) = 0,

as stated above. Translated in Rep(G∨
F ), it is not difficult to check that this statement

is equivalent to Theorem 3.8.

The second application of Theorem 4.11 is a multiplicity formula for indecomposable

tilting modules. We fix λ ∈ C ∩ X∨; then the elemnt λ+ ξ is in −a0 ∩ X∨.

Theorem 4.12. For any w, y ∈W (λ)
aff , we have

(T(w • λ) : N(y • λ)) = pny,w(1).

The proof of this theorem proceeds as follows. It is easily seen that, to check this

formula, it suffices to prove that

dimHom(T(w • λ),T(y • λ)) =
∑

z∈W (λ)
aff

pnz,y(1) · pnz,w(1)

for all w, y ∈ W
(λ)
aff . This identity follows from (a slightly more precise version of)

Theorem 4.11(2) together with the following facts:

• for any facet f ⊂ a0, the pullback functor under the projection FlG,p = GrPa0
→

GrPf
sends indecomposable parity complexes to indecomposable parity com-

plexes;

• the stalks of the indecomposable Iwahori–Whittaker parity complexes on FlG,p
are described by the polynomials (pny,w : y, w ∈Waff).

Remark 4.13. (1) In the case λ = 0, and assuming p > h, the formula in The-

orem 4.12 was conjectured in [25], drawing inspiration from earlier conjecture

of Andersen (involving ordinary Kazhdan–Lusztig polynomials). In this special

case, this formula was proved in [1].

(2) The arguments sketched above use a relation between parity complexes on GrPa0

and GrPf
. On the other hand, in representation theory, it may happen that

C ∩X∨ = ∅ if p is small, so that there is no “block” corresponding to the alcove

a0.

4.3. Discussions of the tilting character formula.

4.3.1. Relation with Lusztig’s character formula. We assume p ≥ h. The following is the

conjecture by Lusztig alluded to in §3.1.6.

Conjecture 4.14. For any w ∈ W
(0)
aff such that ⟨w • 0 + ρ, α⟩ ≤ p(p − h + 2) for all

α ∈ R+, we have

ch(L(w • 0)) =
∑

y∈W (0)
aff

(−1)ℓ(w)+ℓ(y)hw0y,w0w(1) · ch(N(y • 0)).
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As explained in §3.1.6, this conjecture is known to be true for large p. Using the work

of Andersen evoked in §3.1.6, one can deduce from Theorem 4.12 another proof of this

fact.

4.3.2. Relation with Finkelberg–Mirković conjecture. Fix a reductive algebraic group G

over F whose Frobenius twist G(1) is G∨
F , and assume that p > h. Let Wext = W ⋉ X∨

be the extended affine Weyl group. We have a decomposition similar to (3.3) for the

group G, and we will denote by Rep⟨0⟩(G) the direct sum of the blocks associated with

the elements of the form w • 0 where w runs over the elements of Wext of length 0. We

can consider the functor given by pullback via the Frobenius map:

Fr∗ : Rep(G∨
F )→ Rep(G),

and the functor of tensoring with a module over the form Fr∗(M) with M ∈ Rep(G∨
F )

stabilizes Rep⟨0⟩(G).

Consider also the “opposite affine Grassmannian” GropG = (L+G\LG)ét, the action of

Iu on this ind-scheme induced by right multiplication on LG, and the associated category

of equivariant perverse sheaves. We have a natural bifunctor

(−) ⋆ (−) : PervL+G(GrG,F)× PervIu(GropG ,F)→ PervIu(GropG ,F)

which defines a left action of the monoidal category (PervL+G(GrG,F), ⋆) on the category

PervIu(GropG ,F).
The following conjecture is due to Finkelberg–Mirković.

Conjecture 4.15. There exists an equivalence of categories

FM: PervIu(GropG ,F)
∼−→ Rep⟨0⟩(G)

with a bifunctorial isomorphism

FM(G ⋆ F) ≃ FM(F)⊗F Fr
∗(Sat(G))

for any G ∈ PervL+G(GrG,F) and F ∈ PervIu(GropG ,F).

Remark 4.16. (1) For a discussion of this conjecture and its use in representation

theory, see e.g. [11].

(2) For the same reason as for PervIW(GrG,F) (see §3.2.4), PervIu(GropG ,F) admits

a canonical structure of highest weight category. The equivalence in Conjec-

ture 4.15 is expected to intertwine this highest weight structure with the natural

one on Rep⟨0⟩(G) (inherited from the ambient highest weight category Rep(G)).

(3) A proof of this conjecture (under slightly stronger assumptions on p) has been

recently obtained in joint work with Bezrukavnikov, see [8].

(4) One can also formulate “singular variants” of the Finkelberg–Mirković conjecture

that describe geometrically the singular blocks of Rep(G); see [24, Chap. 6,

§3.2.2] for details.

41



The Finkelberg–Mirković conjecture (Conjecture 4.15) and the tilting character for-

mula (Theorem 4.12) are philosophically related by Koszul duality:

Db
Iu
(GropG ,F) Db

IW(FlG,F)

Rep⟨0⟩(G)

Koszul duality

Finkelberg–Mirković conjecture tilting character formula

Namely, Theorem 4.12 expresses the combinatorics of tilting modules in Rep⟨0⟩(G) in

terms of the polynomials pny,w, which compute dimensions of stalks of parity complexes

in Db
IW(FlG,F) (see [25, §11.7]). On the other hand the equivalence in the Finkelberg–

Mirković conjecture is expected to be an equivalence of highest weight categories, hence

to relate tilting objects in Rep⟨0⟩(G) to tilting objects in PervIu(GropG ,F). In [1], fol-

lowing ideas of Bezrukavnikov–Yun for characteristic-0 coefficients, a “Koszul duality”

is constructed, which relates parity complexes in Db
IW(FlG,F) to tilting objects in a

“graded version” of PervIu(GropG ,F).
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[21] Ivan Mirković and Kari Vilonen. Geometric Langlands duality and representations of algebraic

groups over commutative rings. Ann. of Math. (2), 166(1):95–143, 2007.

[22] Timo Richarz. Basics on affine Grassmannians. https://www.mathematik.tu-darmstadt.de/

media/algebra/homepages/richarz/Notes_on_affine_Grassmannians.pdf, 2019.

[23] Timo Richarz. Spaces with Gm-action, hyperbolic localization and nearby cycles. J. Algebraic Geom.,

28(2):251–289, 2019.

[24] Simon Riche. Lectures on modular representation theory of reductive algebraic groups. https:

//lmbp.uca.fr/~riche/curso-riche-total.pdf, 2024.

[25] Simon Riche and Geordie Williamson. Tilting modules and the p-canonical basis. Astérisque,
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