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On groups and fields interpretable in differentially closed
valued fields and in various NTP2 fields

Paul Wang1

ABSTRACT. This paper aims at developing model-theoretic tools to study interpretable
fields and definably amenable groups, mainly in NIP or NTP2 settings. An abstract theorem
constructing definable group homomorphisms from generic data is proved. It relies heavily on a
stabilizer theorem of Montenegro, Onshuus and Simon. The main application is a structure theo-
rem for definably amenable groups that are interpretable in algebraically bounded perfect NTP2

fields with bounded Galois group (under some mild assumption on the imaginaries involved), or
in algebraically bounded theories of (differential) NIP fields. These imply a classification of the
fields interpretable in differentially closed valued fields, and structure theorems for fields inter-
pretable in henselian valued fields of characteristic 0, or in NIP algebraically bounded differential
fields. 2

1 Introduction

The study of algebraic structures, say, groups, that are definable in given first-order the-
ories is a part of what is called “geometric” model theory. In principle, the presence of
definable groups or definable fields sheds light upon the model theory of the structure
under study. One instance of this phenomenon is Hrushovski’s proof of the fact that uni-
dimensional theories are superstable (see [Hru90] or [Poi01, Theorem 5.22]), which goes
through the study of definable groups, even if they are not mentioned in the statement.

Classical results in this area include the fact, commonly attributed to Weil-Hrushovski
(see for instance [Poi01, Theorem 4.13]), that any group definable in an algebraically
closed field is definably isomorphic to an algebraic group, and the consequence, due
to Poizat, that any infinite field definable in an algebraically closed field is definably
isomorphic to the ambient field (see Theorem 4.15 in [Poi01]).

The case of algebraically closed fields is, from several points of view, the simplest one.
The following results deal with the more subtle - and also more interesting to number
theorists - cases of real, p-adic or pseudo-finite fields.

Theorem 1.1 (see Theorem A in [HP94]). Let F be either R or Qp. Then, any Nash
group over F is locally (i.e. in neighbourhoods of the identity) Nash isomorphic to the
set of F -rational points of an algebraic group defined over F .

1partially funded by ANR GeoMod (AAPG2019, ANR-DFG)
2© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
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Theorem 1.2 (see Theorem C in [HP94]). Let G be a group definable in a pseudo-finite
field F . Then, G is virtually isogeneous with the set of F -rational points of an algebraic
group defined over F .

The abstract model-theoretic result underlying these theorems is expressed in terms
of “geometric substructures of strongly minimal sets” (see Definition 2.6 in [HP94]). The
proof relies on a suitable application of the guiding principles of the famous group con-
figuration theorem (see for instance Chapter 5 of [Pil96]), namely, the reconstruction of
a definable group from generic data.

Recently, several similar results have been obtained. For instance, in the context
of valued fields of dp-rank 1, under some technical assumptions, the classification of
interpretable fields has been carried out in [HHP22, Theorem 7.1]. Other results include
the work done in [PPP23], which proves that groups definable in various differential fields
can be definably embedded into algebraic groups, and [HHP23, Theorem 1], dealing with
definably semisimple groups interpretable in several valued fields.

In this paper, we try to develop these ideas, following similar principles, but using
distinct model-theoretic tools. While several cases are also dealt with in the works cited
above, the methods are different, and many new examples are covered. See Example
3.20. Also, this approach can deal with imaginaries, which is not done in [PPP23], but is
in [HHP22] and [HHP23], although in a different way. We do not require dp-minimality,
and some results hold in NTP2.

Section 2 introduces the main model-theoretic tools we will use to study definable
groups. First, we recall a few facts about ideals, f-genericity and definably amenable
groups in NTP2. We then state a crucial technical result, the stabilizer Theorem 2.29,
which is [MOS18, Theorem 2.15]. We also state, and prove, the variant (Theorem 2.44)
of the usual stable group configuration theorem we need. The ideas there are similar to
[HP94]. Combining the two, we get the following abstract result :

Theorem 1.3 (Theorem 2.47). Let T0, T1 be theories, in languages L0 ⊆ L1 respectively.
Assume that T0 is superstable, has quantifier elimination and elimination of imaginaries
in L0, in a collection of sorts S. Assume that T1 is NIP. Let N0 ⊧ T0, N1 ⊧ T1 be
sufficiently saturated, and ι ∶ N1 → N0 be an L0-embedding. Assume that dcl0(N1) = N1

and acl0(A) ∩N1 = acl1(A) for all A ⊆ N1.
Let C be an L1(N1)-definable set which is blind1 to all the sorts in S, in the sense of

T1. Let V be a product of sorts of S. Let G ⊆ V ×C be a definably amenable group (see
Definition 2.26), definable in N1. Then, there exists a quantifier-free-L0(N1)-definable
group H in the sorts of S, and an L1(N1)-definable group homomorphism G00

N1
(N1) →

H(N1) whose kernel is blind to the sorts in S.

One of the main points is that this theorem also tackles interpretable sets, and de-
composes a group between imaginary and real sorts.

In Section 3, we apply the tools to the case of theories of possibly enriched fields.
There, we may replace the NIP requirement with NTP2, at the cost of additional algebraic

1A definable set X is blind to a definable set Y if all definable finite correspondences X → Y have
finite image.
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hypotheses. The following theorem was inspired by [HR19, Proposition 6.1] and [MOS18,
Theorem 2.19]:

Theorem 1.4 (Theorem 3.2). Let T be an algebraically bounded (see Definition 2.35)
theory of possibly enriched, possibly many-sorted, perfect fields. Assume that T is NIP,
or that it is NTP2 and its models have bounded Galois groups. Let G be a definably
amenable group, definable in some product of sorts blind to the field sort, and powers of
the field sort, in some sufficiently saturated model M of T . Then, there exist an algebraic
group H over M and an M -definable homomorphism G00

M →H, whose kernel is blind to
K.

Note that, in the theorem above, the hypothesis on G is mild: in many examples, the
imaginary sorts we consider (other than the field sort itself) are blind to the field sort.
Applying this theorem to groups of affine transformations, we then prove the following

Corollary 1.5 (Corollary 3.19). Let T be an algebraically bounded theory of possibly
enriched, possibly many-sorted, perfect fields. Assume that T is NIP, or that it is NTP2

and its models have bounded Galois groups. Let F be an infinite field definable in some
product of field sorts and sorts blind to K, in some sufficiently saturated model M of T .
Then either F is blind to K, or F embeds definably in some finite extension of K(M).

In the process, we prove a general result (Proposition 3.7) on definable fields whose
group of affine transformations definably embed into an algebraic group.

In Section 4, as an illustration of the potential of these abstract tools, we study several
examples. The first is the class of NIP algebraically bounded differential fields, i.e. those
where the algebraic closure is tame (see Definition 4.1). The general tools of Section 2
yield the following

Theorem 1.6 (Theorem 4.2). Let T be an NIP theory of algebraically bounded differential
fields. Let M be a sufficiently saturated model of T . Let X be an M -definable set blind
to the field sort K, and n < ω.

1. Let G ⊆ X ×Kn be an M -definable group. Assume that G is definably amenable.
Then, there exists an M -definable group homomorphism G00 →H with kernel blind
to K, where H is an algebraic group over K(M).

2. Let F ⊆ X ×Kn be an infinite M -definable field. Then, either F is blind to K, or
F embeds definably in some finite extension of K(M).

Then, we study the case of DCVF, the theory of algebraically closed valued fields of
equicharacteristic 0 with a generic derivation, which belongs to that class (see Fact 4.4).
In Theorem 4.19, we show that, in DCVF, which is the model completion of differential
valued fields of characteristic 0, the only infinite interpretable fields are the residue field,
the valued field, and the field of constants. As a second example, we prove the following
theorem for Henselian valued fields of characteristic 0:
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Theorem 1.7 (Theorem 4.24). Let T ⊇ Hen0 be a theory of finitely ramified (see Defi-
nition 4.21) pure henselian valued fields of characteristic 0 with perfect residue fields, in
the three-sorted language. Assume that T is NIP, or that T is NTP2 with Gal(Kalg/K)
bounded in all models of T . Also assume that k, with its induced structure, is algebraically
bounded as a field. Let M be a sufficiently saturated model of T . Let m,n, l < ω. Let
F ⊆ Kn × km × Γl be an M -definable infinite field. Then, exactly one of the following
holds:

1. The field F admits a definable embedding into some finite extension of K.

2. The field F admits a definable embedding into some finite extension of k.

3. The field F is definably isomorphic to a field definable in Γ.

In this paper, if T is a fixed complete theory, M is a model of T , and A ⊆M , we say
that A is small with respect toM ifM is ∣A∣+-saturated and ∣A∣+-strongly homogeneous.
We may write A ⊆+ M to denote that smallness condition. Similarly, we may write
M ⪯+ N if M is a small elementary substructure of N .

2 Ideals, f-generics, stabilizer theorems and group configurations

In this section, we describe in detail the model-theoretic tools we will apply in the study
of definable groups and fields. We shall introduce a stabilizer theorem (Theorem 2.29)
and a group configuration theorem (Theorem 2.44). Let us first recall the definitions of
NTP2 and NIP.

Definition 2.1. We say that a partitioned formula φ(x, y) has TP2, with respect to a
theory T , if there are (al,j)l,j<ω in some M ⊧ T and k < ω such that:

1. The collection of formulas {φ(x, al,j) ∣ j < ω} is k-inconsistent for all l < ω.

2. For all f ∶ ω → ω, the collection of formulas {φ(x, al,f(l)) ∣ l < ω} is consistent.

A formula has NTP2 if it does not have TP2. The theory T is NTP2 if no formula
has TP2.

Similarly, φ(x, y) has IP if there are (ai)i<ω and (bJ)J∈P (ω) in some M ⊧ T such that
for all i, J , we have M ⊧ φ(ai, bJ) if and only if i ∈ J . A formula is NIP if it does not
have IP, and a theory is NIP if all formulas are NIP.

At the level of theories, TP2 implies IP. In other words, NIP theories are NTP2. See
[Sim15, Proposition 5.31]

Let us also recall some notions about connected components of type-definable groups.

Definition 2.2. Let G be a type-definable group. Let A be a set of parameters such
that G is A-type-definable. Then, we let G0

A, resp. G
00
A denote the intersection of the

relatively A-definable, resp. A-type-definable, subgroups of G of bounded index.

4



We say that G0 exists, resp. G00 exists, if the type-definable subgroup G0
A, resp.

G00
A , does not depend on A (as long as G is A-type-definable). The group G is said to

be connected if G = G00
B for all B.

Fact 2.3. 1. In stable theories, G0 and G00 always exist, and they are equal. In
ω-stable theories, if G is definable, then G0 is definable and of finite index in G.

2. In NIP theories, G00 always exists. (see for instance [Sim15, Theorem 8.7])

3. In general, for any A, the subgroup G00
A is a normal subgroup of G. See [Wag00,

Lemma 4.1.11].

2.1 Ideals

In this subsection, we fix a complete theory T , which we assume to eliminate quantifiers
and imaginaries, and a very saturated and very homogeneous model U . A subset A ⊆ U is
small with respect to U if the model U is ∣A∣+-saturated and ∣A∣+-strongly homogeneous.

Definition 2.4. 1. An ideal µ is a collection of U-definable sets, which is closed under
finite unions, and such that any U-definable set contained in an element of µ is itself
in µ. Let A be a small set. The ideal µ is A-invariant if, for all formulas φ(x, y)
over A, and all elements b, c ∈ U such that b ≡A c, we have φ(x, b) ∈ µ if and only if
φ(x, c) ∈ µ.
We say that a type-definable set (possibly a complete type) π is in an ideal µ if
some definable set X containing π is in µ.

2. If I is a linearly ordered set, we say that a sequence of definable sets (Xi)i∈I is
A-indiscernible if there exists a formula φ(x, y) over A, and an A-indiscernible
sequence (bi)i∈I such that, for all i ∈ I, the formula φ(x, bi) defines Xi. This is
equivalent to A-indiscernibility of the codes of the Xi.

3. An A-invariant ideal µ has the S1 property if, for any A-indiscernible sequence
(Xi)i<ω of definable sets, if Xi ∩Xj is in µ for some/all i ≠ j, then Xi is in µ for
some/all i.

If X is a definable set, we say that µ is S1 on X if, the above property holds for
A-indiscernible sequences (Xi)i<ω of definable subsets of X, and if X is not in µ.

If π is a type-definable set, we will say that µ is S1 on π if π is not in µ, and for
some definable set Y containing π, the ideal µ is S1 on Y .

Remark 2.5. Ideals correspond exactly to ring-theoretic ideals of the Boolean ring
Defx(U) of U-definable sets (whose operations are symmetric difference and intersection).

With this point of view, A-invariant ideals can also be thought of as families (IB)A⊆B⊆U
such that, for all B, IB is an ideal of Defx(B), with the following conditions :

(i) If A ⊆ B ⊆ C, and f ∶ Defx(B) ↪ Defx(C) is the canonical embedding, then
IB = f−1(IC).
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(ii) For all models M ⊇ A contained in U , the ideal IM ⊆ Defx(M) is fixed setwise by
the group Aut(M/A).

With this point of view, one could define A-invariant ideals without any reference to
a saturated model U . Note that the notion of A-invariant ideal generalizes the notion of
A-invariant complete type.

Unless otherwise mentioned, all ideals are proper.

Example 2.6. Let m be a finitely additive positive measure on definable sets, which is
A-invariant. Then, the collection µ of measure-zero definable sets is an A-invariant ideal.
Moreover, if X is a definable set of finite positive measure, then µ is S1 on X.

Remark 2.7. In [MOS18], sets which are not in a given ideal µ are called µ-wide. I
find this terminology to be slightly misleading : in the example of a measure, the ideal
is that of measure-zero sets. Then, the wide definable sets would be those of positive
measure, not those of full measure. Also, inspecting the definitions, a type-definable set
could be wide and have measure zero: for instance, in RCF, the type-definable subgroup
of infinitesimals has measure zero for the nonstandard Lebesgue measure, however any
definable set containing it has positive measure.

On the other hand, the sets on which an invariant ideal µ is S1 are called medium
sets in [MOS18], and I agree with this choice.

There is an interesting connection between forking and S1 ideals, which follows from
the definitions:

Fact 2.8 (See Lemma 2.9 in [Hru12]). Let M ⊧ T , and µ an M -invariant ideal. Let
B ⊇M , and p ∈ S(B) which is not in µ, such that µ is S1 on p∣M . Then p does not fork
over M .

The following notion is a generalization of what was called “being purely imaginary”
in [HR19].

Definition 2.9. A definable finite correspondence X → Y is a definable subset R ⊆X×Y
such that, for all x ∈X, the fiber Rx ⊆ Y is finite, and non empty.

We say that a definable set X is blind to a definable set Y if all definable finite
correspondences X → Y have finite image. If Y is a collection of definable sets, we say
that X is blind to Y if X is blind to all the definable sets in Y.

We say that two definable sets are orthogonal if they are blind to each other.

We note that the collection of definable sets which are blind to a given definable set
Y is an invariant ideal. In fact, we can say a bit more :

Definition 2.10. Let A be small set of parameters, and λ be an A-invariant ideal. We
say that it admits non-forking descent if, for any C ⊇ B ⊇ A, for any tuple a (in the
appropriate sorts), if a ⫝B C or C ⫝B a and tp(a/C) is in λ, then tp(a/B) is in λ.

We say that it is ind-definable, or ∨-definable, if, for any definable family (Xu)u∈U of
definable sets, the collection of u ∈ U such that Xu ∈ ν, is ∨-definable, i.e. corresponds
to an open set in the appropriate type space. Note that this is weaker than definability.
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Remark 2.11. Let A be some set of parameters, and let λA denote the A-invariant ideal
of definable sets which fork over A. If the ideal λA admits nonforking descent, then, for
all C ⊇ B ⊇ A, for all q ∈ S(C), if q does not fork over B and q∣B does not fork over A,
then q does not fork over A.

Proposition 2.12. Let Y be a collection of definable sets. Let I be a definable set blind
to Y, and V be a product of sets in Y. Let ν be the collection of definable subsets of V ×I
which are blind to Y. Then, ν is an invariant, ∨-definable ideal, which is closed under
definable bijections and admits non-forking descent.

Proof. From the definitions, it follows that ν is an ideal, closed under definable bijections.
Also, if A is a set of parameters over which everything is defined, then ν is A-invariant.
The only facts left to check are the ∨-definability and non-forking descent.

Claim 2.13. Let X ⊆ V × I be definable. Then, X is in ν if and only if its projection to
V is finite.

Proof. If X is in ν, then it is blind to Y. Since V is a product of sets in Y, the projection
X → V has finite image. Conversely, if πV (X) is finite, then X is in definable bijection
with a finite union of subsets of I. Since I is blind to Y, so is X.

The claim implies that ν is ∨-definable, since finiteness of the projection to V is
∨-definable.

Let us now prove nonforking invariance. Let C ⊇ B ⊇ A be parameter sets, and
a = (aV , aI) ∈ V × I. Let us assume that tp(a/C) is in ν. Then, from the above, we have
aV ∈ acl(C). Now, if either a ⫝B C or C ⫝B a, then aV ∈ acl(B), i.e. tp(a/B) ∈ ν. This
shows non-forking descent, and concludes the proof.

Let us conclude this section by spelling out two lemmas on ideals that are implicit in
[MOS18], and that we will use later.

Lemma 2.14. Let µ1 be an S1 and M -invariant ideal on some M -definable set A. Let
B be another M -definable set. Let µ be the ideal on A ×B containing all the sets whose
projections to A are in µ1.

Let X ⊆ A ×B be such that the projection πA ∶ X ↦ A has finite fibers. Then, either
X is in µ, or µ is S1 on X.

Proof. Let us assume that X is not in µ, and show that µ is S1 on X. Let (Xi)i<ω be
an M -indiscernible sequence of definable subsets of X, such that Xi ∩ Xj ∈ µ, for all
i ≠ j. We need to show that some (equivalently, all) Xi are in µ. So, we consider the sets
πA(Xi), and we want to show that they are in µ1.

By compactness, there is a uniform bound k < ω on the size of fibers, inX, of elements
of πA(X).
Claim 2.15. For all i1 < i2 < ⋯ < ik+1, we have the following inclusion: πA(Xi1) ∩ ⋯ ∩
πA(Xik+1

) ⊆ ⋃
1≤r<s≤k+1

πA(Xir ∩Xis).
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Proof. We use the pigeonhole principle. Let a ∈ πA(Xi1) ∩ ⋯ ∩ πA(Xik+1
). So, for j =

1,⋯, k + 1, the element a admits a preimage in Xij . However, the fiber over a has size at
most k, so one of these preimages belongs to Xij ∩Xil for l ≠ j. This proves the inclusion
above.

Recall that the Xi ∩ Xj are in µ, i.e. πA(Xi ∩ Xj) ∈ µ1, for i ≠ j. Thus, the set
πA(Xi1) ∩ ⋯ ∩ πA(Xik+1

) is in the ideal µ1. We may assume that k + 1 is a power of 2.
Then, since µ1 is S1 and (πA(Xi))i is an indiscernible sequence of definable sets, it is
straightforward to deduce by induction that πA(Xi) is in µ1 for all i, as required.

Lemma 2.16. Let A ⊆ B be small parameter sets, let µ be an A-invariant ideal, and let
a be an element such that tp(a/B) is not in µ. Then tp(a/acl(B)) is not in µ.

Proof. LetX be an acl(B)-definable set such that a ∈X. Let (Xi)i<n be theB-conjugates
of X. Then, the set ⋃i<nXi is B-definable and contains a, so is not in µ. Moreover, by
A-invariance of µ, either each Xi is in µ, or none of them are. Since µ is an ideal, it is
the latter.

2.2 Forking-genericity, definably amenable NTP2 groups and stabilizers

In this subsection, we shall work inside an NTP2 theory T . If G is a definable group, and
g, h are elements of G, we let gh denote the concatenation, or the union, of the tuples,
and g ⋅ h the product.

Definition 2.17. A set of parameters A is an extension base if no type over A forks
over A.

Definition 2.18. Let A be a set of parameters, M a model containing A, G an A-type-
definable group, and p ∈ SG(M).

1. We define a left action of G(M) on SG(M) in the following way: for g ∈ G(M), we
define g ⋅ p as tp(g ⋅a/M) for any a realizing p. This does not depend on the choice
of a. We also define a right action of G(M), in the obvious way.

2. If M is ∣A∣+-saturated, we say that p is strongly (left) f-generic over A if, for all
g ∈ G(M), the type g ⋅ p does not fork over A.

Similarly, p is strongly bi-f-generic over A if, for all g, h ∈ G(M), the type g ⋅ p ⋅ h
does not fork over A.

If M,N are models of T , we write M ⪯+ N to say that N is an ∣M ∣+-saturated and
∣M ∣+-strongly homogeneous elementary extension of M .

Fact 2.19 (See Lemma 3.11 in [CS18]). Let A ⊂M ⪯ N , where M , N are ∣A∣+-saturated
models. Let G be an A-definable group. Let p ∈ SG(M) be strongly (left, right, or bi)
f-generic over A. Then, there exists q ∈ SG(N) which extends p and is also strongly (left,
right, or bi) f-generic over A. In particular, q is a nonforking extension of p.
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For the following facts, see [Poi01, Corollary 5.2, Proposition 5.3, Proposition 5.9,
Corollary 5.19] and [Mar02, Definition 7.2.1, Corollary 7.2.4, Lemma 7.2.6], or [HR19,
Lemmas 3.11 and 3.12].

Remark 2.20. If G is a type-definable group in a stable theory, the notion of f-genericity
has some nice properties:

1. Types that are f-generic always exist, and they are characterized by boundedness
of their orbit, and many other criteria. Usually, they are simply called “generics”.
Any left or right translate of a generic is generic, and generics are all left and right
translates of each other. The connected component G0 has a unique generic type,
called the principal generic.

2. Any element of G is the product of two generics. Any element in G0 is the product
of two realizations of the principal generic.

3. Genericity for types is a closed notion, thus it makes sense to say that a definable
subset of G is generic. In the ω-stable case, a definable subset of G is generic if and
only if it has the same dimension as G. Also, over any base, there are only finitely
many generics.

Definition 2.21. Let M be a model of T , A ⊆+ M a small set of parameters, and let G
be an A-definable group. Let q, r ∈ SG(M), and µ an A-invariant ideal, closed under left
translations. If neither q nor r is in µ, we define Stµ(q, r) to be the followingM -invariant
subset of G: Stµ(q, r) = {g ∈ G ∣ g ⋅ q ∩ r ∉ µ}. Here, g ⋅ q ∩ r is a type-definable set, and by
definition, it is in µ if some definable set containing it is in µ.

We also define Stµ(q) = Stµ(q, q), and Stabµ(q) as the subgroup of G generated by
Stµ(q). Note that Stµ(q) is closed under taking inverses.

Similarly, using the right action of G on the types, we define Str,µ(q, r), Str,µ(q), and
Stabr,µ(q). If the context is clear, we may drop the subscript µ.

The following proposition was implicitly in Section 3 of [MOS18]. We give the details
here.

Proposition 2.22. Let M be a model of T , and A ⊆+ M be an extension base. Let G
be an A-definable group. Assume that G admits a type p ∈ SG(M) which is strongly bi-
f-generic over A. Let µA denote the ideal of definable sets which do not extend to global
types bi-f-generic over A. Then, the ideal µA is S1.

Lemma 2.23. Let A be a set of parameters, and let G be an A-definable group. Let
φ(x, b) be a formula over Ab, which forks over A. Let g, h be elements of G such that
tp(g, h/Ab) does not fork over A. Then, the formula φ(g ⋅ x ⋅ h, b) forks over A.

Proof. Assume that φ(g ⋅ x ⋅ h, b) does not fork over A. Let a be an element of G such
that tp(a/Abgh) does not fork over A and ⊧ φ(g ⋅ a ⋅ h, b). Then, we have a ⫝Agh b, so
gah ⫝Agh b. Since we assumed that gh ⫝A b, we deduce by transitivity gah ⫝A b, in
particular g ⋅ a ⋅h ⫝A b. Since g ⋅ a ⋅h realizes the formula φ(x, b), the latter does not fork
over A.
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Proposition 2.24. Let A be an extension base, B ⊇ A, φ(x) a formula over B. Let
M ⊇+ B be a model. Let G be an A-definable group, and let q1, resp. q2, be a type in
SG(M) which is strongly left-generic over A, resp. strongly right-generic over A. Let g ∈
M realize q1∣B, and h realize q2∣Bg. Then, the formula φ(x) extends to a type p ∈ SG(M)
which is strongly bi-f-generic over A if and only if the formula φ(g ⋅ x ⋅ h) =∶ g−1 ⋅ φ ⋅ h−1,
does not fork over A.

Proof. One implication is clear : if φ extends to a type p ∈ SG(M) strongly bi-f-generic
over A, then no bi-translate of φ forks over A. Let us prove the other implication, using
contraposition. So, assume that φ does not extend to a type p ∈ SG(M) strongly bi-f-
generic over A. Then, the partial type {φ(x)}∪{¬ψ(g1 ⋅x ⋅h1,m) ∣ g1, h1 ∈ G(M), ψ(x,m)
is overM and forks over A} is inconsistent. Hence, by compactness, there is an integer N ,
formulas ψi(x,m) that are overM and which fork over A, and elements gi, hi ∈ G(M), for
i < N , such that φ(x) ⊧ ⋁iψi(gi ⋅x ⋅hi,m). So, we have φ(g ⋅x ⋅h) ⊧ ⋁iψi(gi ⋅g ⋅x ⋅h ⋅hi,m).
Note that, since the statement depends only on the type of (g, h) over B, we may assume
that g realizes q1∣Bm(gihi)i<N , and h realizes q2∣Bmg(gihi)i<N .

Now, we wish to show that, for all i, the formula ψi(gi ⋅ g ⋅ x ⋅ h ⋅ hi,m) forks over A.

Claim 2.25. We have, for all i < N , the following independence relation:
gi ⋅ g, h ⋅ hi ⫝A Bm.

Proof. First, by assumption of left-genericity of q1, we know that tp(gi ⋅g/Bm(gj , hj)j<N)
does not fork over A, for all i < N . In particular, we have gi ⋅ g ⫝A Bm. Similarly,
tp(h ⋅ hi/gBm(gj , hj)j<N) does not fork over A, which implies h ⋅ hi ⫝A gi ⋅ gBm, then
h ⋅ hi ⫝Agi⋅g Bm. Thus, by left transitivity for nonforking, tp(gi ⋅ g, h ⋅ hi/Bm) does not
fork over A.

Hence, we may apply Lemma 2.23, to show that, for all i < N , the formula ψi(gi ⋅
g ⋅ x ⋅ h ⋅ hi,m) forks over A. Recall that we have φ(g ⋅ x ⋅ h) ⊧ ⋁iψi(gi ⋅ g ⋅ x ⋅ h ⋅ hi,m).
Therefore, the formula g−1 ⋅φ(x) ⋅h−1, which is the same as φ(g ⋅x ⋅h), forks over A. This
concludes the proof.

Proof of Proposition 2.22. Let (ai)i<κ be an A-indiscernible sequence, which we may
assume to lie inside M , and φ(x, y) an A-formula, such that φ(x, ai) ∉ µA for all i < κ.
Let q be type in SG(M), strongly bi-f-generic over A. Let g realize q∣A(ai)i<κ , and h realize
q∣Ag(ai)i<κ . Then, enlarging κ, extending the sequence (ai) if necessary, by Erdös-Rado,
there exists a subsequence (aj)j<ω which is indiscernible over Agh. Then, by Proposition
2.24, the formula g−1 ⋅ φ(x, aj) ⋅ h−1 does not fork over A, for all j < ω.

Since the forking ideal over an extension base is S1 in NTP2 theories (see [BC14],
Corollary 2.10), this implies that the formula g−1 ⋅ (φ(x, aj)∧φ(x, ak)) ⋅h−1 does not fork
over A, for all j < k < ω. By Proposition 2.24 again, we deduce that φ(x, aj) ∧ φ(x, ak)
is not in µA, for all j < k < ω.

Definition 2.26. A definable group G is definably amenable if, for some model M of
T , there is a left-invariant finitely additive probability measure (also known as Keisler
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measure) on the M -definable subsets of G. (For more on definably amenable groups, see
[Sim15, Chapter 8])

Remark 2.27. 1. It happens that, in the defintion above, the existence of a left-
invariant Keisler measure deos not depend on the choice of the model M .

2. Any definable group which is amenable as a discrete group is a fortiori definably
amenable. In particular, any solvable and definable group is definably amenable.
On the other hand, any stable group is definably amenable.

In this paper, we will mainly be interested in definably amenable NTP2 groups be-
cause of the following result :

Proposition 2.28. Let G be a definably amenable NTP2 group. Let A be an extension
base, and M1 ⊇ A an ∣A∣+-saturated model. Then, there exists p ∈ SG(M1) which is
strongly bi-f-generic over A.

Proof. By Proposition 3.20 in [MOS18], there exists a modelM and a “global” type which
is strongly f-generic over M . Then, by Lemmas 3.4 and 3.5 in [MOS18], there exists a
type p ∈ SG(M1) which is strongly bi-f-generic over A.

All the results above on f-generics in NTP2 can be combined with the following
theorem, to build definable group homomorphisms, in NTP2 settings.

Theorem 2.29 ([MOS18], Theorem 2.15). Let G be a group definable in an arbitrary
structure M , which is sufficiently saturated. Let λ,µ be M -invariant ideals on G, closed
under left and right multiplication. Assume that, for all definable sets X ∈ λ, either X is
in µ or µ is S1 on X.

Let p ∈ SG(M) be a type which is in λ, but not in µ. Assume the following :
(A) For all q, r ∈ SG(M), for all c ⊧ q, d ⊧ r such that d ⫝M c, if tp(c ⋅ d/M) or

tp(d ⋅ c/M) is in λ, then q is in λ.
(B) For all a, b realizing p such that b ⫝M a, the type tp(a−1b/M) is in λ.
(F) There exist a, b realizing p such that b ⫝M a and a ⫝M b.

Then, Stabµ(p) = Stµ(p)2 = (pp−1)2 is a connected type-definable group, which is in λ
and not in µ. Also, Stabµ(p) ∖ Stµ(p) is contained in a union of M -definable sets that
are in µ.

From this theorem, we can deduce the following general comparison result :

Theorem 2.30. Let T be an NTP2 theory. Let M be a sufficiently saturated model, and
G,H be M -definable groups. Assume that G has a strongly bi-f-generic type p ∈ SG(M).
Let ν be a ∨-definableM -invariant ideal on G, invariant under left and right translations,
and admitting non-forking descent.

Assume that there are elements a ⊧ p∣M , b ⊧ p∣Ma, α,β ∈ H with the following
properties :

1. We have α ∈ acl(Ma), β ∈ acl(Mb) and β ⋅ α ∈ acl(Mb ⋅ a).
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2. The type tp(a/Mα) is in ν.

Then, there exists a finite subgroup H0 ≤H(M) and an M -definable group homomor-
phism G00

M →H1/H0, where H1 ⊳H0 is the centralizer of H0, whose kernel is in the ideal
ν.

More precisely, let q1 denotes tp(a,α/M). Let µG denote the ideal on G containing
the definable sets which do not extend to a strongly bi-f-generic type over a sufficiently
saturated model. Let µ the pullback of µG to G×H. Then the graph of the homomorphism
is given by the image of the subgroup Stabµ(q1) = (q1q

−1
1 )2 ≤ G ×H1 in G × (H1/H0).

Proof. We wish to apply Theorem 2.29 above, using ideas similar to those in the proof
of [MOS18, Theorem 2.19]. First, the ideal µG is M -invariant, invariant under left and
right translations, and S1 by Proposition 2.22. Then, by definition µ is the ideal on
G ×H such that X ∈ µ if and only if πG(X) ∈ µG. Let λ be the ideal on G ×H of the
sets X such that πG ∶ X → G has finite fibers and πH ∶ X → H has fibers in ν. Finally,
let q1 = tp(a,α/M), q2 = tp(b, β/M) and q3 = tp(b ⋅ a, β ⋅α/M). For the rest of the proof,
the stabilizers we consider are with respect to the ideal µ only.

We wish to apply the stabilizer theorem, i.e. Theorem 2.29, to the data (q1, µ, λ) in
the group G×H. To do this, we have to check the hypotheses of said theorem. First, the
fact that, for any set X ∈ λ, either X is in µ or µ is S1 on X follows from Lemma 2.14.

By construction, the type q1 = tp(a,α/M) is not in µ, because tp(a/M) = p is not in
µG.

Claim 2.31. The type q1 is in λ.

Proof. On the one hand, α is in acl(Ma), so the “finite fibers” part holds. Let us check
that (a,α) belongs to an M -definable set whose projection to H has fibers in ν. We
know that tp(a/Mα) ∈ ν. Since ν is ∨-definable, there are M -definable sets X ⊆ G ×H
and Y ⊆ H, containing (a,α) and α respectively, such that, for all y ∈ Y , the fiber Xy

is in ν. In other words, the fibers of the set X ∩ G × Y over tuples in H are in ν, as
desired.

Note that condition (F) is automatically satisfied, because of NTP2 : the modelM is
an extension base, so, by Proposition 3.7 of [CK12], condition (F) holds for q1 ∈ S(M).
Let us now check condition (A) : let q, r ∈ SG×H(M), let c ⊧ q, d ⊧ r, with d ⫝M c
and such that tp(c ⋅ d/M) or tp(d ⋅ c/M) is in λ. Let us show that q is in λ. We shall
deal with the case where tp(c ⋅ d/M) is in λ, the other one being similar. Let us write
c = (c1, c2) ∈ G ×H and d = (d1, d2) ∈ G ×H. From the definition of λ, there are two
things to prove : first, that c2 is algebraic over Mc1, and then, that tp(c1/Mc2) is in ν.

Let us check the first point : we know that c2 ⋅ d2 ∈ acl(Mc1 ⋅ d1) and d1d2 ⫝M c1c2.
So c2 ∈ acl(Mc1 ⋅ d1d2) and d1d2 ⫝Mc1 c2. Thus, c2 ∈ acl(Mc1), as required.

Now, let us prove the second point. We know that tp(c1 ⋅ d1/Mc2 ⋅ d2) ∈ ν. A
fortiori, the type tp(c1 ⋅ d1/Md1, c2 ⋅ d2) is in ν. So, by translation invariance, we have
tp(c1/Md1, c2 ⋅ d2) ∈ ν. Recall that d1d2 ⫝M c1c2, which implies d1d2 ⫝Mc2 c1. The
conclusion then follows from the hypothesis that ν admits non-forking descent.

For condition (B), we use the same ideas as in [MOS18, Theorem 2.19] :
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Claim 2.32. The M -invariant sets Str(qi) are in λ, for i = 1,2,3.

Proof. Let i be 1, 2 or 3. Let r ∈ S(M) be in the M -invariant set Str(qi). So, by
definition of Str(qi), for some/any realization c of r, the type-definable set qi ⋅ c ∩ qi is
not in µ. Let us pick some such c. Then, by compactness, there exists a complete type
r
′ ∈ S(Mc) belonging to the type-definable set qi ⋅ c∩ qi, and which is not in µ. Then, let
d ⊧ r′ . In particular, we have d ⊧ qi, the type tp(d/Mc) is not in µ, and d ⋅ c ⊧ qi. So, as
µ is S1 on the type qi = tp(d/M), we know by Fact 2.8 that tp(d/Mc) does not fork over
M , i.e. d ⫝M c. Also, the type tp(d ⋅ c/M) = qi is in λ. So, by condition (A), the type r
is in λ, as required.

Claim 2.33. The type q1 is in Str(q2, q3).

Proof. We know that (b, β) ⊧ q2 and (b, β) ⋅ (a,α) = (b ⋅ a, β ⋅ α), where (a,α) ⊧ q1 and
(b ⋅a, β ⋅α) ⊧ q3. In other words, the element (b ⋅a, β ⋅α) is in q3∩ q2 ⋅ (a,α). It remains to
check that tp(b ⋅a, β ⋅α/Maα) is not in µ. Recall that b ⊧ p∣Ma, so tp(b/Ma) is not in µG.
So, by right-translation invariance, the type tp(b ⋅ a/Ma) is not in µG. Then, by Lemma
2.16 applied to the M -invariant ideal µG, the type tp(b ⋅ a/acl(Ma)) is not in µG, so in
particular tp(b ⋅ a/Maα) is not in µG. Then, by definition of the ideal µ on G ×H, the
type tp(b ⋅ a, β ⋅ α/Maα) is not in µ, as required.

Claim 2.34. For any c, d realizing q1 such that d ⫝M c, we have c ⋅ d−1 ∈ Str(q2). In
particular, tp(c ⋅ d−1/M) is then in λ.

Proof. It is Lemma 2.9 in [MOS18].

So, condition (B) holds. Thus, we can finally apply the stabilizer theorem (Theorem
2.29) to µ,λ, q1 in the group G ×H: the subgroup Z = Stab(q1) = (q1q

−1
1 )2 is M -type-

definable, included in λ, connected, and is not in µ. It remains to define a group morphism
using Z.

From the construction, the group Z1 = π−1
G (1) ∩ Z is finite (because Z is in λ) and

normal in Z. Indeed, it is the kernel of the group homomorphism Z → G. Then, let Z
act on Z1 by conjugation. Since Z is connected and Z1 is finite, this action is trivial, i.e.
Z1 is central in Z. Let H0 ∶= πH(Z1). So, H0 is a finite subgroup of H. Let H1 ≤ H be
the centralizer in H of H0. Then, since Z centralizes Z1, we know that πH(Z) centralizes
πH(Z1) =H0, i.e. πH(Z) ≤H1. In other words, we have Z ≤ G ×H1.

Now, let f ∶ G ×H1 → G × (H1/H0) be the quotient morphism, and let T = f(Z) ≤
G × (H1/H0).

Note that πG(T ) = πG(Z) is not in µG, so by [MOS18, Lemma 3.17], contains the
connected component G00

N1
of G. Also, by construction, the fiber over 1G in T is trivial,

so T induces the graph of a group homomorphism g ∶ G00
N1
→H1/H0.

Finally, as Z is in λ, its fibers over elements of H are in ν. Then, since πH(Z1) is
finite, the fiber in T over 1H′ is a finite union of sets in ν, so is in ν as well. In other
words, the kernel of the morphism g is in ν, as required.
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2.3 Group configurations

Here, we describe another useful tool for identifying definable groups : group config-
urations. We say that two families (ai)i∈I and (bi)i∈I of tuples are equivalent over a
parameter set A if, for all i ∈ I, we have acl(Aai) = acl(Abi).

In this section, we prove a general comparison theorem (Theorem 2.47) for groups
definable in fields, inspired by Theorem 2.36 below, but allowing for imaginaries. The
main tools are the stabilizer theorem, which we use in Theorem 2.30, and the (variant of
the) group configuration Theorem 2.44. First, we need to introduce a natural condition.

Definition 2.35. Let L be a language extending the language of rings. Let T be an
L-theory, extending the theory of fields. We say that T is algebraically bounded if the
following property holds :

For all M ⊧ T , for all parameter sets A ⊆ K(M), the algebraic closure aclM(A) ∩K
coincides with the field-theoretic relative algebraic closure K(A)alg ∩K(M).

Theorem 2.36 ([MOS18], Theorem 2.19). Let T be an algebraically bounded theory of
(possibly enriched) perfect fields. Let G be a group definable in a sufficiently saturated
model M of T . Assume that T admits an M -invariant ideal µG on G, stable under left
and right translations, which is S1 on G. Let p ∈ SG(M) be a type which is not in µG,
such that condition (F) holds : there are a, b realizing p such that b ⫝M a and a ⫝M b.

Then, there is an algebraic group H over M , and a definable finite-to-one group
homomorphism from a type-definable subgroup D of G to the definable group H(M),
such that D is not in µG.

Definition 2.37. Let A be a set of parameters. A regular group configuration over A is
a tuple (α1, α2, α3, β1, β2, β3) of elements satisfying the following properties :

β3

β2

β1

α2

α1α3

1. If a, b, c are three non-colinear points in the diagram above, then the triple (a, b, c)
is an independent family over A, in the sense of (non)forking.

2. If a, b, c are three colinear points in the diagram above, then a ∈ acl(Abc).

In this paper, we will only be interested in group configurations when the ambient
theory is stable. Most of the time, this will mean considering a 6-tuple of elements and
a stable theory T0, such that this 6-tuple is a group configuration in the sense of T0.

Proposition 2.38. Let T be an L-theory, and S be a collection of L-definable sets, closed
under finite products. Then,
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1. The collection of definable sets (possibly with parameters in models of T ) that are
blind to S is closed under finite products.

2. Assume that finite subsets of sets in S can be always be coded in S. Then, a
definable set X is blind to S if and only if, for all S in S, all definable functions
from X to S have finite image.

Proof. Let us prove the first point. Let X,Y be definable sets blind to S. Let S ∈ S.
Let F ∶ X × Y → S be a definable finite correspondence. Then, for all x ∈ X, we get a
definable finite correspondence Fx ∶ Y → S. Since Y is blind to S, this correspondence
has a finite image Sx. Then, one can check that the set {(x, s) ∣x ∈X,s ∈ Sx} ⊆X ×S is a
definable finite correspondence from X to S. Since X is blind to S, this correspondence
has a finite image S0 ⊆ S. Then, by construction, the image of F is contained in S0,
which is finite, as required.

For the second point, it suffices to note that, if F ∶X → S is a finite correspondence,
and k < ω is such that fibers Fx have size at most k, then, by coding subsets of S of size
at most k in some T ∈ S, one can find a definable function f ∶ X → T , whose image is
infinite if and only if the image of F is. This concludes the proof.

The first ingredient for the upcoming Theorem 2.44 is the construction, from a de-
finable group, of a group configuration in a superstable quantifier-free reduct.

Lemma 2.39. Let T0, T1 be theories, in languages L0 ⊆ L1 respectively. Assume that T0

is stable, has quantifier elimination and elimination of imaginaries (in L0). Also assume
that T1∣L0 ⊇ T0∀. Let N0 ⊧ T0, and N1 ≤ N0 be a model of T1. In other words, N1 is a
model of T1, and we are also given an L0-embedding N1 → N0.

Let a, b,C be subsets of N1. Assume that, in the sense of T1, we have a ⫝C b, and that
C = acl1(C) is an extension base (for nonforking) in T1. Then, in T0, we have a ⫝0

C b,
i.e. tp0(a/Cb) = qftp0(a/Cb) does not fork over C.

Proof. The proof is copied from that of [BMW15, Lemme 2.1]. First, up to taking an
elementary extension of the pair (N0,N1), we may assume that the models are sufficiently
saturated. Now, let φ(x, y) be an L0(C)-formula, which we assume to be quantifier-free,
satisfied by (a, b). We wish to show that φ(x, b) does not fork, in the sense of T0, over
C. By stability (simplicity would be enough), it suffices to show that, for some Morley
sequence (bi)i<ω in tp0(b/C), the collection of formulas {φ(x, bi) ∣ i < ω} is consistent (in
T0).

Since C is an extension base, we may find, inN1, large sequences (bi)i<κ of realizations
of tp(b/C), such that bi ⫝C b<i for all i < κ. Then, by left transitivity for nonforking,
we have (bj)i≤j<κ ⫝C (bk)k<i for all i < κ. Using Erdös-Rado, we can now extract a
C-indiscernible subsequence (bi)i<ω⋅2, which also satisfies these nonforking properties.

On the one hand, as (bi)i<ω⋅2 is C-indiscernible in T1, with b0 ≡C b and a ⫝C b, we
know that {φ(x, bi) ∣ i < ω ⋅ 2} is consistent in T1. Then, this is also consistent in T0,
because φ is quantifier-free. Also, it is clear that (bi)i<ω⋅2 is C-indiscernible in T0. Then,
the only thing left to prove is that (bi)i<ω⋅2 is independent over C, in the sense of T0.
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By C-indiscernibility and stability, the sequence (bi)ω≤i<ω⋅2 is a Morley sequence in
tp0(bω/C(bj)j<ω). In particular, it is T0-independent over C(bj)j<ω. Also, the canon-
ical basis of the type tp0(bω/C(bj)j<ω), which exists by elimination of imaginaries in
T0, is algebraic over C(bj)j<ω, and definable over C(bi)ω≤i<ω⋅2. In particular, it is in
acl1(C(bj)j<ω) ∩ acl1(C(bi)ω≤i<ω⋅2). However, the latter set is equal to acl1(C) = C,
because we have (bi)ω≤i<ω⋅2 ⫝C (bj)j<ω (inside T1). This implies that (bi)ω≤i<ω⋅2 is in fact
a Morley sequence in tp0(bω/C), which concludes the proof.

Proposition 2.40. Let T0, T1 be L0 ⊆ L-theories, and M1 ⪯+ N1 ⊧ T1. Let S be an
L0-quantifier-free-definable set.

Assume that T0 is superstable, and has elimination of quantifiers and imaginaries.
Also assume that T1∣L0 ⊇ T0∀. Let N0 be a model of T0, and ι ∶ N1 → N0 be an L0-
embedding, such that dcl0(N1) = N1 and acl0(A) ∩N1 = acl1(A) for all A ⊆ N1.

Let X be an M1-definable set which is blind to S, in the theory T1, and let G ⊆X ×S
be M1-definable in T1. Assume that there exists a type p ∈ SG(N1) which is strongly
right-f-generic over M1. Let a ⊧ p∣M1, b ⊧ p∣M1a, c ⊧ p∣M1ab. Let π ∶ G → S denote the
projection. Then, the following tuple is a regular group configuration over M1, in the
sense of T0 : (π(a ⋅ c), π(c), π(b ⋅ a ⋅ c), π(b ⋅ a), π(b), π(a)).

Proof. Let ⫝0 denote independence in the superstable reduct given by quantifier-free L0-
formulas, over M1. To simplify notations, let α, β, γ, α ⋅ γ, β ⋅ α, β ⋅ α ⋅ γ denote π(a),
π(b), π(c), π(a ⋅ c), π(b ⋅ a), π(b ⋅ a ⋅ c) respectively.

We wish to show that the following is a regular group configuration over M1, in the
sense of N0:

α

β

β ⋅ α

γ

α ⋅ γ
β ⋅ α ⋅ γ

Claim 2.41. Any three colinear points in the diagram above are interalgebraic over M1

in T1.

Proof. We use the hypothesis that X is blind to S. For instance, we know that b ⋅ a ∈
acl1(M1, b, a), and we wish to deduce that π(b ⋅ a) ∈ acl1(M1, π(b), π(a)). Consider the
following M1π(a)π(b)-definable set: F ∶= {(x1, x2, s) ∈X ×X ×S ∣ (x1, π(a)), (x2, π(b)) ∈
G ∧ π((x2, π(b)) ⋅ (x1, π(a))) = s}. Then, F induces a partial definable map X ×X → S,
whose image contains π(b ⋅ a). Since X is blind to S, the image of F is finite. Thus, we
have found a finite M1π(a)π(b)-definable set containing π(b ⋅ a), as required.

Then, using the hypothesis on acl0, any three colinear points are T0-interalgebraic
over M1. So, it remains to prove that the required ⫝0-independence relations hold. To
do so, we will use U -rank computations, performed in N0.
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Note that, thanks to Lemma 2.39, we can deduce several ⫝0-independence relations
from the construction. Let λ denote the ordinal which is the U -rank of α over M1,
computed in the superstable structure N0. Note that λ = U(α/M1) = U(β/M1) =
U(γ/M1). This is because tp(a/M1) = tp(b/M1) = tp(c/M1) = p and so tp0(π(a)/M1) =
tp0(π(b)/M1) = tp0(π(c)/M1).
Claim 2.42. The U -ranks over M1 of the elements α ⋅ γ, β ⋅ α,β ⋅ α ⋅ γ are all equal to λ
as well.

Proof. By genericity and Lemma 2.39, we know that β ⋅α ⫝0 α. So, by Lascar’s equality
(see [Poi00, Theorem 19.5]), we know that U(β ⋅ α,α/M1) = U(β ⋅ α/M1) ⊕ U(α/M1) =
U(β ⋅ α/M1) ⊕ λ. Then, by interalgebraicity, we deduce equality of the ranks : U(β ⋅
α,α/M1) = U(β,α/M1) = λ ⊕ λ, using Lascar’s equality again, since β ⫝0 α. As all
ordinals are cancellable for the symmetric sum ⊕, we deduce that U(β ⋅ α/M1) = λ.

Similarly, using the facts α ⋅ γ ⫝0 α and γ ⫝0 α, and the algebraicities, we compute
λ⊕λ = U(α, γ/M1) = U(α ⋅ γ, γ/M1) = U(α ⋅ γ/M1)⊕U(γ/M1) = U(α ⋅ γ/M1)⊕λ. So, as
above, U(α ⋅ γ/M1) = λ. Finally, as γ ⫝0 β ⋅ α and β ⋅ α ⋅ γ ⫝0 β ⋅ α, the same arguments
show that U(β ⋅ α ⋅ γ/M1) = U(β/M1) = λ.

Now, let x, y, z be non-collinear elements in the configuration (for instance, x = α, y =
α ⋅γ, and z = β ⋅α). Then, we know that acl0(M1xyz) = acl0(M1αβγ), so U(x, y, z/M1) =
U(α,β, γ/M1) = λ⊕ λ⊕ λ. Then, using Lascar’s inequality, we compute:

U(x, y, z/M1) ≤ U(x/M1yz) ⊕U(y/M1z) ⊕U(z/M1)
≤ U(x/M1) ⊕U(y/M1) ⊕U(z/M1)
= λ⊕ λ⊕ λ
= U(x, y, z/M1).

So, we have the equalities U(x/M1yz) = U(x/M1) and U(y/M1z) = U(y/M1), which
precisely mean that x, y, z is an independent family over M1, as required.

Lemma 2.43. Let T0 be a stable theory. Let A ⊆M ⊧ T0, and p ∈ S(A). Assume that p
is finitely satisfiable in A. Then it is stationary. Moreover, for all B ⊇ A, the type p∣B is
finitely satisfiable in A.

Proof. We may assume that M is ∣A∣+-saturated and ∣A∣+-strongly homogeneous. Using
compactness, it is straightforward to check that p admits an extension q ∈ S(M) which
is also finitely satisfiable in A. Then, q is A-invariant, so A-definable, and q∣A = p is
stationary.

Moreover, if B ⊇ A, then some nonforking extension of p to B is finitely satisfiable in
A; we conclude by uniqueness.

The following theorem was inspired by [HP94, Proposition 3.1].
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Theorem 2.44. Let T0, T1 be theories, in languages L0 ⊆ L1 respectively. Assume that
T0 is superstable, has quantifier elimination and elimination of imaginaries in L0, in
a collection of sorts S. Assume that T1 is NIP. Also assume that T1∣L0 ⊇ T0∀. Let
N0 ⊧ T0, N1 ⊧ T1 be very saturated, and ι ∶ N1 → N0 be an L0-embedding. Assume that
dcl0(N1) = N1 and acl0(A) ∩N1 = acl1(A) for all A ⊆ N1.

Let X be an L1(N1)-definable set which is blind to S. Let V be a product of sorts
of S. Let G ⊆ V ×X be a group definable in N1. Let M1 ⪯+ N1, with M1 sufficiently
saturated, and let p ∈ SG(M1) be strongly bi-f-generic over some small model C ⪯+ M1.
Let a ⊧ p∣M1, b ⊧ p∣M1a and c ⊧ p∣M1ab. Let π ∶ G→ V denote the projection.

Then, there exists an L0(M1)-quantifier-free-type-definable group Γ, and elements
g1 ∈ Γ(N1), g2 ∈ Γ(N1), g3 ∈ Γ(N1) that are independent and generic over M1, such that
the following configurations are acl1-equivalent over M1:

π(a)

π(b)

π(b ⋅ a)

π(c)
π(a ⋅ c)

π(b ⋅ a ⋅ c)

g1

g2

g2 ⋅ g1

g3

g1 ⋅ g3
g2 ⋅ g1 ⋅ g3

Remark 2.45. 1. Since T1 is NIP, the existence of a strong bi-f-generic p is implied
by, and in fact turns out to be equivalent to, definable amenability of G. See
Proposition 2.28.

2. In the conclusion of the theorem, since N1 is a definably closed L0-substructure of
N0, and Γ0 is L0(M1)-quantifier-free-definable, the set Γ0(N1) ⊆ Γ0(N0) is in fact
a subgroup, and thus Γ0(N1) is an L0(M1)-quantifier-free-definable group, in N1

itself.

3. The hypotheses of the theorem imply that M1 is also dcl0-closed in N0.

Proof of Theorem 2.44. First, since working with projections can be tedious, we shall
change our notations slightly. Let us write CS ,M1,S ,N1,S instead of C ∣L0 ,M1∣L0 ,N1∣L0 .
Then, if d, B, etc. denote tuples or parameters which are in N1, we let dS , BS , etc.
denote their projections to the sorts in S. Similarly, if α,β are elements in G(N1), we
write αS ⋅ βS to denote the projection of α ⋅ β to the sorts in S. We shall keep these
conventions until the end of the proof of the theorem.

The main point of this proof is to follow the recipe given by the proof of the stable
group configuration theorem, while making sure that the elements and parameters stay
inside N1,S . However, trying to apply the stable group configuration theorem directly does
not seem to work. Instead, most of the work will be done inside the NIP theory T1,
exploiting the strongly bi-f-generic type p several times. It is crucial to keep in mind
that there are two theories at play here. As in the statement of the theorem, we let dcl0,
acl0, tp0, etc. denote the L0-quantifier-free notions, i.e. those defined by the superstable
theory T0.
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Let b1 = b ⋅ a, b2 = b, b3 = a, a1 = a ⋅ c, a2 = c and a3 = b ⋅ a ⋅ c. By Proposition 2.40, the
following is, in T0, a regular group configuration over both M1,S and CS :

b3,S

b2,S

b1,S

a2,S
a1,S

a3,S

Claim 2.46. There exists a small model C2 ⊧ T1, with C ⪯ C2 ⪯+ M1, and a reg-
ular group configuration over C2,S (in the sense of T0), which is made of elements
(c1, c2, c3, d1, d2, d3) of N1,S , and equivalent over C2,S to (a1,S , a2,S , a3,S , b1,S , b2,S , b3,S),
with the following properties :

1. We have c1 ∈ dcl0(C2,Sd2c3) and c2 ∈ dcl0(C2,Sd1c3).

2. The element c3 is in dcl0(C2,Sd1c2) ∩ dcl0(C2,Sd2c1).

Proof of the claim. We begin with the first definability property. Let b
′
1 and b

′′
2 be ele-

ments of G(M1) realizing p∣C . Then, let b
′
3 = b2−1 ⋅ b′1, a

′
2 = b′1

−1 ⋅ a3, b
′′
3 = b′′2

−1 ⋅ b1, and
a
′′
1 = b′′2

−1 ⋅ a3. In other words, we apply Proposition 2.40, up to a permutation of the
elements, to get the following regular group configurations over CS , and also over M1,S :

b
′

3,S

b2,S

b
′

1,S ∈M1,S

a
′

2,S
a1,S

a3,S

b
′′

3,S

b
′′

2,S ∈M1,S

b1,S

a2,S

a
′′

1,Sa3,S

Then, let ã1, resp. ã2, denote the code of the set of acl0-conjugates of a1,S over
Cb

′

3,Sa
′

2,Sb2,Sa3,S , resp. of a2,S over Cb
′′

2,Sa
′′

1,Sb1,Sa2,S . Note that, by elimination of
imaginaries and dcl0-closure of N1,S , we may assume that these elements are in N1,S .
Also, since a1,S belongs to the finite set coded by ã1, we have a1,S ∈ acl0(Cã1). Similarly,
we have a2,S ∈ acl0(Cã2). On the other hand, the algebraicities in T0 imply that ã1 ∈
acl0(Cb2,Sa3,S) ∩ acl0(Cb

′

3,Sa
′

2,S), and b2,Sa3,S ⫝0
Ca1,S

b
′

3,Sa
′

2,S . Hence, the element ã1 is
in acl0(Ca1,S). Similarly, we have acl0(Cã2) = acl0(Ca2,S).

What we gained in the process is the following:

ã1 ∈ dcl0(Cb2,Sa3,Sb
′

3,Sa
′

2,S) and ã2 ∈ dcl0(Cb1,Sa3,Sb
′′

3,Sa
′′

1,S)

So, let C1 be a small model of T1 containing Cb
′
1b

′′
2 such that C1 ⪯+ M1. Let

(α1, α2, α3, β1, β2, β3) ∈ N1,S denote the following configuration :
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b3,S

b2,Sb
′

3,S

b1,Sb
′′

3,S

ã2

ã1
a3,Sa

′

2,Sa
′′

1,S

This tuple is acl0-equivalent to the previous one over C1,S , so it is indeed a regular
group configuration over C1,S , and also over M1,S . Also, unfolding the definitions, we
know that βi ∈ S(acl1(C1bi)) for i = 1,2,3 and α3 ∈ S(acl1(C1a3)). Regarding the βi and
bi, we even have definability over C1, but we do not actually need it to finish the proof.

Now, let us deal with the second definability requirement. Let α̃3 denote a tuple
in N1,S which encodes the finite set of acl0-conjugates of α3 over C1,Sβ1β2α1α2. Then,
for reasons similar to the previous step, we have acl0(C1,Sα3) = acl0(C1,S α̃3). Moreover,
since α1 ∈ dcl0(C1,Sα3β2) and α2 ∈ dcl0(C1,Sα3β1), and all elements in the finite set coded
by α̃3 have the same type as α3 over C1,Sβ1β2α1α2, we still have α1 ∈ dcl0(C1,S α̃3β2)
and α2 ∈ dcl0(C1,S α̃3β1).

Recall that, by construction, the element a3 is equal to b2⋅b3⋅a2, where tp(a2/M1b1b2b3)
is strongly bi-f-generic over C1. Thus a3 ⫝C1 M1b1b2b3. So, by the algebraicities above,
we have α3 ⫝C1 M1β1β2β3. Also, since b1 = b ⋅ a, b2 = b and b3 = a, where tp(b/M1a)
is strongly bi-f-generic over C1, we know that b1 ⫝C1 M1b3 and b2 ⫝C1 M1b3. Since
the βi are algebraic over the bi, this implies β1 ⫝C1 M1β3 and β2 ⫝C1 M1β3. Then,
using left transitivity of nonforking (which always holds), we get α3β1 ⫝C1 M1β3 and
α3β2 ⫝C1 M1β3.

Now, by saturation of M1, let β
′′′
3 ∈ M1 realize tp(β3/C1). By NIP, we know from

the above independence relations that the types tp(α3β1/M1β3) and tp(α3β2/M1β3)
admit a C1-invariant extension (see for instance [Sim15, Corollary 5.29]). Thus, we
have α3β2β3 ≡C1 α3β2β

′′′
3 and α3β1β3 ≡C1 α3β1β

′′′
3 . Using the definability properties

we just proved, we deduce α3β2β3α1 ≡C1 α3β2β
′′′
3 α1 and α3β1β3α2 ≡C1 α3β1β

′′′
3 α2.

Then, by homogeneity of N1, let β
′′′
1 , β

′′′
2 , α

′′′
1 and α

′′′
2 be elements in N1 such that

β1β2β3α1α2α3 ≡C1 β
′′′
1 β2β

′′′
3 α1α

′′′
2 α3 ≡C1 β1β

′′′
2 β

′′′
3 α

′′′
1 α2α3.

In particular, we have β1β2β3α1α2α̃3 ≡0
C1,S

β
′′′
1 β2β

′′′
3 α1α

′′′
2 α̃3 ≡0

C1,S
β1β

′′′
2 β

′′′
3 α

′′′
1 α2α̃3.

In other words, we managed to build three copies of the configuration inside N1,S :

β3

β2

β1

α2

α1
α̃3

β
′′′
3 ∈M1

β2

β
′′′
1

α
′′′
2

α1
α̃3

β
′′′
3 ∈M1

β
′′′
2

β1

α2

α
′′′
1α̃3

To conclude the proof of the claim, let C2 ⪯+ M1 be some small model of T1 containing
C1β

′′′
3 . We claim that the following configuration, over C2,S , has the required properties.
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β3

β2β
′′′
1

β1β
′′′
2

α2α
′′′
1

α1α
′′′
2α̃3

First, it is acl0-equivalent over C2, to the previous ones, so it is indeed a regular
group configuration over C2,S , and also over M1,S . Then, by construction, we have
α̃3 ∈ dcl0(C2,Sβ2β

′′′
1 α1α

′′′
2 ) and α̃3 ∈ dcl0(C2,Sβ1β

′′′
2 α2α

′′′
1 ). Also by construction, we have

α1 ∈ dcl0(C2,S α̃3β2) and α
′′′
2 ∈ dcl0(C2,S α̃3β

′′′
1 ), so α1α

′′′
2 ∈ dcl0(C2,S α̃3β2β

′′′
1 ). Similarly,

we have α2α
′′′
1 ∈ dcl0(C2,S α̃3β1β

′′′
2 ), which concludes the proof of the claim.

To keep similar notations, let (α1, α2, α3, β1, β2, β3) denote the tuple (c1, c2, c3, d1, d2, d3)
given by the claim. Now that we have the stronger interdefinability hypothesis, we can
follow the proof of the usual group configuration theorem, to build the group Γ as a
group of germs of definable bijections. See [Bou87] or Definitions 3.1, 3.4, 3.7 in [Wan23,
Version 3] for the details. So, there exists some quantifier-free-L0(C2)-type-definable
group Γ and elements g1, g2, g3 ∈ Γ(N0) such that the group configurations drawn at the
end of the statement of the theorem are equivalent over M1.

Our only remaining concerns are checking that we can replace Γ by an L0(M1)-
definable group Γ0 containing Γ, and that the group configuration built at the end of the
proof can be made of elements of N1. First note that the type-definable group Γ is built
as a group of germs of definable bijections acting on the stationary type tp0(α2/M1),
said definable bijections coming from the interdefinability properties of the configuration
given by Claim 2.46. This implies that Γ is type-definable over C2, in the sense of T0.

Let us now explain in more detail which elements of N1 are used to build a group
configuration for Γ. Let β

′
1, β

′
2, β

′
3 ∈ M1 be such that β

′
1β

′
2β

′
3 ≡C2 β1β2β3. Then, the

elements g1, g2, g3 are all in the L0-quantifier-free-definable closure of C2β
′
1β

′
2β

′
3α2β1β2.

See Subsection 3.3 in [Wan23, Version 3] for the construction.
Finally, let us explain why we may assume the group to be definable rather than type-

definable, while preserving all the required properties. First, any type-definable stable
group is an intersection of definable groups (see for instance [HR19, Proposition 3.4]).
Then, by superstability, there are no infinite descending chains of definable subgroups
where each one is of infinite index in the previous one (see for instance Proposition 1.5
and Theorem 5.18 in [Poi01]). By saturation of M1,S , the group Γ is an intersection
of quantifier-free-L0(M1)-definable groups. Thus, there is some quantifier-free-L0(M1)-
definable group Γ0 ≥ Γ such that Γ is of bounded index inside Γ0. Then, the generic
elements gi in Γ are also generic in Γ0 over M1,S .

Combining this result with Theorem 2.30, we get the following

Theorem 2.47. Let T0, T1 be theories, in languages L0 ⊆ L1 respectively. Assume that
T0 is superstable, has quantifier elimination and elimination of imaginaries in L0, in a
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collection of sorts S. Assume that T1 is NIP. Let N0 ⊧ T0, N1 ⊧ T1, and ι ∶ N1 → N0 be
an L0-embedding. Assume that dcl0(ι(N1)) = ι(N1) and acl0(A) ∩ ι(N1) = acl1(A) for
all A ⊆ ι(N1).

Let X be an L1(N1)-definable set which is blind to S. Let V be a product of sorts
of S. Let G ⊆ V ×X be a definably amenable group, definable in N1. Then, there exists
a quantifier-free-L0(N1)-definable group H in the sorts of S, and an L1(N1)-definable
group homomorphism G00

N1
(N1) →H(N1) whose kernel is blind to the sorts in S.

Proof. We may assume that N1 and N0 are very saturated. LetM ⪯+ N1 be a sufficiently
saturated model over which everything is defined. Then, by Proposition 2.28, there exists
a type p ∈ SG(N1) which is strongly bi-f-generic over M . Let πV ∶ G → V denote the
projection. Let a ⊧ p∣M , b ⊧ p∣Ma, c ⊧ p∣Mab.

Then, by Theorem 2.44, there exists a quantifier-free-L0(N1)-definable group H and
elements α,β in H(N1) that are independent and generic over M , such that the triples
(α,β, β ⋅ α) and (πV (a), πV (b), πV (b ⋅ a)) are equivalent over M .

We wish to conclude using Theorem 2.30. Let ν be the ideal on G containing the sets
blind to S. Then, by construction, the type tp(a/Mα) is in ν. Also, by Proposition 2.12,
the ideal ν is ∨-definable, M -invariant, invariant under left and right translations, and
admits non-forking descent. Thus, we may apply Theorem 2.30 in this setting, which
yields an appropriate group homomorphism. Note that modding out by a finite normal
subgroup is not an issue here, since T0 eliminates imaginaries in the sorts of S.

3 Algebraically bounded NTP2 Fields

Recall that a theory of (possibly enriched) fields T is a theory of algebraically bounded
fields if for allM ⊧ T , for all parameter sets A ⊆K(M), the algebraic closure aclM(A)∩K
coincides with the field-theoretic relative algebraic closure K(A)alg ∩K(M).

Definition 3.1. Let T be a theory of (possibly enriched) fields, and M ⊧ T . Let X be
a set definable in M eq. We say that X is purely imaginary if it is blind to K.

We say that a field has a bounded Galois group if, for all n, it has only finitely many
Galois extensions of degree n up to isomorphism. Equivalently, its absolute Galois group
has only finitely many closed quotients of order n for all n.

With these definitions, the results of the previous section yield the following theorem:

Theorem 3.2. Let T be an algebraically bounded theory of possibly enriched, possibly
many-sorted, perfect fields. Assume that T is NIP, or that it is NTP2 and its models have
bounded Galois groups. Let G be a definably amenable group, definable in some product of
purely imaginary sorts and powers of the field sort, in some sufficiently saturated modelM
of T . Then, there exist an algebraic group H over M and an M -definable homomorphism
G00
M →H, whose kernel is purely imaginary.

Proof. In the case where T is NIP, this is a consequence of Theorem 2.47, applied to
T0 = ACF. So, let us assume that T is NTP2 and its models have bounded Galois groups.
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Let N be a very saturated elementary extension of M . We shall work inside N and
Nalg. First, using Proposition 2.40, we construct a tuple ab of bi-f-generic elements of
G, whose field sort coordinates yield a group configuration, in the sense of ACF, overM .
Then, applying the usual group configuration theorem, there exists an algebraic group
H1 over Malg and a tuple of elements αβ in H1(Nalg) which is equivalent over Malg (in
the sense of ACF ) with the field sort coordinates of ab.

Then, using boundedness of the Galois group of M , we may interpret, using pa-
rameters in K(M), the finite extensions of M and N generated by the parameters of
definition of H1 and the coordinates of αβ respectively. To fix notations, let L1 ≥M and
L2 = N ⋅ L1 denote these finite extensions. Such an expression of L2 as a compositum
exists by boundedness of the absolute Galois group of K(M).

Through the interpretations, we can see H1(L2) as the group of N -points of an ACF-
definable group H2, defined over M . Thus, we can interpret αβ as a tuple of elements
of H2(N). In other words, we may assume that H1 is over M , and that the points αβ
are in N .

Finally, we apply Theorem 2.30, to get some finite H0 ≤H2(M), and an M -definable
homomorphism G00

M → ZH2(H0)/H0 with purely imaginary kernel, where ZH2(H0) ≤H2

denotes the centralizer of H0. Note that ZH2(H0) is quantifier-free definable, since H0

is finite and H2 is an algebraic group. Then, by elimination of imaginaries, the quotient
ZH2(H0)/H0 is also quantifier-free Lring(M)-definable, so is M -definably isomorphic to
an algebraic group over M . This concludes the proof.

The aim is then to exploit the theorem above, to classify interpetable fields. Let
us begin by proving some general results on intrepretable fields, and groups of affine
transformations of such.

Lemma 3.3. Let F be an infinite field, definable in some arbitrary theory T . Let B ≤ F×

be a type-definable subgroup of bounded index. Let A ⊆ F be a ∨-definable subring of F
containing B. Then A = F .

Proof. First, as A contains B, we know that F is covered by boundedly many multiplica-
tive translates of A. By compactness, finitely many multiplicative translates of A cover
F . Thus, F is a finitely generated A-module, and even a finite union of A-lines.

Claim 3.4. The ring A is a subfield of F .

Proof. Let a ∈ A. We wish to show that 1
a ∈ A. Multiplication by 1

a is an endomorphism
of the finitely generated A-module F . Let u ∶ F → F denote this endomorphism. Then,
using the theorem of Cayley-Hamilton, see [Lan02, Chapter XIV, Section 3, Theorem 3.1]
or [23][Part 1, Chapter 10, Lemma 10.16.2], there exists a monic polynomial P ∈ A[X]
such that P (u) = 0. In particular, we have P (u)(1) = 0. So, some equality of the form
1
an +

1
an−1 c1+⋯+cn = 0 holds, where the ci are in A. Multiplying by an−1, we deduce that

1
a ∈ A, as required.
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Thus, F is a finite extension of A, and even a finite union of A-lines. We know that
both fields are infinite. Thus, by a well known fact on finite-dimensional vector spaces
over infinite fields, F is a single A-line, i.e. F = A.

Proposition 3.5. Let F be an infinite field, definable in some arbitrary theory T . Let
G denote the semi-direct product F+ ⋊ F×.

1. Let N be a normal subgroup of G, not contained in F+. Then, N contains F+.

2. Let G1 ≤ G be a type-definable subgroup of bounded index. Then G1 contains F+,
and G1 has no nontrivial finite normal subgroups.

Proof. We begin with the following computation, left to the reader:

Claim 3.6. Let (b, a), (d, c) be elements of G = F+ ⋊ F×. Then, the following equality
holds: (b, a) ⋅ (d, c) ⋅ (b, a)−1 = (b(1 − c) + ad, c).

Let us prove the first point. Let (d, c) ∈ N be such that c ≠ 1. Then, by the
computation above, conjugating by elements (b,1) for b ∈ F+, we get that all elements
of the form (e, c) belong to N , for e ∈ F+. Multiplying by (d, c)−1, we deduce that all
elements of F+ are in N .

Let us now prove the second point. By definition, there exists some set A such that
G1 contains G00

A . By the third point of Fact 2.3, the latter is normal in G. Since the
subgroups G00

A and G1 are of bounded index in G, their projections are of bounded index
in F×, in particular, they are infinite subgroups. By the first point applied to G00

A , this
implies that G00

A , and a fortiori G1, contains F+. Finally, let N0 ⊲ G1 be a finite normal
subgroup. By the first point, we know that N0 is contained in F+. Then, let (d,1) ∈ N0.
Since G1 projects onto an infinite subgroup of F ×, and N0 is finite, the claim above
implies that d = 0, hence N0 is trivial, as required.

Proposition 3.7. Let L be a language extending the language of rings. Let T be an
L-theory extending the theory of fields. Let F be an infinite field definable in some
sufficiently saturated model M of T . Assume that there is an algebraic group H over M
and an M -definable embedding ι ∶ (F+ ⋊ F×)00

M ↪ H. Then, F definably embeds in some
finite extension L of K(M).

Recall that any finite extension of a field is definable with parameters, in the ring
language, inside some power of the field sort.

Proof. To simplify notations, let G1 = (F+ ⋊ F×)00
M , and B = F ×00

M . Let A ⊂M be a small
parameter set over which everything is defined.

Claim 3.8. The group G1 contains F+ ⋊B.

Proof. Since G1 is of bounded index in F+ ⋊ F ×, Proposition 3.5 (2) implies that it
contains F+. Also, the bounded index subgroup G1 projects onto a subgroup of bounded
index in F×. Thus, the projection of G1 contains B. This implies that G1 contains
F+ ⋊B.
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Now, we choose an embedding K(M) ↪ K(M)alg. Let U denote the K(M)alg-
Zariski closure, inside H, of ι(F+). Similarly, let B denote the K(M)alg-Zariski closure
of ι(B) inside H.

Claim 3.9. The set U is K(M)-Zariski-closed. Similarly, the group B is K(M)-Zariski-
closed.

Proof. Let σ ∈ Gal(K(M)alg/K(M)ins). Then, σ fixes ι(F+(M)) pointwise, so σ fixes
the closure U(K(M)alg) setwise. Since this holds for any σ, we have proved that U is
K(M)ins-Zariski-closed. Applying a suitable iterate of the Frobenius automorphism, we
deduce that U is K(M)-Zariski-closed. The same proof applies to B and B.

Note that, the calim implies that U is definable in T .

Claim 3.10. The Krull dimension of U is equal to the maximal transcendence degree d,
over A, of an element of ι(F+)(M).

Proof. This is a well-known fact, which relies on compactness, which can be applied
because F+ corresponds to a clopen, in particular closed, set in the type space. Note that
the result is false for ∨-definable sets.

Then, since B is of bounded index in F×, there is a bounded family (ai)i∈I of elements
of F (M) such that F = ⋃iB ⋅ ai, where the dot denotes multiplication. Then, recall
that, in the semidirect product F+ ⋊ B, the action of B on F+, which coincides with
multiplication in the field F , is by conjugation. So, for some i, the type-definable orbit
ι(ai)ι(B) contains an element of maximal transcendence degree among those in U . Thus,
the ACF -definable set ι(ai)B is generic in the algebraic group U .

Note: in general, the dimensions of U and B are not equal, because the embedding
F+ ⋊ B ↪ H may be far from algebraic. For instance, in DCF0, one might consider
(a, λ) ↦ (a,Da,λ) or (a, λ) ↦ (a, λ, Dλλ ).

Claim 3.11. The subgroup V of U generated by ι(ai)B is definable and of finite index.

Proof. Since ι(ai)B is generic, it suffices to prove definability. First, recall that the ACF-
connected component, U

0
of U exists and has finite index in U (see Fact 2.3). Also,

since some generic p of U concentrates on ι(ai)B, we know by Remark 2.20 that U
0
is

contained in ι(ai)B ± ι(ai)B. Thus, the subgroup V contains U
0
, and hence is a finite

union of cosets of U
0
. This shows definability.

Recall that ι(B) acts on ι(F+) by conjugation. Then, one can check that the closure
B acts on the closure U by conjugation as well. Hence, the algebraic group B acts on the
orbit ι(ai)B via group homomorphisms, so it acts on the group generated by this orbit,
which is V . Then, let R be the ring of endomorphisms of the group V generated by B.
It is a priori ∨-definable in Malg.

Claim 3.12. The ring R is commutative, and its action on V is B-equivariant.

25



Proof. First note that, as B is abelian, so is ι(B). Thus, the Zariski closure B ≤ H is
also an abelian group. Since R is generated by B, it suffices to prove that any element
of R commutes with all elements of B. So, let u = b1 ± ⋯ ± bn ∈ R, with n < ω, and
the bi in B, and let b ∈ B. For any v ∈ V , we have b(u(v)) = b(b1(v)) ± ⋯ ± b(bn(v)) =
(b1 ⋅ b)(v) ±⋯ ± (bn ⋅ b)(v) = u(b(v)). This proves the result.

Claim 3.13. The ring R is definable (possibly with parameters in Malg), and so is its
action on V .

Proof. Let us show definability of the ring. By Claim 3.11 above, and compactness, there
exists some N such that V = (ι(ai)B)

±N
, i.e. any element of V can be written as a signed

sum of at most N elements of ι(ai)B. Also, note that, by Claim 3.12, any element f of
the ring R is uniquely determined by the image f(ι(ai)). Thus, we may encode the ring
R as a collection of N -tuples of elements of ι(ai)B, along with N -tuples of signs.

Thus, as we know that ACF -definable functions are given piecewise by rational frac-
tions, there is a finite extension L1 of K(M) such that, for all finite extensions L2 of L1,
the set R(L2) is a commutative subring of R. We may also assume that the image of
B(K(M)) under the ACF -definable group embedding B ↪ R× is contained in R(L1).
Claim 3.14. There exists a finitely generated proper ideal I of R such that R/I is de-
finably isomorphic, in ACF , to the field K(M)alg.

Proof. The idea is to mod out by zero divisors in the successive quotients, until one gets
a domain R/I. First note that the group of units R× is infinite, for it contains a copy of
B. Hence, any nonzero definable ideal is infinite, thus has Morley rank at least 1. Then,
by additivity of the rank, modding out R by a nontrivial definable ideal I decreases the
rank. Thus, after finitely many steps, the quotient ring R/I has no zero divisors, i.e. is
a domain.

This quotient is then an ACF -definable domain, whose field of fractions is definably
isomorphic to the field Malg, by [Poi01, Theorem 4.15]. As K(M)alg has no infinite
definable subrings, we have shown that R/I is definably isomorphic to K(M)alg, as
required.

Let R1 denote the ACF -definable ring R/I. Then, let L2 be a finite extension of
L1 containing the parameters defining R1 and the quotient map R → R1, and such that
R1(L2) is a subring of R1. We shall now work inside the field L2, seen as a definable
set in M , in several variables. We now consider the following definable subset of F :
A ∶= {λ ∈ F ∣ ∃u ∈ R(L2)u∣ι(F+)∩V = λ∣ι(F+)∩V }, where any λ ∈ F acts on F+, thus on
ι(F+), by multiplication.

Claim 3.15. The set A is a subring of F .

Proof. The elements 0 and 1 of R are indeed in the subring R(L2), and they act as 0 and
the identity respectively. The fact that A is an additive subgroup of F follows from the
fact that R(L2) is an additive subgroup of R. Now, let us prove that A is closed under
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multiplication. Let λ1, λ2 ∈ F , and u1, u2 ∈ R(L2) such that λi and ui agree on ι(F+)∩V ,
for i = 1,2. Then, as λ2 fixes ι(F+) setwise, and u2 fixes V setwise, and since they agree
on the intersection, we know that u2 fixes ι(F+) ∩ V setwise. Then, we compute that
u1○u2∣ι(F+)∩V = λ1○u2∣ι(F+)∩V = λ1 ⋅λ2∣ι(F+)∩V . This show that λ1 ⋅λ2 ∈ A, as required.

Claim 3.16. The subring A is equal to F .

Proof. The subring A is definable. Also, by construction, the subring A contains B,
which is of bounded index. Thus, by Lemma 3.3, we have A = F .

Hence, there is a ring embedding F = A ↪ R(L2), which is definable in M . Finally,
composing with the quotient map R → R1, we get a definable ring morphism F → R1(L2),
which is an embedding since F is a field. Since R1 is in factK(M)alg (i.e. the tautological
definable ring), we have found an M -definable embedding F ↪ L2, with L2 interpreted
in M in the usual way.

Lemma 3.17. Let T be a theory of possibly enriched, possibly many-sorted, fields. LetM
be a sufficiently saturated model of T , F an infinite field interpretable in M , H an alge-
braic group over M and f ∶ (F+ ⋊ F ×)00

M →H an M -definable group homomorphism with
purely imaginary kernel. Assume that F is not purely imaginary. Then, the morphism f
is injective.

Proof. Let A denote the purely imaginary kernel of f . Also, let G denote the group
(F+ ⋊ F×)00

M . We wish to show that A is trivial. We know by Proposition 3.5 that G
contains F+.

Claim 3.18. The subgroup A is contained in G ∩ F+ = F+.

Proof. By contradiction, assume that A is not contained in F+. Let (b, a) ∈ A∖F+. Then,
for all (d,1) ∈ F+, we have (b, a)(d,1) = (b + (1 − a)d, a) ∈ A. Since a ≠ 1, we just found a
definable injection of sets F+ ↪ A. Since A is purely imaginary, but F is not, this is a
contradiction.

Thus, the restriction of f to G ∩ F× is a definable embedding G ∩ F× ↪ H. Then,
by compactness, there exists a definable set Y contained in F such that G∩F× ⊆ Y and
a definable injection of sets Y ↪ G. Thus, Y definably embeds into some power of the
field sort. Also, by compactness, the set F is a finite union of multiplicative translates
of Y . So, the definable set F also embeds into some power of the field sort. Hence, the
type-definable set G definably embeds into some power of the field sort.

Since A is purely imaginary and embeds into some power of the field sort, it is thus
finite. By Proposition 3.5, the group G admits no nontrivial finite normal subgroups.
Thus A is trivial, and we are done.

Corollary 3.19. Let T be an algebraically bounded theory of possibly enriched, possibly
many-sorted, perfect fields. Assume that T is NIP, or that it is NTP2 and its models
have bounded Galois groups. Let F be an infinite field definable in some product of purely
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imaginary sorts and field sorts, in some sufficiently saturated model M of T . Then either
F is purely imaginary, or F embeds definably in some finite extension of K(M).

Proof. Assume that F is not purely imaginary. We apply Theorem 3.2, to the solvable,
thus definably amenable, group F+ ⋊ F×. So, we find an algebraic group H1 over M ,
and a definable homomorphism g ∶ (F+ ⋊ F ×)00

M → H1, with purely imaginary kernel. By
Lemma 3.17, the morphism g is an embedding. The result then follows from Proposition
3.7.

Example 3.20. Theorem 3.2 and Corollary 3.19 above cover the following examples:
NIP or NTP2 bounded henselian valued fields of characteristic 0, for which we shall
prove the more specific Theorem 4.24, bounded pseudo real closed fields (see [MOS18,
Section 4]), bounded pseudo p-adically closed fields (see [Mon17]), and bounded PAC
fields. In fact, all the examples mentioned in the introduction are covered by these
results.

4 Examples

4.1 Algebraically bounded differential fields

Here, we introduce a tame class of theories of differential fields, inside which our general
tools can be used to study intepretable groups and fields. The examples are essentially the
same as those studied in [PPP23], see Remark 4.20 below. Recall that “purely imaginary”
is synonym of “blind to the field sort”. If A is a subset of a differential field, we let {A}.−1,∂

denote the differential subfield generated by A.

Definition 4.1. Let T be a theory of differential fields, in a language extending the lan-
guage of differential rings, possibly many-sorted. We say that T is a theory of algebraically
bounded differential fields if, for all M ⊧ T , for all A ⊆ K(M), the model-theoretic alge-
braic closure of A inside M coincides with the field-theoretic relative algebraic closure of
{A}.−1,∂ .

Theorem 4.2. Let T be an NIP theory of algebraically bounded differential fields. Let
M be a sufficiently saturated model of T . Let X be an M -definable set blind to the field
sort K, and n < ω.

1. Let G ⊆ X ×Kn be an M -definable group. Assume that G is definably amenable.
Then, there exists an M -definable group homomorphism G00 →H with kernel blind
to K, where H is an algebraic group over K(M).

2. Let F ⊆ X ×Kn be an infinite M -definable field. Then, either F is blind to K, or
F embeds definably in some finite extension of K(M).

Proof. Let us prove the first point. We wish to apply Theorem 2.47 with T0 = DCF0,1

and T1 = T , and the collection S containing only the field sort itself. The definition of
algebraically bounded differential fields implies that the technical hypotheses of Theorem
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2.47 hold. A priori, we get a group H which is L0(M)-quantifier-free definable, where
L0 = Lrings∪{∂}, and anM -definable morphismG00(M) →H(M) with purely imaginary
kernel. Then, by [Pil97, Corollary 4.2], the group H actually embeds M -definably into
an algebraic group over M , which proves the first point.

Then, let us prove the second point. Appyling the first point to the solvable group F+⋊
F ×, we get an algebraic groupH overM , and anM -definable morphism g ∶ (F+ ⋊ F ×)00 →
H with kernel blind to K. If F is not blind to K, then by Lemma 3.17, the morphism g
is injective. We can then conclude using Proposition 3.7.

4.2 Differentially closed valued fields

4.2.1 Some background on differentially closed valued fields

If (K,v) is a valued field, there are several imaginary sorts, called the geometric sorts,
that are of interest. We let O denote the valuation ring, m its maximal ideal, and k the
residue field O/m. For each n, the sort Sn is the quotient GLn(K)/GLn(O), coding the
O-lattices of rank n, Λ ≤ Kn. Also, for each n, the sort Tn is the set of pairs (Λ, u),
where Λ ∈ Sn is a lattice, and u ∈ Λ/mΛ is an element of the n-dimensional k-vector space
Λ/mΛ. So, we have a definable surjection Tn → Sn, whose fibers are k-vector spaces of
dimension n. Together with the sort K, and the appropriate quotient maps from powers
of K to Tn and Sn, these define the geometric language.

Let us first recall a few facts about algebraically closed valued fields.

Fact 4.3. 1. The theory of valued fields has a model completion ACVF, the theory
of non-trivially valued algebraically closed fields. The theory ACVF eliminates
quantifiers in the three-sorted language (with sorts forK, k, Γ), and its completions
are given by the characteristics of the valued field and the residue field. It is an
algebraically bounded theory of fields.

2. The residue field is a stably embedded pure algebraically closed field. The value
group is a stably embedded pure divisible ordered abelian group.

3. The theory ACVF has elimination of imaginaries in the geometric sorts [HHM06,
Theorem 1.0.1], and is NIP.

Recall that the separant sP of a multivariate polynomial P is the polynomial ∂P
∂Xn

,
where n is the smallest index such that P is in the variables X0,⋯,Xn. We define
separants for differential polynomials similarly.

Fact 4.4. 1. The theory of differential valued fields of equicharacteristic 0 has a model
completion DCVF. The theory DCVF eliminates field sort quantifiers in the geo-
metric language, and is complete.

2. An axiomatization of DCVF, inside the finitely axiomatizable class of differential
valued fields, is as follows : for every differential polynomial P (x) ∈ K{x} with
∣x∣ = 1 and ordx(P ) = m ≥ 1, for field sort variables y = (y0, ..., ym), the following
formula holds
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∀γ(∃y(P ∗(y) = 0 ∧ sP ∗(y) ≠ 0)) → ∃x(P (x) = 0 ∧ sP (x) ≠ 0 ∧⋀i v(∂ix − yi) ≥ γ).
Here, P ∗ denotes the ordinary polynomial associated to P , and sP denotes the
separant of the differential polynomial P .

3. The residue field is a stably embedded pure algebraically closed field. The value
group is a stably embedded pure divisible ordered abelian group.

4. The theory DCVF has elimination of imaginaries in the geometric sorts, and is
NIP.

Proofs for points 1 and 2 of the fact above can be found in [CP23, Theorems 2.3.4 and
2.4.2]. For the elimination of imaginaries part of the fourth point, see [CP23, Theorem
3.3.2] or [Rid19, Theorems 8.7 and 9.3].

Remark 4.5. Let LG be a Morleyisation of the geometric language for ACVF, so that
quantifier elimination holds. Then, let LG∂ = LG ∪ {∂} be the extended language, for
DCVF, where ∂ denotes the derivation on the field sort. Then, by Fact 4.4, the theory
DCVF eliminates imaginaries in the language LG∂ .

If a is a finite tuple in a differential field, we let ∇a denote the infinite tuple of all the
derivatives of the coordinates of a. Similarly, if d < ω, we let ∇da denote the finite tuple
of the derivatives of order ≤ d of the coordinates of a. We can also do this for tuples of
variables, to define terms in the differential field language.

Proposition 4.6. Let A ⊆ K(M), where M ⊧ DCV F . Then, we have the following
equality : K(dcl(A)) =K(dclACV F ({A}.−1,∂)). Similarly, K(acl(A)) =K({A}.−1,∂)alg.

Proof. Let us first prove the second point. Let c ∈ K(acl(A)). Let φ(x, a) be an A-
formula with only finitely many realizations, where ∣x∣ = 1, satisfied by c. By quantifier
elimination (see for instance [CP23, Corollary 2.4.7]), it is enough to deal with the case
where φ(x, y) is of the form ψ(∇x,∇y), and ψ is an ACVF-formula without parameters, of
the form ⋀i Pi(x, y) = 0 ∧ θ(x, y), where the Pi are polynomials with integer coefficients,
and θ defines an open set (in ACVF). In fact, using differential algebra (see [Mar96],
Lemma 1.8), if P is a minimal differential polynomial for c over the field {A}.−1,∂ , we
have Pi(x,∇a) belongs to the differential prime ideal defined by P for all i, so the formula
φ(x, a) is implied by the formula P (x) = 0∧ sP (x) ≠ 0∧ θ(∇x,∇a). Thus, the latter only
has finitely many realizations, and is satisfied by c. Let P ∗ be the polynomial such
that P ∗(∇x) = P . Then, using the axioms of DCVF, we can check that the formula
P ∗(x) = 0 ∧ sP ∗(x) ≠ 0 ∧ θ(x,∇a) only has finitely many solutions in ACVF. Otherwise,
consider an arbitrarily large finite number of solutions, separate them using balls, and
find solutions which are prolongations of elements inside each of these balls.

Now, let us prove the first point. Remember that we are in characteristic 0. Note that
the field B = K(dclACV F ({A}.−1,∂)) is Henselian, because it is dcl-closed in ACVF. So,
its valuation extends uniquely, up to isomorphism, to its field-theoretic algebraic closure.
Also, by standard computations in differential algebra, the derivation extends uniquely
to the field-theoretic algebraic closure. Thus, the field-theoretic automorphisms of Balg
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fixing B pointwise are actually automorphisms of the differential valued field structure.
So, any element of K(dclDCV F (B)) is actually in B.

The following definable types are useful for some manipulations.

Definition 4.7. Let Λ ⊆ Kn be a lattice (so Λ is coded by an element of Sn). We let
ηACV FBΛ denote the ACV F -generic type of O-bases of Λ. It is a definable type. Then,
by quantifier elimination for DCVF in the 3-sorted language, we let ηcBΛ denote the
type generated by ηACV FBΛ (x) and the formula ⋀i(∂xi = 0). This determines a complete
definable type in the 3-sorted language, which corresponds to ACV F -generic bases of Λ,
whose elements have constant coordinates.

Then, this definable type extends uniquely to a definable type in the extended lan-
guage LG∂ , since we are only adding imaginaries. We shall denote it ηcBΛ as well.

Remark 4.8. The definable type ηcBΛ “commutes with itself” for the tensor product
operation. In fact, it commutes with all invariant types.

4.2.2 Relative quantifier elimination in the geometric sorts

We now wish to prove the following relative quantifier elimination result :

Theorem 4.9. The theory DCV F admits quantifier elimination in the language LG∂ .

We shall use standard back-and-forth arguments.

Proposition 4.10. Let M be an ℵ1-saturated model of DCV F , and N ⪰+ M be a very
saturated model of DCV F . Let A ≤ M be a countable substructure, and f ∶ A → N an
LG∂ -embedding. Then, f can be extended into an LG∂ -embedding M → N .

To prove this result, we wish to use the elimination of field quantifiers, and prove
that one can lift elements of Sn(dom(f)) and Tn(dom(f)) to the field sort in such a way
that the embedding can be extended to those lifts.

Proposition 4.11. Let φ(x, y) be a quantifier-free formula in LG∂ , and Λ ∈ Sn be a lattice.
Then, the definition dηcBΛ

xφ(x, y) is also quantifier-free in LG∂ . More precisely, it is an
LG∂ -quantifier-free formula in (y,Λ).

Proof. Let p = ηcBΛ, and p0 = p∣ACV F = ηACV FBΛ . By construction of the language LG∂ , and
the Leibniz rule, there exists a formula ψ(x, y) which is quantifier-free in LG , such that
DCV F ⊧ φ(x, y) ↔ ψ(∇x,∇y). Then, we have the following:

DCV F ⊧ [φ(x, y) ∧⋀
i

(∂xi = 0)] ↔ [ψ(x,0,⋯,0,∇y) ∧⋀
i

(∂xi = 0)].

So, if c is a y-tuple, we have φ(x, c) ∈ p(x) if and only if φ(x, c) ∧ ⋀i(∂xi = 0) ∈
p(x), if and only if ψ(x,0,⋯,0,∇c) ∧ ⋀i(∂xi = 0) ∈ p(x), if and only if the formula
ψ(x,0,⋯,0,∇c) is in p0(x). So, the p-definition of φ(x, y) is equivalent to the formula
dp0xψ(x,0,⋯,0,∇y). By assumption, ACV F has quantifier elimination in LG , so the
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definitions of p0 are quantifier-free in LG . Thus, the formula χ(y) = dp0xψ(x,0,⋯,0,∇y)
is quantifier-free in LG∂ .

Now, let us prove that the definition is quantifier-free in (y,Λ). Let θ(x, y) be the
formula ψ(x,0,⋯,0, y). Recall that Λ andOn are, in ACV F , generically stable connected
definable sub-O-modules of Kn, and that isomorphisms of O-modules are parametrized
by O-bases of Λ. If b is such a basis, let fb ∶ On ≃ Λ be the b-definable isomorphism given
by b. Now, it is not hard to check that the θ(x, y)-definition of the generic type ηACV FBΛ

is equivalent, in ACV F , to the following formula : (∀fb ∶ On ≃ Λ) [dηACV F
BOn

xθ(fb(x), y)].
By quantifier elimination for ACV F in LG , this formula is equivalent to an LG-quantifier-
free formula ρ(Λ, y). Then, the formula ρ(Λ,∇y) is quantifier-free in LG∂ , and is a φ(x, y)-
definition of ηcBΛ.

Proposition 4.12. Let φ(x, y) be a quantifier-free formula in LG∂ , and b be (the code
for) an open ball. Let ηcb be the definable type generated by ηACV Fb (x) ∪ {∂x = 0}. Then,
the definition dηc

b
xφ(x, y) is an LG∂ -quantifier-free formula in (y, b).

Proof. The proof is very similar to that of Proposition 4.11. The only notable difference
lies in the parametrization used to get a quantifier-free formula in (y, b) : we parametrize
definable bijections between open balls b and the open ball m via affine transformations
fc,d ∶ x ∈ m↦ dx + c ∈ B(c, v(d)).

Lemma 4.13. In the context of Proposition 4.10, we may extend the embedding f such
that all elements of Sn(dom(f)) have bases in K(dom(f)), while keeping dom(f) count-
able.

Proof. First assume that we know how to lift one lattice. Then, we can construct an
ω-chain of embeddings fk ∶ Ak → N , such that all the elements of the Sn(dom(fk)) are
lifted in K(dom(fk+1)), and each Ak is still countable.

So, let us prove that we can indeed lift one lattice. Let Λ ∈ Sn(dom(f)) be a lattice.
We intend to lift Λ via a realization a of ηcBΛ∣dom(f), then lift f(Λ) via a realization b
of ηcBf(Λ)∣im(f), and then to use Proposition 4.11 to prove that sending a to b defines an
LG∂ -embedding.

Since M and N are ℵ1-saturated, finding a and b is straightforward. Now, let us
check that extending f by sending a to b defines an embedding. So, let φ(x, y) be
an LG∂ -quantifier-free formula, and c ∈ dom(f) a finite tuple. By Proposition 4.11, let
ψ(y, u) be an LG∂ -quantifier-free formula such that ψ(y,Ω) is a φ(x, y)-definition of ηcBΩ

for all lattices Ω ∈ Sn. In particular, ψ(y,Λ) is, in M , a φ(x, y)-definition of ηcBΛ, and
ψ(y, f(Λ)) is, in N , a φ(x, y)-definition of ηcBf(Λ). So, by choice of a and b, we have
M ⊧ φ(a, c) if and only if M ⊧ ψ(c,Λ), if and only if N ⊧ ψ(f(c), f(Λ)), if and only if
N ⊧ φ(b, f(c)).

Lemma 4.14. With the additional assumption of Lemma 4.13, we may extend the em-
bedding f such that all elements of Tn(dom(f)) are lifted in K(dom(f)), while keeping
dom(f) countable.
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Proof. Assume that all the elements of Sn(dom(f)) have bases in K(dom(f)). In par-
ticular, for all Λ ∈ Sn(dom(f)), there are dom(f)-quantifier-free definable bijections
Λ/mΛ ≃ kn. We now use Proposition 4.12, to lift elements of the residue field using
generic constants. Note that, for definable types, having quantifier-free definitions goes
through taking tensor products. As in Lemma 4.13, the construction provides us with
embeddings in the language LG∂ .

Proof of Proposition 4.10. Applying Lemmas 4.13 and 4.14 successively in an ω-chain,
we may assume that both properties of Lemmas 4.13 and 4.14 hold simultaneously, i.e.,
that the domain of f is generated by its field sort.

Finally, given an LG∂ -embedding f ∶ A → N , where A is generated by its field sort
part, we use quantifier elimination in the 3-sorted language Lk,Γ, to extend f to an
Lk,Γ-elementary embedding g defined on K(M). Checking that such a map g extends
(uniquely) to an LG∂ -embedding defined on M , which extends f , is left to the reader.

Corollary 4.15. 1. Let M ⊧ DCV F . Let A be a substructure of M in the language
LG∂ . Then, for any geometric sort S, we have S(dcl(A)) = S(dclACV F (A)) and
S(acl(A)) = S(aclACV F (A)).

2. The theory DCV F is a theory of algebraically bounded differential fields.

Proof. For the field sort, we use Proposition 4.6, which also implies the second point.
For the other sorts, we use the relative quantifier elimination result of Theorem 4.9.

Proposition 4.16. In the theory DCVF, the geometric sorts other than K are purely
imaginary.

Proof. We use additivity of transcendence degree, and definable generics of lattices and
open balls. Let A be a set of field elements, u a finite tuple in ⋃n Sn ∪ ⋃n Tn, and c
an element of the field, such that c ∈ acl(Au). We have to show that c is in acl(A).
Without loss of generality, we may assume that there is an n such that u is of the form
([Λ1], ..., [Λk], α1, ..., αk), where [Λi] ∈ Sn and αi ∈ Λi/mΛi, for all i. We may also assume
that A is a differential field of parameters.

Let d be a tuple of constants lifting [Λ1], ..., [Λk] generically over Acu. More pre-
cisely, we can pick d realizing the tensor product (ηcBΛ1

⊗⋯⊗ ηcBΛk
)∣Acu. By the remark

above, the tensor products commute here. Then, the bases of the lattices Λi given by d
induce k-bases of the quotients Λi/mΛi, i.e. isomorphisms Λi/mΛi ≃ kn. Through these
isomorphisms, the αi can be identified with coordinates in k, i.e. translates of the open
ball m. Then, let e be a tuple of constants lifting the coordinates of the αi generically
over Acdu. More precisely, realize one tensor product of the generics of the open balls
considered (here, the tensor products do not commute, but it will not matter for our
purposes), over the parameters Acdu.

As all the generic types involved are transcendental, and ∣e∣ = ∣d∣ = kn2, the tran-
scendence degree of d^ e over A is 2kn2. Moreover, since c is in acl(Ade), and d, e are
made of constants, Corollary 4.15 above implies that c is in the field-theoretic algebraic
closure of A(d, e). So, the transcendence degree of c^d^ e over A is 2kn2. On the other
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hand, c is not algebraic over A, and d^ e is algebraically independent over Ac, so the
trancendence degree of c^d^ e over A is 1 + 2kn2, which is a contradiction.

4.2.3 Groups and fields interpretable in DCVF

Proposition 4.17. Let G be an interpretable group. Assume that it is definably amenable.
Then there exists an algebraic group H and a definable morphism G00 →H whose kernel
is purely imaginary.

Proof. We wish to apply Theorem 4.2. By Proposition 4.16, all geometric sorts different
from the field sort are purely imaginary. Also, by Corollary 4.15, the theory DCVF is
a theory of algebraically bounded differential fields. Finally, by the fourth point of Fact
4.4, elimination of imaginaries holds in the geometric sorts, and the theory is NIP.

Proposition 4.18. Let F be a definable subfield of K ⊧ DCV F . Then, either F is the
field of constants of K, or F is K itself.

Proof. Let us first deal with the case where F is of finite rank, i.e. there is a common
differential equation satisfied by all the elements of F . Then, the Kolchin closure of F is
a DCF -definable subring of K of finite rank, so it is the field of constants. Thus, F is a
subfield of the field of constants. Now, using the description of definable sets in DCVF,
we know that F contains a nonempty valuative open subset of the constants. So there
exists an open ball b centered at 0 such that F contains all the constants in b. Then, if
x ∈K∂ , there exists a ∈ (b∩K∂)∖{0} such that a ⋅x ∈ b∩K∂ . So x = (a ⋅x) ⋅a−1 ∈ F , and
F =K∂ , as required.

Then, let us consider the case where F is of infinite rank, i.e. contains a differentially
transcendental element. Note that, by the previous case, the infinite definable field F∩K∂

is the field of constants, i.e. F contains the field of constants. On the other hand, by the
description of definable sets in DCVF, there exists a nonempty valuative open subset U
of some Kn such that F contains the set X ∶= {x ∈ K ∣ ∇nx ∈ U}. Since U is open, it
contains a product of balls b0 ×⋯× bn−1. Up to translating X by some element of X, we
may assume that all these balls contain 0. Now, let a ∈K be arbitrary. Since there exist
arbitrarily small constants in K, there exists ε ∈K∂ ∖ {0} such that a ⋅ ε ∈X ⊆ F . Thus,
both a ⋅ ε and ε are in F , so x is also in F , and F =K.

We now have enough tools to classify the interpretable fields.

Theorem 4.19. Let F be an infinite field interpretable in DCV F eq. Then, F is definably
isomorphic to either the residue field, the valued field, or the field of constants.

Proof. Assume that F is not definably isomorphic to the residue field. Then, by relative
quantifier elimination for DCVF, we know that F is not purely imaginary, i.e. F is not
blind to the field sort. Then, by Theorem 4.2, the field F definably embeds into some
finite extension of the valued field K. Since the latter is algebraically closed, this means
that F is definably isomorphic to a definable subfield of K. We can then conclude using
Proposition 4.18.
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Remark 4.20. There are several other examples of algebraically bounded differential
fields. In fact, all large geometric fields equipped with a generic derivation are such. See
[PPP23][Fact 5.7] for the definition, and [PPP23][Lemma 5.9] for the computation of the
algebraic closure. In such fields, if one can classify the definable subfields of the ambient
field, one can deduce from Theorem 4.2 a classfication of the definable fields. Then, if one
can also classify the imaginaries, show that they are blind to the field sort, and classify
the purely imaginary fields, one gets the classification of all interpretable fields.

For instance, the theory CODF of closed ordered differential fields, which is the model
completion of the theory of ordered differential rings, eliminates imaginaries down to the
field, and, as above, the only nontrivial definable subfield of the ambient field is the field
of constants, which is also a real-closed field. Thus, the only interpretable fields are the
field of constants, the field itself, and their algebraic closures.

4.3 Henselian valued fields

In this subsection, we let Hen0 denote the theory of non-trivial henselian valued fields
of characteristic 0, in the three-sorted language (K,k,Γ).

Definition 4.21. A valued field (K,v) is finitely ramified if it is of equicharacteristic 0,
or its residue characteristic is a prime number p, and the interval [0, v(p)] ⊆ Γ is finite.

Proposition 4.22. Let T ⊇ Hen0 be a theory of finitely ramified henselian valued fields
of characteristic 0, in the three-sorted language (K,k,Γ). Then, the following properties
hold:

1. The theory T is an algebraically bounded theory of fields: the valued field sort part
of the model-theoretic algebraic closure of any set A of valued field elements is equal
to the field-theoretic relative algebraic closure of the field generated by A, for any
A contained in a model M ⊧ T .

2. The residue field k and the value group Γ are stably embedded and orthogonal.
Their induced structures are, up to naming constants, that of a pure field and a
pure ordered abelian group respectively.

3. The residue field and value group are blind to the valued field.

Proof. For the second point, see [ADJ23, Theorem 6.2]. The first point is folklore, and
can be proved using the elimination of field quantifiers in the RV language (see [Bas91,
Theorem B]). Let us now prove the third point. Let M ⊧ T be sufficiently saturated.
Let a be an element of K(M), b ⊂K(M) and c ⊂ k(M)∪Γ(M) be finite tuples. Assume
that a ∈ acl(bc), and let us show that a ∈ acl(b).
Claim 4.23. There exists a finite tuple γ ∈ K(M) such that c ∈ dcl(γ), and c is an
algebraically independent tuple, in the sense of field transcendence, over ab.

Proof. This can be proved by induction on the length of c, using compactness. To lift
one element of k(M), recall that any non-trivial open ball is infinite, thus, by saturation,
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admits a point in K(M) which is transcendental over ab. Then, add such a point to the
tuple b, and proceed. To lift one element of Γ(M), use the fact that any annulus contains
a non-trivial open ball, and apply the same compactness argument as before.

Then, using the claim, it suffices to compute transcendence degrees. By the first
point, since a ∈ acl(bγ), we have trdeg(a/bγ) = 0. By construction of γ, we know that
trdeg(γ/ab) = ∣γ∣ = trdeg(γ/b). Then, using additivity of transcendence degree, we have
trdeg(γ/ab) + trdeg(a/b) = trdeg(γa/b) = trdeg(γ/b) + trdeg(a/γb) = trdeg(γ/b). Thus,
we have trdeg(γ/ab) + trdeg(a/b) = trdeg(γ/b). Since trdeg(γ/ab) = trdeg(γ/b), this
implies trdeg(a/b) = 0, as required.

Theorem 4.24. Let T ⊇ Hen0 be a theory of finitely ramified pure henselian valued
fields of characteristic 0 with perfect residue fields, in the three-sorted language. Assume
that T is NIP, or that T is NTP2 with Gal(Kalg/K) bounded in all models of T . Also
assume that k, with its induced structure, is algebraically bounded as a field. Let M be a
sufficiently saturated model of T . Let m,n, l < ω. Let F ⊆Kn×km×Γl be an M -definable
infinite field. Then, exactly one of the following holds:

1. The field F admits a definable embedding into some finite extension of K.

2. The field F admits a definable embedding into some finite extension of k.

3. The field F is definably isomorphic to a field definable in Γ.

Proof. By Proposition 4.22, the theory T is algebraically bounded, the sorts k,Γ are
orthogonal and blind to K, and stably embedded. Note that the conclusions are pairwise
inconsistent, because k and Γ are orthogonal, and both are blind to K.

Assume that F does not definably embed into some finite extension of K. Then, by
Corollary 3.19, the field F is purely imaginary, which means that its projection to Kn is
finite. Thus, encoding a finite set, and changing m, l, if necessary, we may assume that
F ⊆ km × Γl. Note that, by stable embeddedness (see [ADJ23, Theorem 6.2]), the field
F is definable in the induced structure (k(M),Γ(M)), which is sufficiently saturated.
Also note that, in the NTP2 case, by henselianity and perfection of k, the Galois group
Gal(kalg/k) is also bounded. Then, the hypotheses imply that Corollary 3.19 can be
applied to the theory of the pair (k,Γ). So, either F definably embeds into some finite
extension of k, or F can be embedded, as a definable set, into some power of Γ. Since
Γ is stably embedded, the latter case implies that F is definably isomorphic to a field
definable in Γ. This concludes the proof.

Remark 4.25. 1. It seems likely that there are no infinite definable fields in Γ, for
instance because of the result [CH11, Corollary 1.10], which states that, in pure
ordered abelian groups, definable maps are piecewise linear. Proving such results
is beyond the scope of this paper.

2. The hypothesis of finite ramification is not essential, the main ingredients are or-
thogonality between k and Γ, and blindness of these sorts to K.
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Example 4.26. The theorem applies to any pure finitely ramified henselian valued field
(K,v) of characteristic 0, whose residue field is elementary equivalent to either C, R,
Falgp , a finite extension of Qp, or a finite field.
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