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Abstract

The Burns turbulent dispersion force is the most commonly used turbulent dispersion in the two-
fluid RANS bubbly-flow literature. However, its derivation is based on a series of hypothesis that
are difficult to justify in industrial flows. It is shown that in low-void fraction vertical pipe flow, the
Burns turbulent dispersion formulation is equivalent to considering the radial movement of the gas
phase like a passive scalar that follows turbulent eddies. This is not apparent in the derivation of the
force. As bubbles in pressurized water reactor (PWR) conditions have a low Stokes number (∼ 10−1),
considering bubbles are transported by turbulence is a good approximation for bubble dispersion in
pipe flow. Therefore, the Burns turbulent dispersion force is appropriate to represent bubble dispersion
in low-void fraction PWR flows.

1 Introduction

Notation conventions:

• All forces written here are applied to the gas phase

• We define X ′ the fluctuations of a quantity X, and write ui = ui + u′i, Pi = Pi + P ′
i , αi = αi + α′

i...

General form of turbulent dispersion To correctly predict the flow pattern in nuclear applications, one
must determine the impact of liquid turbulence on bubble movement.

In 6-equation component and system-scale codes, a channel or subchannel turbulent dispersion can be
determined from the void fractions and relative phase velocities [8].

In 4-equation component-scale codes, a void diffusion coefficient or a void drift velocity can be cal-
ibrated on experimental data, as in CTF [16]. These expressions depend on the flow velocity, which is
closely related to the turbulent intensity of the flow.

For 6-equation CFD codes, the formulations found in the literature mostly derive from theoretical
analysis of bubble-fluid interactions. The turbulent dispersion generally reads [5]:

F⃗TD = −CTDρlk∇αg (1)

Where CTD, the turbulent dispersion coefficient, is a dimensionless coefficient that depends on local flow
conditions, ρl the liquid density, k the turbulent kinetic energy and αg the gas void fraction.
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RANS expression of the mass equation The instantaneous mass equation for the gas phase in a two-fluid
adiabatic model reads [10]:

∂χρg
∂t

+∇ · (χρgu⃗g) = 0 (2)

With χ the phase indicator function, ρg the gas density and u⃗g the gas velocity.
Time-averaging this equation (and not phase-averaging it) and separating the contributions leads to:

∂ < χρg >

∂t
+∇ · (< χρg >< u⃗g > + < χρgu⃗g

′ >) = 0 (3)

If one uses the eddy-viscosity hypothesis applied to void fraction [5]: < χρgu⃗g
′ >= −ρgνα∇αg, with

< χρg >= αgρg, and να a diffusion coefficient for the void fraction, we obtain a convection-diffusion
equation on the void fraction:

∂αgρg
∂t

+∇ · (αgρg < u⃗g >) = ∇ · (ρgνα∇αg) (4)

Favre averaging is different from time averaging. The Favre average, also called statistical average and
phase average, of a quantity Φ is a mass and void fraction weighted average: < Φ >Favre=

<Φαρ>Time
<αρ>Time

.
Favre-averaging the mass equation results in a convection equation on void fraction:

∂αgρg
∂t

+∇ · (αgρg < u⃗g >Favre) = 0 (5)

The Favre average is usually used when going towards a RANS formulation [10].

Importance of the turbulent time scale and dissipation rate The turbulent dispersion of a passive scalar
is a stochastic process. We place ourselves in a k − ω turbulence framework [11], with ω the turbulent
dissipation rate. A dye particle will follow eddies that move at a velocity ∼

√
k for a time τturb = 1

ω =
Cµk
ϵ [12]. The diffusion is characterized by a turbulent viscosity νt = kτturb. It is therefore surprising that

most classical formulations for bubble dispersion hide τturb in the turbulent dispersion coefficient even
though it is sure to play a part.

The DEBORA experiment was built at CEA to simulate pressurized water reactor (PWR) condi-
tions [9]. In CFD simulation of this experiment, ω is typically 102 − 103s−1. The turbulent time scale is
therefore τturb ∼ 10−3 − 10−2s.

Furthermore, the bubble response time will be in αgρgug/Fdrag, where Fdrag is the drag force. So
τbubble ∼ CDdbρg/(ρlur) with CD the drag coefficient and db the bubble diameter [18]. In nuclear reactor
conditions, ρg/ρl ∼ 0.1, db ∼ 5 · 10−4m, ur ∼ 0.1m/s, CD ∼ 1. Therefore, τbubble ∼ 5 · 10−5, Stbubble ∼
10−2.

However, one must take into account the virtual mass force on the bubbles. The bubble inertia then
increases and τbubble ∼ CVMCddb/ur. If we take CVM ∼ .5 [19], τbubble ∼ 2 · 10−4, which reduces the
difference with the turbulent time scale. Stbubble ∼ 10−1, still smaller than 1. Bubbles should then follow
the liquid flow in the radial direction. In the axial direction, buoyancy creates a velocity difference.

2 Formulations from the literature derived from averaging

This sections covers the formulations of Burns [5] and Laviéville [13]. These methodologies are used
indiscriminately to describe bubble and particle dispersion.

2



Burns et al. The authors start from the two-phase momentum equation:

∂αkρku⃗k
∂t

+∇ · (αkρku⃗k ⊗ u⃗k) = −αk∇P +∇ · [αkµk∇u⃗k] + F⃗ki + αkρkg⃗ (6)

Where k can be either the liquid or the gas phase, F⃗ki are the interfacial forces, g⃗ the gravitational
acceleration and µk the dynamic viscosity.

They then apply a Reynolds-Averaged Navier-Stokes methodology to the two-phase flow. They con-
sider that the unstable contribution to the drag force is the only one that is non-negligible after averaging.
Burns et al. write:

F⃗TD =<
3

4
CD

αgρl
dS

|u⃗g − u⃗l| >
(
< α′

gu
′
g >

αg
−

< α′
lu

′
l >

αl
−

< a′i(u
′
g − u′l) >

< a′i >

)
(7)

Where dS is the bubble Sauter mean diameter.
They then apply an eddy viscosity hypothesis (< α′

ku
′
k >= − νt

Prt
∇αk with νt the turbulent viscosity

and Prt the bubble turbulent Prandlt number) to arrive at their final formulation for two-phase flow:

F⃗TD = − <
3

4
CD

αgρl
dS

|u⃗g − u⃗l| >
νt
Prt

(
1

αg
+

1

αl

)
∇αg (8)

However, this formulation isn’t usable as such as there is still an averaged value inside. The authors
then do the unjustified following hypothesis to close the turbulent dispersion force:

<
3

4
CD

αgρl
dS

|u⃗g − u⃗l| >=
3

4
CD

αgρl
dS

|u⃗g − u⃗l| (9)

Where the CD used is that af the drag force of steady-state bubbles rising in the liquid |u⃗g − u⃗l|.

For this formulation to be valid, the following hypothesis must be met:

• The only non-negligible unstable contribution to the force balance is through the drag force. Other
sources disagree with this hypothesis [13, 3].

• The drag force formulation used in the fluctuating flow before the RANS step must be valid. A
steady-state single-bubble formulation is most often used. This means in particular that:

– The drag coefficient must be the same in the vertical and other directions, which is not neces-
sarily the case for deformed bubbles

– The typical size of turbulent eddies is much larger than the size of bubbles, so they are faced
with a uniform velocity field

– The typical time scale of eddies dispersing the bubbles is much larger than the time required
for the drag force from the eddy on the bubble to reach its stationary value

• The approximation used in equation 9 is valid

These hypothesis are not necessarily met in high-void fraction fast-flowing conditions.

Laviéville et al. In this work, the turbulent dispersion formulation comes from an averaging of the
lagrangian equation of motion for a single bubble which is then transformed back in eulerian coordinates.

The authors take into account many different forces acting on the bubbles: added mass, drag, lift
and pressure variations (which, as with the application of the Burns methodology, must have the same
formulation in a fluctuating flow as in a stationary one).

Without going into detail as to how their formulation is derived, they make the following hypothesis:
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• The fluctuations of single bubbles in a large amount of fluid are identical to those of a bubble swarm

• The formulations on lift, drag and added mass forces evaluated on single bubbles in an undisturbed
bulk used before RANS averaging are valid in unsteady high-void fraction flows

• We can build a time scale of fluid turbulence along bubble trajectories and one for drag

• < u′gu
′
g > and < u′gu

′
l > can be related to < u′lu

′
l > in all flow conditions through complex formulas

that use the aforementioned time scales and an added mass coefficient

As above, these hypothesis are not necessarily met in high-void fraction fast-flowing conditions.

3 Burns formulation considers bubbles as a passive scalar

Force equilibrium in a bubbly boiling pipe flow In the core region of bubbly boiling PWR-condition
pipe flows, the radial lift and added mass forces, bubble inertia and the pressure gradient play a minor
role [15]. The radial bubble movement is piloted by the balance between the turbulent dispersion and
the drag force. This can be seen by post-processing forces from CFD simulations. Furthermore, the axial
velocity is much larger than the radial velocity. The radial drag force reads:

F⃗D,r = −3

4
CD

αgρl
dS

|u⃗g,z − u⃗l,z|(ug,r − ul,r) (10)

Using the Burns formulation from equation 8, we obtain:

3

4
CD

αgρl
dS

|u⃗g,z − u⃗l,z|(ug,r − ul,r) +
3

4
CD

αgρl
dS

|u⃗g − u⃗l|
νt
Prt

(
1

αg
+

1

αl

)
∂rαg = 0 (11)

Therefore, the relative velocity of the vapor phase is:

ug,r − ul,r = − νt
Prt

(
1

αg
+

1

αl

)
∂rαg (12)

Simplified situation We will now place ourselves in the following situation:

• The bubbles are in homogeneous isotropic liquid turbulence, with a turbulent diffusivity νt

• The bubble movement is piloted by the drag-dispersion equilibrium

• There is no phase change or bubble injection in the area of interest

• The flow is stationary

• The volume masses ρl and ρg are constant

• The vertical velocities are uniform.

This seemingly far-fetched situation is that of a vertical bulk liquid flow in a turbulent large tank where
bubbles are injected upstream of the area of interest, as in the Alméras et al. experiments [1]. It is also
not too different from the core of a saturated bubbly flow.

As the flow is stationary and has no phase change:

∇ · (αku⃗k) = 0 (13)
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We will now place ourselves in a 2D channel, i.e. a pipe with a rectangular cross-section [14]. We
name z the vertical axis and x the horizontal axis along the small width. This leads to us solving the
following system of equations:

(1) ugz∂zαg + ∂x(αgugx) = 0

(2) −ulz∂zαg + ∂x((1− αg)ulx) = 0

(3) ug,x − ul,x = − νt
Prt

(
1
αg

+ 1
1−αg

)
∂xαg

(14)

Integration By replacing ulx by ugx − (ugx − ulx) in (2) and integrating equations (1) and (2) above
between 0 and X we obtain:

(1) ugz
∫ X
0 (∂zαg)dx+ αg(X)ugx(X)− αg(0)ugx(0) = 0

(2) −ulz
∫ X
0 (∂zαg)dx+ (1− αg(X))ugx(X)− (1− αg(0))ugx(0)

= (1− αg(X))(ugx(X)− ulx(X))− (1− αg(0))(ugx(0)− ulx(0))

(15)

We then do (1) · (1− αg)− αg · (2), inject (3) and do another derivation. We obtain:

((1− αg)ugz + αgulz) ∂zαg = ∂x

(
νt
Prt

∂xαg

)
+ ∂xαg (ugz − ulz)

∫ X

0
∂zαgdx (16)

The left-hand term and first right-hand term give us a radial diffusion equation in the convected fluid.

Big approximation We suppose that axial velocity differences have little impact on the transverse flow.
In other words, ugz, ulz ≫ ugz − ulz. As ugz − ulz ∼ 0.1m/s in bubbly flow [17], this approximation is
valid in a fast-flowing rectangular channel (ulz > 1m/s). This yields αgugx ∼ −(1−αg)ulx from equation
14-(1) and 14-(2). Equation 14-(3) then becomes:

ug,x − ul,x = ug,x + ug,x
αg

1− αg
=

ug,x
1− αg

= − νt
Prt

(
1

αg
+

1

1− αg

)
∂xαg (17)

So:
αgug,x = − νt

Prt
∂xαg (18)

Using equation 14-(1), we obtain:

((1− αg)ugz + αgulz) ∂zαg = ∂x

(
νt
Prt

∂xαg

)
(19)

This is the same equation as above, without the integral term: a radial diffusion equation in the
convected fluid, with a diffusivity equal to the liquid turbulent viscosity.

This means that the integral term in equation 16 represents the contribution of axial velocity difference
between the two phases to the evolution of αg. This is coherent with the fact that this term contains
ugz − ulz and ∂zαg.

Big approximation in cylindrical coordinates We now try to expand our previous reasoning in cylindrical
coordinates. The system we now must solve is:

(1) ugz∂zαg + 1/r∂r(rαgugr) = 0

(2) −ulz∂zαg + 1/r∂r(r(1− αg)ulr) = 0

(3) ug,r − ul,r = − νt
Prt

(
1
αg

+ 1
1−αg

)
∂rαg

(20)
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We also place ourselves in fast-flowing pipe flow, where αgugr ∼ −(1 − αg)ulr. As above, αgug,x =
− νt

Prt
∂xαg. And:

((1− αg)ugz + αgulz) ∂zαg = 1/r∂r

(
r
νt
Prt

∂rαg

)
(21)

Which is also a diffusion equation.

Simulation We test the hypothesis that the Burns turbulent dispersion force disperses bubbles as if they
were passive scalars in industrial geometries.

We simulate the following situation: a tube where bubbles are injected at the core [7]. The multi-phase
module of the TrioCFD code is used [2]. The tube is 4cm in diameter, 4m long and a small amount of air
is injected 2m downstream of the entrance. Bubbles are 0.92mm in diameter, and Reb ∼ 100. The liquid
bulk velocity is 1m/s and a k−ω turbulence model is used. The void fraction predicted by the code along
the width of the pipe at different positions downstream of the inlet is compared.

The first simulated configuration is a 2-fluid model with drag, added mass, gravity and Burns turbulent
dispersion forces. The lift force and a wall correction were left out to compare the Burns force with simple
diffusion

The second simulated configuration is a mixture model where the relative velocity u⃗g − u⃗l can be
enforced in the code [4]. Here, we use:

u⃗g − u⃗l = ur,Ishii-Zuber −
νt

Prtαg
∇αg (22)

This amounts to directly enforce equation 12, and obtain an effective diffusion equation on the vapor
velocity. The momentum and mass equations for the mixture are then solved by the code.
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Figure 1: Comparison between the simulation results obtained with the Burns turbulent dispersion in a
2-fluid model and a void-drift model enforcing passive scalar-like turbulent diffusion.

The results of this simulation are shown in figure 3. There are slight differences between both sim-
ulations. This is expected, as the conditions in which our approximation to obtain equation 21 is valid
aren’t completely satisfied. In particular, the axial velocities can no longer be considered constant along
the width of the pipe. Furthermore, we have kept the added mass force, that will play a small part in the
center of the pipe as bubbles accelerate after injection.
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However, considering the differences in equations solved between the two configurations and the small
differences in the outputs, this simulation reinforces the case for the Burns turbulent dispersion to amount
to passive scalar turbulent diffusion in fast-flowing pipe flow.

Measures of fluctuations in turbulent flows In bubble column experiments where the bubble and liquid
velocity fluctuations were both measured [6], we have u′l < u′g < 3u′l.

If the time scale of velocity fluctuations of the liquid and the gas phase are similar (yet another
hypothesis), then νl ≲ νg ≲ 3νl. As the Burns turbulent dispersion with a Prandtl between .33 and 1 in a
flow where bubble distribution is piloted by a drag-dispersion equilibrium would also yield νl ≲ νg ≲ 3νl,
it would be a relatively good approximation.

4 Conclusion

It has been shown that in a system where the turbulent dispersion force is countered by the radial drag
force, like a fast-flowing vertical PWR pipe flow, the Burns turbulent dispersion force amounts to passive
scalar turbulent diffusion in the radial direction. This is a useful key to interpret void fraction dispersion
results in two-fluid simulations. Considering the Stokes number of PWR-condition flows, this behavior is
in line with what is expected from the flow at low void fractions.
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