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Abstract: Breast cancer is currently the most diagnosed form of cancer and the leading cause of death
by cancer among females worldwide. We described the family of long non-coding mitochondrial
RNAs (ncmtRNAs), comprised of sense (SncmtRNA) and antisense (ASncmtRNA) members. Knock-
down of ASncmtRNAs using antisense oligonucleotides (ASOs) induces proliferative arrest and
apoptotic death of tumor cells, but not normal cells, from various tissue origins. In order to study
the mechanisms underlying this selectivity, in this study we performed RNAseq in MDA-MB-231
breast cancer cells transfected with ASncmtRNA-specific ASO or control-ASO, or left untransfected.
Bioinformatic analysis yielded several differentially expressed cell-cycle-related genes, from which
we selected Aurora kinase A (AURKA) and topoisomerase IIα (TOP2A) for RT-qPCR and western
blot validation in MDA-MB-231 and MCF7 breast cancer cells, as well as normal breast epithelial cells
(HMEC). We observed no clear differences regarding mRNA levels but both proteins were downreg-
ulated in tumor cells and upregulated in normal cells. Since these proteins play a role in genomic
integrity, this inverse effect of ASncmtRNA knockdown could account for tumor cell downfall whilst
protecting normal cells, suggesting this approach could be used for genomic protection under cancer
treatment regimens or other scenarios.

Keywords: ncRNA; Aurora kinase A; toposiomerase IIα; breast cancer; antisense therapy

1. Introduction

Breast cancer (BrCa) is currently the most diagnosed form of cancer among both sexes
and the leading cause of cancer death in females worldwide [1]. The development of
effective treatments against this malignancy is hindered by its largely heterogeneous nature
and BrCa is thus classified into three subtypes, of which the triple-negative subtype is the
most aggressive and most difficult to treat [2]. Front-line BrCa treatments include drugs
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that disturb the correct segregation of sister chromatids during mitosis, which are not
specific for cancer cells and exert side effects that hinder quality of life [2].

The underlying molecular causes of BrCa include genetic and epigenetic causes, among
which are alterations in expression levels of non-coding RNAs (ncRNAs) [3]. We previously
described the family of long non-coding mitochondrial RNAs (ncmtRNAs), originating
from the mitochondrial 16S rRNA gene, and comprised of sense (SncmtRNA) and anti-
sense (ASncmtRNA-1 and -2) members [4–6]. Knockdown (KD) of ASncmtRNAs with an
antisense oligonucleotide (ASO-Andes-1537) triggers proliferative arrest and apoptotic
death in tumor cells [7–12] without affecting normal cell viability [7–10]. In in vivo mouse
models of different murine and human cancers, including breast cancer, ASncmtRNA KD
precludes tumor growth and metastasis [8–12]. In MDA-MB-231 triple-negative breast
cancer cells, these effects are underlain by an arrest in the S-phase and downregulation of
the key cell cycle progression factors cyclin B1, cyclin D1, CDK1, CDK4, and survivin [12].
The latter not only acts as a cell cycle progression factor during the M-phase, but is also
an important member of the inhibitor of apoptosis (IAP) family of proteins and, thus, its
downfall could be key to the massive induction of apoptosis observed in several tumor cell
lines after ASncmtRNA KD [7–10]. Of note, KD of SncmtRNA does not exert noticeable
effects on tumor or normal cells (unpublished).

In the present study, we performed a transcriptome analysis on MDA-MB-231 cells
after ASncmtRNA KD, in order to gain a deeper understanding on the mechanisms behind
the selectivity of this approach against tumor cells. In the bioinformatic analysis of our data,
we found additional differentially modulated cell-cycle-related genes, among which Aurora
kinase A (AURKA) and topoisomerase IIα (TOP2A) stood out to us, since both are essential
in ensuring the correct segregation of sister chromatids during mitosis, thereby protecting
genomic integrity during mitotic cell division [13–17]. We validated these changes in MDA-
MB-231 and MCF7 breast cancer cell lines, in order to determine which are common to two
different breast cancer subtypes. We also analyzed normal human mammary epithelial
cells (HMEC) to establish differential events between tumor and normal cells. AURKA
and TOP2A were downregulated in both tumor cell lines but were, conversely, strongly
upregulated in HMECs. This inverse behavior could explain the selectivity of the treatment
against tumor cells [7–10].

2. Results
Transcriptomic Analysis of MDA-MB-231 Breast Cancer Cells after AsncmtRNA KD

To identify additional cell cycle genes differentially expressed by KD of ASncmtRNAs,
we performed ASncmtRNA KD in MDA-MB-231 cells transfected with Andes-1537 and, as
negative controls, we transfected cells with a non-related ASO (control ASO or ASO-C) or
left them untreated (non-transfected, NT) (Materials and Methods). We corroborated, as
observed previously [12], 30% and 70% cell death at 24 and 48 h, respectively, compared to
10% in the controls (Figure 1A). Since the degree of cell death observed at 48 h should be the
result of earlier events, including changes in gene expression, we investigated mRNA levels
at 24 h post-transfection using RNA sequencing and bioinformatic analysis. A comparison
between both controls, non-treated (NT), and control ASO (ASO-C)-transfected cells, showed
a high correlation of differentially expressed genes (Figure 1B). In contrast, both controls
showed higher dispersion in a similar fashion when compared to Andes-1537-transfected cells
(Figure 1B). This behavior can also be seen in volcano plots of Andes-1537 compared to each
control (Supplementary Figure S1A,B). As shown in Figure 1C, 168 genes were downregulated
comparing both NT and ASO-C controls to Andes-1537, and 164 genes were upregulated,
a high proportion of which corresponded to cell cycle genes (Figure 1D). Among these
gene classifications, some of the biological function categories were related to chromosomal
integrity maintenance, such as chromosome segregation, centrosome cycle, and centrosome
assembly (Supplementary Figure S1C,D, red asterisks). Gene ontology analysis on the DAVID
platform resulted in several gene categories directly related to cell cycle progression that were
downregulated compared to controls (Supplementary Figure S1E). Interestingly, upregulated
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gene categories included cell cycle arrest and cellular response to DNA damage stimulus
(Supplementary Figure S1F).
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Figure 1. Transcriptomic analysis of MDA-MB-231 cells after knockdown of ASncmtRNA. Cells were
transfected with 200 nM ASO-C or Andes-1537 or left untreated. (A) A representative experiment
showing cell death measured by Trypan blue incorporation at 24 and 48 h. Andes-1537-treated cells
displayed significantly higher % of death at 48 h, compared to both controls. The RNA samples
used for sequencing were extracted from cells treated in this manner for 24 h in order to detect
early events. * p < 0.05. (B) Dispersion plots showing a comparison between all conditions of total
gene expression expressed in TPM. (C) Venn diagrams showing common downregulated (left) and
upregulated (right) genes between NT vs. 1537 and ASO-C vs. 1537. (D) Gene ontology analysis
revealed that an important proportion of differentially expressed genes were cell cycle related.

Using the CycleBase platform, we generated a list of pre-selected cell-cycle-related
genes for RT-qPCR validation (Supplementary Figure S2A). In order to define the final genes
for western blot analysis, we first performed RT-qPCR on all three cell lines (tumor lines
MDA-MB-231 and MCF7, and normal HMEC cells). Our primary aim was to study only
genes that exhibited similar behavior in both tumor lines, in order to establish potentially
universal primary triggers for the detrimental effects we have observed in tumor cells from
a wide array of tumor cell lines [7–12]. Of this list of 14 downregulated and 5 upregulated
genes, only 8 genes fulfilled this requirement, from which we chose the final three to further
analyze for the present study. First, we selected CCNB1 as an internal control to validate
our transcriptomic approach, since we had previously observed that the mRNA of this gene
was downregulated in MDA-MB-231 cells (unpublished) and protein level was reduced
after the ASncmtRNA KD treatment [12]. The other genes selected for this study were
AURKA and TOP2A, merely because we became highly interested when we encountered
these two genes that are involved in the maintenance of genome integrity during mitotic
cell division and not only as “classic” cell cycle progression factors. Supplementary Figure
S2B depicts the closest interactions of each of these three genes where, interestingly, some
of the members of the list of pre-selected genes are involved.

As mentioned above, Cyclin B1 (CCNB1) was chosen for detailed analysis as a control
for validating our bioinformatic approach. CCNB1 TPM (transcripts per million) count
was reduced by 3.5–4-fold in the bioinformatic analysis in Andes-1537-transfected cells,
compared to the controls. RT-qPCR validation in the MDA-MB-231, MCF7, and HMEC cells
showed a similar behavior in all three cell types, albeit to a lesser extent (Supplementary
Figure S3B). Protein levels showed, as expected, a strong reduction in both tumor cell lines,
while there was only a modest decrease in HMECs (Supplementary Figure S3C), reflecting
the lack of a strong effect of the KD treatment on normal cells.
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However, it is possible that the reduction in cell cycle proteins such as CCNB1 and
others [12] could simply be a consequence of ASncmtRNA KD-induced proliferative block-
age [7–10,12]. Therefore, we searched for genes that could constitute potential primary
triggers of proliferative arrest. The two genes on which we based this study, AURKA
and TOP2A, are both involved in securing genomic integrity during cell cycle progres-
sion [13–17]. In our bioinformatic analysis, AURKA TPM displayed a 2–3-fold reduction in
Andes-1537-transfected cells, compared to the controls (Figure 2A), while TOP2A showed
a ~2.6-fold reduction (Figure 2A). RT-qPCR validation in the three cell types showed a
2–3-fold reduction in AURKA mRNA (Figure 2B). However, protein levels were strongly
reduced, 6–8-fold, in both tumor cell lines but, conversely, increased 11-fold in HMECs
(Figure 3A). TOP2A, on the other hand, displayed a ~2-fold reduction in its mRNA levels
in both tumor cell lines and no significant change in HMECs (Figure 2C), but protein levels
were also inversely modulated, with a 2-fold reduction in both tumor cell lines and a 5-fold
increase in HMECs (Figure 3C). These observations show that AURKA and TOP2A are
inversely modulated in breast tumor and normal cells by ASncmtRNA KD, which could
explain the different responses of tumor and normal cells to this treatment.
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Figure 2. Relative expression of AURKA and TOP2A mRNA upon ASncmtRNA KD. (A) Relative
abundance of mRNAs in the MDA-MB-231 transcriptome, expressed as transcripts per million
(TPM), for the three conditions. These results were validated by RT-qPCR in the same cell line, the
MCF7 line, and normal primary breast epithelial cells (HMEC), after a 24 h treatment. (B) AURKA
mRNA is downregulated in all three cell types. (C) TOP2A was significantly downregulated in
both tumor cell lines but not in HMECs. In (B,C), results are plotted relative to NT cells. * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001, n.s. non-significant.
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Figure 3. Protein expression of AURKA and TOP2A after ASncmtRNA KD for 24 h in MDA-MB-231,
MCF7, and HMEC cells. (A) AURKA expression shows a strong downregulation in tumor cells and a
strong upregulation in normal HMEC cells transfected with Andes-1537, compared to the controls.
(B) TOP2A protein is reduced by half after ASncmtRNA KD in both tumor cell lines, while it increases
by around 7 times in HMECs. * p < 0.05, ** p < 0.01, *** p < 0.001.

3. Discussion

First-line breast cancer treatments include DSB-inducing anthracyclines, such as dox-
orubicin or epirubicin, which are thought to act through topoisomerase II poisoning [2]
and taxanes such as paclitaxel or docetaxel, which disrupt mitotic spindle function, thereby
introducing gross genetic errors [2]. These drugs and others are usually combined under
different regimes or in conjunction with surgery and/or radiotherapy. Chemo- and radio-
therapy aim to trigger tumor cell death by inducing irreparable genetic errors, but these
treatments also damage healthy cells, causing side effects that hamper quality of life and,
in some cases, secondary cancers [18].

Tumor cells from different origins readily express SncmtRNA, while normal cells
express both transcript types [4–10]. As stated above, ASncmtRNA KD induces apoptotic
death of tumor cells from different tissues [7–10,12], thus this approach could be visualized
as a stand-alone treatment for different cancer types, including breast cancer. We hypothe-
sized that ASncmtRNA KD-induced proliferative arrest [7–10,12] is governed by a reduction
in cell cycle progression factors. In this work we chose to perform a transcriptome-wide
study of Andes-1537-treated cells, compared to controls, in order to address the mRNA
levels, one of the factors governing protein levels. Another important instance of protein
level regulation lies in translation control, where miRNAs are important actors, usually
blocking mRNA translation. In this context, we previously showed that ASncmtRNA KD
induces an increase in miRNAs miR-4485 and miR-1973 [12] and we are currently studying
the significance of this effect on the genomic integrity of tumor and normal cells, especially
focused on AURKA and TOP2A.
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We show here that cyclin B1 is differentially modulated among tumor (strongly down-
regulated) and normal (mildly downregulated) breast epithelial cells (Supplementary
Figure S3C). Interestingly, we encountered an inverse modulation of AURKA and TOP2A
in tumor and normal breast cells, which could constitute the basis for treatment selectiv-
ity [7–10]. Both factors participate in cell cycle progression, ensuring correct segregation of
sister chromatids to daughter cells [13,14] and, therefore, a reduction in the levels of these
proteins or in their activity should not only preclude cell cycle progression but will also
generate gross genetic errors, ultimately leading to apoptotic cell death.

AURKA is essential to centrosome duplication, maturation, and separation at the S
and G2 phases, and mitotic entry and spindle formation in the M phase [13]. It is also
involved in activating the G2 DNA damage checkpoint induced by DSBs [15]. AURKA
overexpression is commonly observed in many solid tumors including breast cancers [15],
enhancing genomic instability, and is the target of several clinical trials with drugs that
inhibit its activity [15].

TOP2A performs double-strand cuts in DNA for correct decatenation of sister chro-
matids towards separation at anaphase. Defects in TOP2A activity trigger a G2 decatenation
checkpoint that stalls the cell cycle at G2/M, protecting against genomic damage, and in-
activation of TOP2A leads to abnormal chromosome segregation and genomic instability,
linked to tumorigenesis [14]. TOP2A is overexpressed in many human cancers including
breast cancer, rendering this protein a widely used anti-cancer target [16]. Drugs targeting
TOP2A activity, including etoposide and doxorubicin, induce double-strand breaks (DSBs),
resulting in tumor cell death [17]. However, as in many cancer treatments, normal cells are
also affected, resulting in side effects, including the development of secondary cancers and
cardiotoxicity [17].

Based on the above, a reduction in the levels of AURKA and TOP2A induced by
ASncmtRNA KD should mimic the effects of drugs that target the activity of these enzymes.
Therefore, this molecular effect brought on by the KD treatment could constitute the basis
for the induction of the apoptotic death of tumor cells [7–10,12]. In normal cells, on the other
hand, one could ask what happens when these oncogenic proteins are overexpressed; could
it result in transformation of normal cells? This is highly unlikely since the overexpression
is transient and there is no amplification of the genes coding for these factors. Another
pending question is related to the basis for this difference observed between tumor and
normal cells. One possibility is the gene expression control exerted by miRNAs, which
occurs after mRNA synthesis. As mentioned above, we have studied the changes in miRNA
expression upon ASncmtRNA KD [12] and we are currently investigating the significance
of this aspect on AURKA and TOP2A levels.

This is the first report to show an inverse behavior of important cell cycle and genomic
protection factors in normal and tumor cells. We are currently studying the behavior of
these proteins in other tumor/normal cell cultures in order to determine if these effects are
common to different tissue types. We are also performing functional assays to elucidate
the biological significance of these changes after ASncmtRNA KD, but the data presented
here constitutes a basis for the potential application of ASncmtRNA KD as a coadjuvant
treatment complementary to conventional cancer therapies. The opposite behavior of
AURKA and TOP2A in tumor and normal breast cells after ASncmtRNA KD could hypo-
thetically enhance genomic instability in tumor cells on treatment with DNA-damaging
drugs or radiotherapy, thereby enhancing the efficacy of treatments (and perhaps allowing
for reduced dosage), whilst preserving the genomic integrity of normal cells, and thereby
protecting healthy tissue from collateral damage. This approach could open new avenues of
BrCa therapies based on ASncmtRNA KD as a coadjuvant to chemo- and/or radiotherapy,
while maintaining an agreeable quality of life for patients.
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4. Materials and Methods
4.1. Cell Culture and Transfection

MCF-7, MDA-MB-231, and normal human breast epithelial cells (HMECs) were pur-
chased from ATCC (Manassas, VA, USA) and cultured according to ATCC guidelines. For
treatments, 60,000 cells/well were seeded into 12-well plates (Nunc, Thermo-Fisher Scien-
tific, Waltham, MA, USA) and transfected the next day with 200 nM unrelated control ASO
(ASO-C: 5′-AGGTGGAGTGGATTGGGG) or Andes-1537 (5′-CACCCACCCAAGAACAGG)
and 2 µg/mL Lipofectamine2000 (Thermo-Fisher Scientific), or left untreated (NT). All
ASOs contained 100% phosphorothioate internucleosidic bonds (Integrated DNA Technolo-
gies, Coralville, IA, USA).

4.2. RNA Extraction

RNA was isolated using TRIzol (Thermo-Fisher Scientific). The RNA concentration
was determined through spectrometry (EPOCH; Biotek Instruments, Winooski, VT, USA)
and the integrity was checked on an Experion system (Bio-Rad, Hercules, CA, USA), using
the RNA StdSens analysis kit (Bio-Rad). Selected samples had an RIN value > 0.8.

4.3. RNA Sequencing

Library construction, including cDNA synthesis, adapter ligation, amplification, and
validation was performed using the TruSeq Stranded Total RNA with Ribo-Zero Hu-
man/Mouse/Rat kit (Illumina, San Diego, CA, USA). The MiSeq Reagent Kit v3 (Illumina)
was used for paired-end sequencing on a HiSeq 2000 platform (Illumina).

4.4. Bioinformatic Analysis

Differential gene expression analysis was performed as described in [19]. Reads (fastq
format) were processed with SAMTOOLS (v0.1.19.0) and BOWTIE2 v2.1.0.0 was used for
mapping to the GRCh37.p13 reference genome (hg19) (www.ncbi.nlm.nih.gov, accessed on
31 March 2018). The HTSeq v0.9.1 package [20] was used to quantify reads and differential
gene expression analysis was performed with DESeq2 v1.14.1, considering p < 0.05 and fold-
change FC(log2) > 1. Pathway analysis (KEGG, biological process and molecular function)
was performed with FIDEA (http://circe.med.uniroma1.it/fidea/, accessed on 25 April
2018) [21] and gene lists were loaded onto the DAVID v6.8 (https://david.ncifcrf.gov/
home.jsp, accessed on 30 May 2018) [22,23] and PANTHER (http://www.pantherdb.org/,
accessed on 23 June 2018) [24] platforms, where genes related to cell cycle according
to KEGG pathways, biological process, and Uniprot functional category, were selected.
A list of pre-selected genes was obtained using CycleBase 3.0 (https://cyclebase.org/,
accessed on 12 August 2018) [25–27] and STRING v10.5 (https://string-db.org/ accessed
on 18 September 2018) [28] was used to generate gene interaction maps of the final selected
genes (AURKA; TOP2A and CCNB1).

4.5. RT-qPCR

RT-qPCR was performed using 200 ng total RNA as described before [12]. Relative
mRNA levels were determined using the 2−∆∆Ct method [29] using 18S rRNA, COX5B, and
TIMM50 as reference genes. The primer sequences are displayed in Supplementary Table S1.

4.6. Western Blot

Western blot was performed as described in [12], using rabbit monoclonal antibodies
(Cell Signaling, Danvers, MA, USA) against cyclin B1 (1:500), Aurora kinase A (1:500),
topoisomerase IIα (1:500), or calnexin (1:1000) and peroxidase-labeled goat anti-rabbit IgG
secondary antibody (1:5000; Calbiochem, San Diego, CA, USA).

4.7. Graphs and Statistical Analysis

The data were plotted and analyzed using the Graphpad Prism 6 software. The
significance was set at the nominal level of p < 0.05.

www.ncbi.nlm.nih.gov
http://circe.med.uniroma1.it/fidea/
https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
http://www.pantherdb.org/
https://cyclebase.org/
https://string-db.org/
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ncrna9050059/s1, Table S1: Sequence of primers used for qPCR; Figure
S1: Transcriptome data analysis.; Figure S2: Selection of genes of interest; Figure S3: Changes in CCNB1
expression after ASncmtRNA KD.
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