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1 Introduction

In this paper, we determine the effective behavior of a two-phase linear elastic
composite made up of a very soft matrix reinforced by possibly very stiff fibers.
Our approach consists in first studying asymptotically a problem of the type

inf F.(u.) —/ f-udr, pe(l,+o00), f€LP(2;R?)
u €W, P (12;R3) 17,

F.(u) =¢€? /Q\TE f(e(ug))da:—&-ls/T gle(u.))dz, (1)

e

1
e(u.) = 5(VuE + VTuE)7

and subsequently particularizing the setting of linear elasticity (p = 2, f,g¢
quadratic). This perspective yields a simpler formulation of the limit problem
and a clearer mathematical insight. Moreover, the case p # 2 has an interesting
application in material sciences (see Remark 1 (v)). The functions f and g in
(1) are assumed to satisfy a growth condition of order p, T. is an e-periodic
distribution of fibers (parallel to es) of arbitrarily shaped cross-section of size
of order ¢, and §2 := 2’ x (0,L) a bounded Lipschitz domain of R3. We are
aiming at deriving the limit problem associated with (1) as € — 0, for every
possible choice of the stiffness parameter [.. All results obtained for Problem
(1) are new.

Since the seminal work of Tod Arbogast, Jim Douglas Jr. and Ulrich Hor-
nung [2], high contrast homogenization problems of this type have attracted
a lot attention in a variety of physical contexts (see the many references in
[19]). Problem (1) has been investigated in [7, Example 1] in the case of a con-
nected stiff phase. The case of a vanishing volume fraction of very stiff fibers
embedded in a matrix of stiffness of order 1 was addressed in [5]. A common
feature between [5] and the present work lies in the study of the asymptotic
behavior of the displacement in the fibers. In this regard, whenever possible,
we will refer to the proofs developed in [5].

We show that the behavior of the solution u. to (1) is conditioned by the
order of magnitude of the coefficient /. in terms of the parameters k and »
defined by

k:= ;i_{r(l)ks € (0,400]; x:= Eli_r%spkg € [0,400]; ke :=1]|S|. (2)

If 5 > 0, we prove that the displacement in the fibers is locally approximated
to by a helicoidal vector field of resultant des and resulting momentum v on
their principal axes, v being orthogonal to these axes. This means, in simpler
words, that the fibers locally undergo a displacement v of their principal axes
and a rotation of angle ¢ around these axes. The field v approximates as € — 0
to the local average v. of the solution u. to (1) over the cross-sections of the
fibers, and ¢ to their mean angular rotation d. around es. We establish that
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u. and “=* converge to u and w, respectively, where (u,v,w,d) is the unique
solution to

inf by (u,v,w,8) — / f - udz,

(u,v,w,8)€LP(£2;R3) X Do 0
327121
3)

QSQ('U"'U’ w’é) = / Cf(“ -, 0) + %ghom(T)dw, T = %zg R

2 ow

s
Oz

the functions ¢/, ¢"°™ and the domain Dy being defined by (9), (10) and
(17), respectively. The second term of @2 describes a combination of bending,
extensional and torsional energies.

If ¢ = 0, we find that the effective angle of rotation of the fibers is much
larger, characterized by a function 6 approximating to 6. = %. We obtain a
limit problem of the form

inf D4 (u,v,0) —/ f - udx,
(u,v,0)€L2(2;R3) XD, 0
0
’ (4)
b1 (u,v,0) = / ' (w—u,0)dr + kg"™(T)dz, T=| ous |,
2 ox:
00
Oxs

where D; is defined by (16). The second term of @, represents a combination of
extensional and torsional energies. This contribution corrects the results stated
in [7, Example 2], where the presence of torsional stored energy in the effective
material was disregarded. The limit field » is a solution, unique if > > 0, to
infyerr F(u) — [, fudz, where F(u) = inf(, gycp, P1(u,v,0) if 2 = 0 (resp.
inf (y,0.5)ep, P2(u,v,w,d) if > > 0). The functional F is the I-limit of the
sequence (F;) in the weak topology of L? (see [12]).

When s = 0, the solution to (1) may fail to be bounded in LP, depend-
ing on f. Loosely speaking, the composite is insufficiently reinforced to resist
transversal body forces, and collapses. Its cohesion can be recovered by suit-
ably reinforcing it with extra stiff components. The equations ruling such
multiphase composites being straightforwardly deduced from those governing
two-phase ones (see Remark 1 (ii)), it is convenient to present our main result
in the context of two-phase composites under the assumption that the solution
u. to (1) is bounded in LP(2; R3) if 2 = 0. However, the reader should keep in
mind that the relevant physical context for the case » = 0 lies in multiphase
composites.

We next particularize the case of linear elasticity: namely, we assume that
p =2 and that f, g are given by

£(8) = %AS .S; g(S) = %BS .S vSes, (5)
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in terms of fourth order tensors A, B satisfying

Aijkh = Ajikh = Aknijs Bijkn = Bjikn = Brnij (i, 4, k,h) € {1,2,3}4, (©)
AS: 8 >c|S|, BS:S>¢S]? VS c€S? (c>0).

Problem (1) is then equivalent to
—dive.=f in £, o.=C.e(u.),
1
e(u.) = §(Vu5 +V7Tu,), C.= 52A19\T5 +1.Blp, (7)
u. € Hy(1;R%),

whose solution represents the displacement field at equilibrium of a clamped
elastic fibered composite submitted to a density f of applied body forces.

In the case » > 0, Problem (7) has been studied in [7, Example 3] in the
setting of linear isotropic elasticity, i. e. when C.S takes the form A.(trS)I +
2u.S, and in [10] in the anisotropic case for fibers of circular cross-sections.
The vibration problem associated with (7) has been investigated in [3] in the
isotropic setting for every values of k, s. Here, we solve the case » = 0 in
the anisotropic case, extend the case s > 0 to arbitrary cross-sections, express
(w,0) in terms of v, and synthesize the cases s € {0, +o0}.

If 52 = 0, the homogenized Problem (4) obtained above takes the form

inf P 0) — - ud
(uﬂ;,@)EleI%Q;RS)XDl 1(u,'v, ) /Qf udw,

1/(v—u v—u k(9 Qg
iw.) :/ 5( 0 )C( 0 )*5 (68”%3) Gapsa (63””93 d.
n O3 Ozs
where C and G are the 4 x 4 positive definite symmetric matrices associated
to the quadratic forms 2¢f and 2¢"°™, respectively, and G 3,41(3,4) denotes
the 2 x 2 submatrix of G deduced by removing its first and second rows and

columns. This problem is equivalent to a coupled system of equations of the
type

uU—v .
Ci123}{1,23.4) ( P > =f in 2,
v .
Cliayi2say | p) =0 in 02,
v 621)23
Cisa{1.2,3,4) (9) — kG (34334} <§§3 > =0 in 2,
(u,v,0) € L*(2;R?) x D;.

If 52 > 0, we show that the auxiliary variables w,d can be expressed in

terms of v. Namely,
)_p? (%)
(5) _Eé)xg <U2 ’
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where E is defined by (24). Accordingly, the limit problem takes the form

(u,v)€D

inf di('u,,'v)—/ f-udx
Ie;
1

2 0%’ R
D(u,v) = /Q 5(1} —u)-Crosy{123 (v —u)+ 2 022 -H 022 dz,

where v/ = vie; + voes and H is the symmetric positive definite 2 X 2 matrix
given by (27). Equivalently, the couple (u,v) is the unique solution to

Ceszs(w—v)=f in 2,
o’ .
Chpys(v—u) +xH o5 =0 inQ,
3
(u,v) € D.

Our main result is presented in Section 3 and proved in Section 6. The
linear elasticity problem (7) is discussed in Section 4. Section 5 is devoted to
preliminary results and a priori estimates. The Fuler-Lagrange equations of
the limit problem are derived, in the elasticity case, in Section 7.

2 Notations

In this paper, {e;,es,...,en} stands for the canonical basis of RY. Points in
R3 or Z? and real-valued functions are represented by symbols beginning with
a lightface minuscule (example z,4,det A...) and vectors and vector-valued
functions by symbols beginning by a boldface minuscule (examples: z, u, f,
divo.,...). Matrices and matrix-valued functions are represented by symbols
beginning by a boldface majuscule with the following exceptions: Vu (dis-
placement gradient), e(u) (linearized strain tensor). Fourth order tensors are
represented by sans-serif boldface majuscules (examples: A, B). We use up-
right symbols for operators (examples: v, 0¢,...). We denote by u; or (u); the
components of a vector u and by A;; or (A);; those of a matrix A, by A, or
(A)ijr: those of a fourth order tensor A (that is u = Zle ue; = Z?:l (u)i€;;
A = Zijzl A e, ®e; = Z?,j:l(A)ijei ® e;). For any two vectors a, b in
R3, the symmetric product @ ® b is defined by a ©b := 2(a®b+b®a). We
do not employ the repeated index convention for summation. We denote by
A:B = Z?,jzl A;jB;; the inner product of two matrices, by €;;; the three-
dimensional alternator, by u Av = Z?,j,k:l €ijkU;Vre; the exterior product in
R3, by S™ (m € N*) the set of all real symmetric matrices of order m. The
symbol I represents the 3 x 3 identity matrix. For every m X n matrix A,
a C {1,...,m}, p C {1,...,n}, we denote by A, g the submatrix of A whose
entries lie in the rows of A indexed by « and in the columns of A indexed by

123 93
8 ( example: | 456 = (5 6)) We denote by [s] the integer part
789

{1,2}{2,3}
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of a real number s. The letter D denotes the open disc of R? of center 0 and
radius 1. The letter C' stands for different positive constants whose precise
values may vary.

For every x € R3, we write x = (2/,z3) for 2’ = (x1,22). For any two weakly
differentiable fields 9 : R? — R? and u : R? — R?, we set

2

1,(awa awﬁ) 2. o
e = — + —|eRes+ —e, ©es,
v¥) a%; 2\0ys  Oya ’ ; Yo ’

2.1 (0u Oug 2 u
— = e 3
e (u) : a%; 5 <8x5 + afq)ea®e5+; Da 8o e

Y i=1ber +oes, U = uje; + uges.

(®)

For every (a, () € R3 xR and every convex, p-positively homogeneous function
f:S? = [0,+00), we define

Cf(a’ C) =

WP (Y;R?), dy =0,
e WhH( )Awy 0 (9)

7

mf/f@%ﬂy
Y Y(y)=a+CesAy in S

where Y := [-1/2,1/2[% and Wﬂl’p(Y; R3) denotes the set of Y-periodic mem-
bers of W,7(R?; R?).
For every convex, p-positively homogeneous function g : S* — [0, +00), we set

hom (7 .= inf ][ M(1))d vr € R*
9" (7) . Sg(ey(q)+ (7)) dy, T € RY,

0 0 T (10)
M(7):= 0 0 Y15

T4

T 2
—Y25 Y15 T3~ Y a=1TaVa

3 Main result

Let 2 := ' x (0,L) be a bounded Lipschitz cylindrical domain of R?, S a
bounded Lipschitz domain of R? satisfying

. 1 1)*
DcCS, Scy, Y =|—-—=,=] , ydy = 0,
22 <
T. the e-periodic distribution of fibers defined by (see fig. 1)
T.:=S.x(0,L)=|JT! T!=8x(0,L), S :=c(i+S9),
i€l.

Se == U Sév I = {Z € Z27 Yaz - Ql}? Ysl =¢ei+eY,
i€l

(11)
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Fig. 1 The fibered structure

and f,g : S* — R two strictly convex, p-positively homogeneous functions
satisfying

S| < f(8) < CISP, cSIF < g(8) < CIS|” VS €SP, (12)

for some p € (1,+00) and some positive constants ¢, C. Under these assump-
tions, we show that the asymptotic behavior as ¢ — 0 of the solution u. of
(1) depends on the parameters k and s defined by (2). We assume that (see
Remark 1 (i), (ii))

u. is bounded in LP(§2;R3) if » =0, (13)

and

k> 0. (14)

Case » = 0. We prove that, up to a subsequence, u. converges to u and
(ve,0:) given by

v.(z) := Z <][Siu5(s,x3)d7-lz(s)> Ty:(z"),

i€l

1 > ,
95(56):=i€§;€ W][S(_ys2usl + Yeruea)(s, x3)dH"(s)Ly:(2"),  (15)

yg(a:’) = Z ((.231 — €i1)61 + (332 — é‘ig)eg) ]lys'i (.Z‘/),
i€l

i
€
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converges to (v, ), where (u,v,0) is a solution to

hom . inf )] _ / .
(Pl ) (’u,vﬁ)GLl?I%Q;Rg’) “Dy 1 ('U,, v, 9) o f U‘dxv
0
0
Dy (u,v,0) = / (w—u,0)de + kg (T)dz, T=| ous |, (16)
dz3

v3,0 € LP(§2; WOI”’(O,L)),}

Dy :={(v,0) € LP(£2;R?
! {( ) (%R v3=0=0 if k=400

Case » > 0. We show that the convergences of the case » = 0 hold for the
entire sequences. Besides, the sequence (évgg, %05) converges to (w,d), where
(u,v,w,d) is the unique solution to

Do (u, v, w,d) —/ f - udzx,
o)

inf
(u,v,w,8)ELP(£2;R3) x D2

452(%%“%5):/ (v —u,0) +5g"" (T)dz, T=| &3 |,

dz3
ve € LP(2'; WFP(0,1)),Ya € {1,2},
Dy = { (v,w,0) € LP(2;R%) | v3 =0,
(w,8) € LP(R2'; Wy (0,L))?

Theorem 1 Let u. be the solution to (1). Assume (2), (11), (13) and (14).
Then, up to a subsequence, (u.) weakly converges in LP(§2; R3) tou, (ve,0:) de-
fined by (15) weakly converges in LP(£2;R*) to (v,0), and, if 2 > 0, (Lv.s, 16,)
weakly converges in (LP(£2))? to (w,d), where

(i) if =0, (u,v,0) is a solution to (16),

(i) if >0, v3 =60 =0 and (u,v,w,d) is the unique solution to (17).

Moreover, ¢/ and gh°™ defined by (9) and (10) satisfy
c(laf” +[¢") < ¢/ (a,¢) < C(laf” +[¢[) V(a, () € RY, (18)
clrP < g"om(r) < Olr|P vr € R,
for some C > ¢ > 0.
Remark 1 (i) In the case s = 0, by (16) we have
Py (u,v,0) =& (u+9',v—19',0) Vap € LP(£2;R?),

hence, if f' # 0, the infimum (16) is equal to —oco and the minimization
problem (16) has no solution. Consequently, by Theorem 1, the assertion (13)



Soft elastic or perfectly viscoplastic fiber composites with high contrast. 9

fails to hold. Moreover, lim._,o [u:|Lr = +00: otherwise (13) would hold for
a subsequence and, by Theorem 1, Problem (16) would have a solution. On
the other hand, if f/ = 0, Problem (16) has infinitely many solutions, but
even then, we only can prove that |ucs|rr < C. Indeed, when 3 = 0, F.
is not coercive in LP, more precisely does not satisfy |, o lwPdr < CF.(w)
for some C' > 0. Coercivity of F, and boundedness of u. are achieved when
considering multiphase composites reinforced, besides the fibers, by suitable
extra stiff components such as fibers distributed in two other independent
directions, fibers satisfying s > 0, stiff plates, a connected stiff phase, or any
combination of these... (see [7, Examples 1 and 2], [4, Remarks 3.17, 3.18], [3,
Section 5]). Accordingly, the main application of the case s = 0 of Theorem
1 lies in multiphase composites, the effective behavior of which being easily
deduced, as commented below, from Theorem 1 (i).

(ii) Multiphase media. When a multiphase medium comprising several families
of periodically distributed stiff components is considered, the effective energy
is deduced by adding up the effective energies stored in each family of stiff
component (second term of @,) and taking into account, in the definition of
¢l the effective displacement in each stiff component. For instance, when two
e-periodic disconnected families T&-(l)7 TE(Q) of fibers parallel to e3 embedded
in a soft matrix and satisfying »(!) = 0, »(® > 0 and fs(l)ydy = 0 are
considered, the boundedness of u. in L? is ensured and the effective problem
takes the form

inf b(u, 0) —/ f - udzx,
Q

RS (1) (2)
(u,0)€LP(£2;R3)x D, XD,

45(%9) _ / cf(u,g) + k(l)ghom,(l)(T(l)) 4 %(Q)Qhom,(Q)(T@))dx,
?

5242
0 BxI?
0 82U§2)
7+ — o . T3 = aaié) , o= ((,v(l),g(l))7 (v(2),w(2)75(2))),
073 862
Oxs

where
vew (i), [ wiy—u
Y
f -
¢/ (u, @) = inf /Yf(ey(dj))dy D(y) =v® +0WVes Ay in SO,
P(y) =v? in &

(iii) Boundary conditions. When mixed boundary conditions are considered,
the analysis and the limit problem are the same, up to slight differences. How-
ever, Dirichlet boundary conditions should be enforced on a subset of 02
containing one of the extremity of the fibers to ensure the weak relative com-
pactness of the solution to (1) if ¢ > 0 (resp. of its third component if 5 = 0).
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(iv) Metal Matriz Composites. When p # 2, Problem (1) is relevant to per-
fectly viscoplastic materials such as metals at high temperatures. In this con-
text, the solution u to (1) describes the velocity field in a hot metal matrix
fibered composite with high viscosity contrast undergoing a steady-state creep.
Steady-state creep denominates the quasi-static motion experienced by metals,
ceramics or alloys at high temperatures under the influence of applied body
forces. During this process, the stress tensor o and the rate of strain e(u) are
linked by a phenomenological constitutive relation of the type o = [ %(e(u))
discovered by Norton [18], where g is a convex function with p-growth at
infinity and [ a viscosity parameter. Solids governed by this law, called the
Norton-Hoff model of viscoplasticity, are said to be perfectly viscoplastic. The
inverse relation, which takes the form e(u) = h(o) for some function h satis-
fying a growth condition of order ¢ = ﬁ, is called a g-power law. In general,
q is about 5 (p ~ 1,2). In a steady state creep, the acceleration is negligible
and the linear momentum equation dive + f = 0 is equivalent to a minimiza-
tion problem of the type infp { [, lg(e(w)) — f - udx} analogous to (1). Metal
matrix composites have numerous industrial applications. References on these
subjects can be found in the Materials Science and Engineering literature [11,
13,15].

4 Linear elasticity case

In this section, we particularize Theorem 1 when p = 2 and f, g are given
by (5). Then, ¢/ and ¢"°™ are quadratic form on R* associated with 4 x 4
symmetric matrices %C’ and %G which, by (18), are definite positive. Denoting
by q(7) the unique solution in H'(S;R3)/R3 to the minimization problem
(5,10), the components of G are given by (see Section 7.3)

Gij = —][SBey(q(ei)) ey(qle)))dy + ][SBM(ei) : M(e;)dy. (19)

Denoting by %(a,() the unique solution in H;(Y;R?) to the minimization

problem (5,9), and setting (a, () = Z?:l a;e; + Ceq, the components of C are
given by

Cyy = / Ae,((e:) - e, (b(e;))dy.
Y

Case =10

The limit problem (16) takes the form

inf (] 0) — - ud.
(u,v,e)eLIZ‘r%Q;RS)X% 1(%1), ) /Qf uax,

1 /v—u v—u k [ 9va Jva
Qsl(“’”):/gz( 0 )C( 0 ) 2(093>'G{3,4}{3,4}<Za%>d%
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equivalent to the system of linear elliptic equations

uU—v .
C1231{1,2,34) ( 0 > =f in £2,
v—u .
Cli2){1,2,34) ( 9 ) =0 in 02,
. (21)
v3
v—u 572 .
Caay123.4) ( 9 > — kG 3,433.4) <§§g> =0 in {2,
(u,v,0) € L*(2;R?) x D;.
Case s >0
The limit problem (17) takes the form
inf Do (u,v,w,d) —/ f - udx,
(uw,v,w,0)€LP(§2;R3) X D2 0
8821)21 %21)21
X T3
o 5) — 1 (v — 'u,) C (’U — u) % %2;} o %2;:2 i
z(u,v,w, )_ 92 0 ' 0 +§ Dl . Du3 X,
it i
Ox3 O3
(22)
equivalent to
Crosynes(u—v)=Ff in £2,

o (3=
Cri21(123 (v —u)ts (G’{LQ}{LQ} ol +G{1’2}{3’4}37x§ 5 =0 in £,

o3’ 0% (w )
G(3.41{1,2} 923 +G{3’4}{3"4}8T:§ (5) =0 in £2,
(u,v,w,8) € L*(2;R?) x Dy.
(23)
The variables w, d can be eliminated: we find that
w ' 1
<5> =E5 E="GuapaCeany (24)

We deduce that (u,v) is the unique solution to
inf ®(u,v) — ud
(M}SED (u,v) /qu x
1 2 0%’ %' 25
P(u,v) = / 5(’” —u) - Co3y1,23 (v —u) + -H dx, (25)
Q

2 0z3 oz
D = {(u,v) € L*(;R?) x L*(£2'; H3 (0, L; R?)), v3 = 0},
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or equivalently to

Csyizsu—v)=f in 2,
o' )
Criapian©—u) +xH 7 =0 2, (26)
3
(u,v) € D,

being H the symmetric positive definite 2 x 2 matrix defined by
H=Gpo02 +Guapal. (27)

Corollary 1 Let u. be the solution to (7). Assume p =2, (2), (13) and (14).
Then the convergences stated in Theorem 1 hold, where
(i) if =0, (u,v,0) is a solution to the problem (20) equivalent to (21),
(i1) if 3¢ > 0, (u,v,w,d) is the unique solution to the problem (22) equiv-
alent to (23). Equivalently, (w,d) is given by (24) and (u,v) is the unique
solution to the problem (25) equivalent to (26).

Remark 2 When the material constituting the fibers is isotropic, the matrix

G is diagonal hence G343{1,2} = 0 so that, by (24), w = ¢ = 0. It is not
diagonal, in general, otherwise (see [6, Remark 1] for explicit examples).

5 Preliminary results and a priori estimates

5.1 Two-scale convergence

A sequence (pc) C LP(£2) two-scale converges to g € LP(£2 xY) if (see [1, 16,

17))

. @
lim [ o (x) - no (x e ))dfv:/ wo(z,y) - no(x,y)dzdy,
e=0J0n € 2xXY

(28)
Vo € C(£2xS) (notation: . — ¢o).

Any bounded sequence in LP({2) admits a two-scale convergent subsequence.
A sequence (n.) in L? (£2) satisfying

lim [ .- n.dxdt = / o - Nodzdy (29)
€=20/0 2xY

for some ny € LP' (2 x Y) and for every two-scale convergent sequence ()
is said to be admissible. Sequences of the form 7. = g (x, @) with ny €
L>(02,C4(Y;R?)) U L* (Y, C(£2;R?)) are admissible [1] and satisfy, for every
sequence (p.) in LP(£2) [3, Section 5]

Pe — Yo - PeNe — PoNo-
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In particular,

SDE]ITE — QDO]IS

(30)
pelonr, = @oly\s.

Pe — Yo — {

If (p.) C LP(£2;R*) two-scale converges to ¢, € LP (£2 x Y;R¥), then for
every convex function j : R¥ — R, we have [5, Lemma 4.1]

tnigt [ e ddr> [ todsdy> [ ([ eotwi)dn )
e 2 2xY Q Y
If (p.) € WHP(§2;R?) is such that

p. = p weakly in LP(2;R?), @, = ¢,  ce(p,) = 5,

then [7, Section 3]

/Y<po(-,y)dy =p, o € LP(; WP (Y;R?)),

Zo=ey(py), ce(p )l — ey(po)ly\s-

5.2 Existence and uniqueness of the solution to the limit problem (17)
(3> 0).

In the following lemma, we establish the well posed character of the infimum
problems defining ¢/ and ¢g"°™ and of the limit problem associated with (1)
when s > 0.

Lemma 1 (i) The infimum problems (9), (10) are achieved. The solution to
(9) is unique. Problem (10) has a unique solution satisfying r(q) = 0 (see
(34). |

(ii) The mappings ¢/ and g satisfy the growth conditions 18.

(#ii) Problem (17) (3 > 0) has a unique solution.

hom

Proof (i) Problem (9). By [14, Theorem 4 p. 75], for any bounded Lipschitz
domain U of R? and any subspace V of W1P(U;R?) such that VNR = {0},
where R is the space of infinitesimal rigid displacements of R? (that is the
kernel of ¢ — e(¢p)), the following Korn inequality holds

[lopiz+ [ 1opiz < [ leopar voev (33)
U U U
Applying this to V = {(p € Wﬁl’p(Y; R?), [, pdy = O}, we infer

[ lor+1veray<c [ leray v e wirvird), [ pay=o.
Y Y Y
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By the Poincaré-Wirtinger inequality in W?(Y'), we have
/ Inl” dy < C/ VnPdy, ne WHP(Y), / ndy = 0.
Y Y Y
We deduced from the above inequalities, applied to ¢ =4’ and 1 = v, that
/ [Y|P + |Vy|Pdy < C/ le, (¥)|Pdy Y € Wﬁl’p(Y;R3), / Pdy = 0.
Y Y Y

This, along with (12), implies that any minimizing sequence (1,,) of (9) is
bounded in Wﬁl’p (Y;R3) and weakly converges, up to a subsequence, to some

1, which, by the weak lower semicontinuity of ¥ — fy f(ey()) dy and the
weak closedness of the set on which the infimum is taken, is a solution to (9).
By the strict convexity of f and the convexity of the set on which the infimum
is taken, this solution is unique.

Problem (10). We set

v@)= (@) + ( fasty ) es

S

Y() ()= ][S gdy + (W ][S (—21 (4) + 1102(8) dy) es Ay,

One can check that

(34)

{d ~7'(¢), ¢ €W (SR} NR = {0} and e(r'(g)) =0,

hence, by (33),
/ ¢ —F (@) + V(g —F(@)Pdy < C / le(@)/"dy, V' € W'P(S;R).
S S

Using the Poincaré-Wirtinger inequality [¢|g3 — fsgsdy|dy < C [ |Vgs|Pdy
in WhP(S), we deduce

[la=x@p+1Va—r@)lay<C [ le,@Pdy VoW r(siE),
S S

Noticing that e, (g —r(q)) = e,(q), we can choose a minimizing sequence (gy,)
of Problem (10) such that r(g,) = 0. The above inequality, along with (12),
implies that (g,) is bounded in W1P(S;R3) and weakly converges, up to a
subsequence, to some q., which, by the weak lower semicontinuity of ¢ —
fq9(ey(a@) + M(7)) dy, is a solution to (10). The uniqueness of the solution to
(10) in the set {g € WP(S;R3), r(q) = 0} results from the strict convexity
of g.

(ii) The upper bounds result from (12). To prove the lower bounds, since
cf and ¢g"°™ are positively homogeneous of degree p, we only have to check
that ¢/(a,() > 0 for every (a,¢) # 0 and ¢g"°™(r) > 0 for every T # 0: -
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If ¢/(a,¢) = 0, the minimizer 9 of (9) satisfies e,(3)) = 0 in Y, thus ¥(y) =
c+nesAy in Y for some (¢,1) € R*. As9(y) =a+CesAyin S, (¢,n) = (a, (),
hence fY dy = a = 0 and the periodicity of 9 implies ¢ = 0. - If g"°™ (1) =0

and g is the minimizer of (10), then e,(q) + M (1) =0 a.e. in S. In particular
%%Z? — Yoy = %g%z +y1g = 13— Zi:l TaYa = 0 a.e.y € S. The latter
equality implies 71 = 75 = 73 = 0 ant the former, by the Schwarz theorem,

yields 74 = 0.

(iii) Given (u,v,w,d) € LP(£2;R3) x Dy, we notice that, by Poincaré inequal-
ities in Wy (0, L) and Wg?(0, L), the norm of (v,w,?) in Dy, understood as
its norm in LP(02'; WP (0, L; R?)) x LP(§2; WP(0, L))?, is equivalent to the
L? norm of 7 defined by (17) which, by the second line of (18) and (17), is
bounded from above by C®2(u,v, w, d). Noticing that by the first line of (18),
Jolu—vlPdz < [, ¢/ (u—v,0)dz < CPy(u,v,w,d), we deduce that

|(w,v,w,0)7, (gms)xp, < CPa(u,v,w,6), V(u,v,w,0) € LP(2;R?) x Ds.

Hence, any minimizing sequence (%, vy, Wy, d,) of (17) is bounded in LP(£2; R3) x
D, (identifying Dy with LP(£2; WP (0, L; R?)) x LP(£2'; W3P(0, L)?) and weakly
converges, up to a subsequence, to some (u,v,w,d). The functional @ is con-
vex and bounded on the unit ball of the Banach space L”(2;R?) x Dy, hence
strongly continuous, thus weak lower semicontinuous, therefore (u,v,w,d) is

a solution to (17). By the strict convexity of @y, resulting from that of ¢/ and
g"°™ . this solution is unique.

5.3 Auxiliary results for the upper bound

We state below a variant of [9, Theorem 1] proved in [8, Lemma 4.3]:
Lemma 2 Let H C L'(£2) such that for every finite family (g:)ier of elements
of H and every family (c;)icr of non-negative functions of C1(£2) satisfying
> ier i = 1, there exists g € H such that g <> ;c;ig;. Then

inf/ng(x)dx:/ness inf g(x)dz. (35)

geEH gEH

The following two corollaries take a crucial part in the proof of the upperbound
inequalities (Section 6.2).

Corollary 2 For every (¢,¢() € D(2;R3) x D(£2), the following holds (see
9))

/ cf<¢,<>dz—inf{ / fey(n(z,v)))dzdy, nGDM},
17 2%(Y\S)

36
ooty | [ 1@ =0, (36)
Dyc=m€C.(2;C(YV5RY)) | Jy

n=¢+CesNy in 2x85
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Proof We consider the following subset of L'(£2)
= {g(z) = Js fley(m(z,y)))dy, n € D¢,§} :

Let (gl)lej and (Oél)l‘ej be like in Lemma 2, and (1;)icr C Dy, such that
= [y f(ey(m;(x,y)))dy for every i € I. Then the function

g(x)=/y\s <6y<zo‘z mxy>>dy

i€l

belongs to H and, by the convexity of f, satisfies g < ;¢ cigi. We deduce
from Lemma 2 that

inf {/ fley(n(z,y)))dzdy, ne DM}
2x(Y\S)

:gig;lf_t/gg(x)dx: /Qessgigjf{g(x)dz

CH02;C°(Y;R?)), x,.)dy =0,
~ [ essint Fleytn(a.y))dy, |7 < LB e [, ate
n Y\S

Y
n=¢(x)+((r)es ANy in 2x8
n e Cy(YV;RY), /ﬂdy:ﬂ,

Y

n(y) = ¢(z) + ((x)es Ay in 2x 8

:/mf Fley(n(y))dy, du
(7] Y\S

=/dwmqmm,
(9]

where the last equality follows from the strong continuity on Wﬁl’p (Y;R3) of
¢ — [, fley(®))dy and a density argument. The assertion (36) is proved. O

In the same manner, we have:

Corollary 3 For every T € D(§2;R?), there holds (see (10))

/ghom(r)dx: inf /][ g (ey(q) + M(T)) dxdy.
o qeCL(2;0% (5

5.4 Apriori estimates, convergences and identification relations

In the following proposition, we analyze the asymptotic behavior of a sequence
(u) satisfying (13) and

sup Fr(u.) < +oo, (37)
e>0

dx
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of the sequence of its symetrized gradient, and of the auxiliary sequences (v.),
(0.), (¥2), (%) defined by (15). In what follows, the operators . — v. and
u. — 0. are denoted by v. and 0.: more precisely, for every ¢ € LP(£2;R?),

we set

ve(p)(z) == Z (][S_‘P(57$3)d%2(5)) Ly:(2"),

iel, .

1 (39)
eAwa»=§3ngmwyff—ya%n+yanXax@dH%@ﬂmcﬂ)

i€l Se

Proposition 1 Letu. be a sequence in Wy'?(£2; R3) satisfying (13) and (37).
Then, up to a subsequence, the following convergences hold:
u. — u weakly in LP(£2;R3),
vo(u) — v weakly in LP(£;R3), 0. (u.) — 0 weakly in LP(12),
uly, — (v+0es Ay) Ls(y), (39)
ulr. — Sl weakly in LP(£2;R3),
6,03 € LP(2;Wy™(0, 1)),

U — U, ce(us) — ey(uog), ce(u)lonr. — ey(ug)ly\s,
40
ug € LP(2; W, P(Y)), / uo(., y)dy = u, (“0)
Y
and
0
0
e(uc)ly, — (ey(q) + M(7)) 1s(y), 7= 0w |, (41)
B
0£3

for some q € LP(2; WHP(S;R3)), where M(7) is defined by (10).
If in addition » > 0, then, up to a subsequence,

UES]ITE — |Slw weakly in LP(2),

<%’ 95(:15)) — (w,0)  weakly in LP(£2)?,

v e LP(Q2;WEP(0, L;R3)); 6w e LP(2'; W, (0, L)),

and P 9

Ue3 u1 v2

e Ik (w e 5$U3y2) sw)
62’01
0z

1 821}2

e(ue)lr, = (e,) + M) Ls(y),  7=| 55 |,
dxs
s
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for some l € LP(£2; WHP(S;R?)). Besides (see (16), (17)),

(v,0) € Dy if 5 =0,

(v,w,d) € Dy if 22 > 0. (42)

Proof  Let u. be a sequence in W, *(£2;R3) satisfying (13) and (37).

If 5 = 0, by (13) and (38) the sequences (uc), (ve(u:)) and (0.(u.)) are
bounded in LP({2) (see (44)).

If ¢ > 0, by applying the inequality (see [5, (4.41)])

P c
[l +leal + 2] e < S [ et as, v e Wiz,
. € e Jr,
to ¢ = u., taking (1) and (2) into account, we deduce

/ [uc[Pdr < CF.(u.) if x>0, (43)

€

thus (u-17.) is bounded in LP(£2;R?). By (38) and Jensen’s inequality,

[ veworar=3 [ ax /.

icl.

<>/ Vo [ f ol a0

icl.
_ 1
S| Jr.

p

][ u.(s,x3)dH?(s)| da’
St

|ue|Pd,

hence (v:(u.)) is bounded in LP. The same holds for (0.(u.)). By making
suitable changes of variables in the Poincaré-Wirtinger inequality

/ 90—][ pds'
Y s
we infer

P
/ <p—][ pds'
YZ Si

dz’ < Csp/ |VeplPds' Vo e WHP(02), Vi€ I..
Y
By substituting u. for ¢, summing with respect to ¢ over I (see (11)) and
integrating with respect to x3 over (0,L), we deduce from (38) and Korn’s
inequality in W, ?(¢2; R?) that

p
dz’ < c/ |VplPds' Vo e WHP(Y),
Y

/ lue — v (u.)|” do < C’ep/ |Vu|Pdx < Csp/ le(u.)|Pdx
Y-x(0,L) (9 0

< CFc(u.),

(45)
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where Y. = (J;e;. Y. However this, along with (43) and (44), only shows that
(uely, x(0,1)) is bounded in LP(£2; R?). To circumvent this difficulty, we extend

u. by setting u. = 0 in R2\ 2 x (0, L) and substitute ¥ = -3, %)2 for Y in
the above argument. Noticing that £ C (J;e;. Y2 x (0, L), [V} = 9|V, and

Diel. f%x(o L) \Vu[Pdz <9 [, [Vu[Pdz, we infer

luc[Pdr < /~ luc|” dx’
/.Q ) Z i (O0,L)

i€l

p
< Ci%:s /)7;' ][Sgus ds'| daz’ + Capiez;s /)7;x(o,L) |Vu,|Pdx
<C [ elw)l do+ CF.(w).
Taking (43) and (44) into account, we infer
/Q luc|Pdx < CF.(u.) if  »x>0. (46)

Therefore, by (37), (u.) is bounded in LP(£2;R3) if s > 0.

Revisiting their proofs, we then find that all assertions stated in [5, Propo-
sitions 4.5, 4.6, 4.7] hold, up to the modifications described below in Remark
3. We deduce that all assertions stated in Proposition 1 hold, (40) being a
consequence of (32).

Remark 8. Fibers of cross-sections of size r. < & were considered in [5].
Here, we have r. = ¢. The notation . =& ¢y employed in [5] simply means
0l —polg(y). In [5] the fields v.(u.) and 0. (u.) are denoted by B° (u.)
and (diamS)?ss (ue). The first line of [5, (4.58)] is irrelevant to our context and
must be replaced by the weak convergence in LP(§2;R?) of (u.) to u.

6 Proof of Theorem 1

In the spirit of the I'-convergence method [12], we establish a lower bound in
Section 6.1, an upper bound in Section 6.2, and conclude the proof in Section
6.3.

6.1 Lower bound inequality

Proposition 2 Let (u.) be a sequence in Wy P (12;R3) satisfying (13), (37)
and, up to a subsequence, the convergences stated in Proposition 1. Then

liminf F, (u;) > @1 (u,v,6) if »x=0,
e—0

47
limi(glf F.(u:) > Po(u,v,w,9) if »x>0. (47
e—
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Proof. Assuming (13) and (37), we extract a subsequence of u., of u. such
that liminf. o F.(u.) = limg_, 4o Fr, (Ue, ), and then a further subsequence
(denoted wu. for notational simplicity) such that all convergences stated in
Proposition 1 hold. Setting

Fs(us) =l + 13 I := / Epf(e(us))dx§ I3 :=k. /g(e(us))dma
O\T.

we obtain (same proof as that of [5, (6.5)])

hmmf I3 > k/ gom(Tydr, T=| ou if 5 =0;

liminf I3 > %/ g (r)de, T= O3 if 2 > 0.
e—0 0 Ow

By (30) and the two-scale convergences, stated in (39) and (40), of the se-
quences (u:171.) and (u.) to v(z) + 6(z)es Ay and ug, respectively, we have

ug(z,y) =v(x) +0(z)es Ay a.e. in 2 x 5. (49)
By the p-positive homogeneousness of f, I.; = fQ f(ee(u-1 g7, ))dr hence,

by the two-scale convergence (ce(u-1o\7.)) to e,(up) stated in (40) and the
lower bound (31) applied to j = f, the following holds

liin_j(r)lflgl > /_QXY\S fley(uo))dedy = /Qxy\s fley(uog —u(z)))dzdy.

On the other hand, by (40), (49), and the definition (9) of ¢/, we have

/ Fley (uo — u(z)))dzdy

W, P (V;R?) dy =0,
> [t [ 7esw)dy Ve /"’ / da
2 Y

Y =v(z) —u(x) +0(z)es Ny in S
:/cf(v—u,Q)dx.
2

Collecting (42), (48) and the above inequalities, we infer

limi(r)lfFe(uE) > &y (u,v,0) if 22=0,

E—

liminf F, (u.) > $o(u,v,w, ) if 52> 0.
e—0

Proposition 2 is proved O
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6.2 Upper bound inequality
Proposition 3 Let (p,9,(,a,b) € D(2;R3)? x (D(£2))? such that

¢3:C:0 Zf(k,%):(+0070),

(1,¢,a,b) =0 if 32 = +o0, (50)

and let o > 0. Then, there exists a sequence (p.) in CL(£2;R3) satisfying
0. — ¢ weakly in LP(£;R?),
vo(p.) = wedkly in LP(§2;R?), 0.(p.) — ¢ weakly in LP(12), (51)

1
R (ves(9.),0:(0.)) — (a,b) weakly in LP(2)* if 0 < 2 < 400,

and
limsup Fe(p,) < D1(p,9,() + « if  x=0,
e—0 (52)
limsup Fr(p.) < Po(p,9,a,b) + « if  x>0.
e—0

Proof. We fix a > 0, (¢,%,(,a,b) € D(2;R3)? x (D(£2))? satisfying (50), and
©Po € Dy—_p,¢ (see (36)) such that

[ feeodsdy < [ - g0+ . (53)
2x(Y\S) o

Setting
2
T5 = {x € 2, dist(x,T.) < &%},
we fix (&) C C°°(£2) satisfying

2 C
0<& <1, &=1inT, &=0in02\T, |V§E|S?7
and consider the sequence (p.) C C1(£2;R?) defined by
ye(2'
o) = (1= &) (. 27)) L ex.. (54)

where X, is obtained, depending on k, s, by substituting ¢ for . in [5, (6.28),
(6.29) or (6.31)] if 5 < +oo and by setting x. = 0 if 5 = +oo. Namely,
e if 0 < k < +00, by Corollary 3 we can fix ¢ € C}(£2; C>°(S;R3)) such that

0

Q
g O
5

b s+ M@)oty <k [ gonine G T-

Q| 4,Q
G
w [M

where M (1) is defined by (10). We set

WA WA /
XE:: Ee"’deS N Ye — & (81)[}61 yil‘i‘aq/}EQ y582> €3 + £q <J}7 yaix )>7 (56)

€ Oxs &  Oxs
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he(x) := Z < Sih(sl, 82,x3)d51d52> Ty: (x1,22) Vh € LP(02). (57)

i€l

o If k = 400 and » = 0, we set

8#}61 yEl 8¢52 y62> 63. (58)

XE:ZQP&_e(@x;; 3 + 6.133 3

e If 0 < s < +o0, applying Corollary 3 we fix ¢ € CL(£2;C>(S;RR?)) sat-
isfying the inequality deduced from (55) by replacing k by s and setting

T= 0z , and define

o

Xo(2)i= (@) + 2 2a, U2t e L) o9

7 £ 8 £ 8
be(z) — 2 3731%1 — v 3731#52

o If 3 = 400, we set x. = 0. We split F.(p,) into the sum of three terms:

Rlp)=latlotls L= [ fCeloeuG/o)

Iz—:2 = /T€E2\T€ f (56 (Q05>) dl’; I€3 = ZEL g (6 (Xs)) dz.

e

For every =g € C.(2 x Y;S3), we have

/
lim Ey (:v, M) dz = / Eo(z,y)dxdy,
e=0Jo\1e? € 2x(Y\S)

hence, by the estimate ce ((po (a?, %ﬂ)» =e,(po) (m, %ﬁ)) + O(e),

lim Iy :/ fley(py))dzdy.
2x(Y\S)

e—0

One can check that |e(sp,.)| < C in T§2 \ T¢, therefore

Iy < C|TS\ Te| < Ce.
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Substituting e for r. in the proofs of [5, (6.23), (6.24)], we find

liminf I 3 gk/ g"om(r)dx + g, T=| oys if 26 =0,
e—0 0 2 s

liminf I3 < %/ g™ (T)dx + g, T= da2 if 2> 0.
e—0 0 2 ab

8%3

Combining the above inequalities, we obtain (52). Proposition 3 is proved. O

6.3 Conclusion of the proof of Theorem 1
Let u. be the solution to (1). Then, F.(u.) — [, fu.dr < F.(0) =0, thus,
F.(u.) < C|u5|LP(Q;R3). (60)

We deduce from (13) if »» = 0, and from (46) and (60) if » > 0, that
(ue) is bounded in LP. This, along with (60), implies that (u.) satisfies (37),
hence there exists a subsequence (u., )ren satisfying the convergences stated
in Propositions 1. Applying Proposition 2, we infer

lim inf F. uek)—/f~u5kdx2¢1(u,v,9) —/f~udx if =0,
k—+o00 0 0

(61)
lim inf F. uek)—/f-ugkdxzég(u,v,w,é) —/f~udx if 3> 0.
Q o)

k——4oc0

Let us fix a > 0. The functionals &; are convex and bounded on the unit ball
of the Banach space LP({2;R3) x D; (i € {1,2}), hence strongly continuous.
By density, there exists (p,,¢,a,b) € D(£2;R3)? x D(£2)3 satisfying (50) and
such that

le(‘Pa"p; C) o / f : QOdSC < lnf(,P{wm) +a it = 0,
0
Py (9, a,b) / fropde <mi(PI™) 4o i x>0,
N

Applying Proposition 3, we fix (p,.) C CL(£2;R?) verifying (51) and (52). Since
u. is the solution to (1), we have

e—0

lim sup F; (u.) /f ugdﬂc<hmsupF ®.) /f p. dz,
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thus, by (52),

limsup F. (u.) — / [ -ucdz < inf(PPom) + 2a it =0,
e—0 0

(62)
limsup F.(u.) — / f-ucdr < inf(PEo™) + 2a if  22>0.
Q

e—0

We deduce from (61), (62) and the arbitrariness of « that (u, v, 6) is a solution
to inf(Prom™) if 2 = 0, and (u,v,w,d) is a solution to inf(Pro™) if » > 0.
Theorem 1 is proved. O

7 Proof of Corollary 1

7.1 Case =0

If (u,v,0) is a solution to (20), then for all (p,,(,t) € D(2;R3)? x D(2) xR,

él(u,v,e)—/Qf~udxS(Pﬂuﬁ—t(p,u—i—t’t/f,&—i—tﬁ)—/(Zf-(u—i—t(p)da:.

Dividing this inequation by t # 0 and sending ¢ to £0, we infer

0 0
_ _ 0 0
/(vgu),c(’/’C‘P)+k ovs | G| ous d$=/f~<pdm.
Ie) o % o
Ox3 D3

Choosing ¥ = ¢ = 0, we obtain

/Q<v9u> 'C<0¢)d$=/9f-<pdx,

and, letting ¢ vary in D(2; R?), deduce
uU—v .
0{1,2,3}{1,2,3,4} ( 0 ) =f inf.
Selecting ¢ = ¢ = 0, we get
0

0
_ 0
Lo ) of 2 )emo
0

dz3

0,
9
and, integrating by parts and letting 9 vary, infer

v—u )
C12){1,2,3.4) ( 0 ) =0 in £2,

O“vs
v—u 22 .
Caii23.4) < 9 ) — kG334 (gz-;) =0 in £

2
ox3
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Choosing ¢ =9 = 0 leads to

0 0 0
_ 0 0
/(”9“)-0 Ok o | €|y |dx=o.
17 0 e
¢ o6 o¢
8ZE3 amg

yielding, by the arbitrary nature of (,

93%vs
Vv—Uu 2 .
Cla12.4) ( 0 ) — kG 4y (3,4) <§9> =0 in,

2
ox3

thus (u,v, ) is a solution to (21).

7.2 Case >0

In the setting of linear elasticity, the effective problem (17) takes the form

inf P o) — ud
. | 2 (u, v, w,0) /nfu , (63)
where
8%vy
azg
Dy (u,v,w, ) := 1<viu)-0<viu>+zr~@rd T = %
2\U, v, w, - o 2 0 0 2 X, - 611:13 5
&5
oz

Dy = { (v,w,8) € L2 HF(0, 1)) x LA(2's H}(0, L)%, w5 =0,
v=0 and w=d§=0 if %:—l—oo}.
(64)

If (u,v,w,d) is a solution to (63), then for every (p,%,a,b) € D(2;R3)? x
D(£2)? with 13 = 0 and every t € R,

@z(u,v,w,5)—/f-udzg¢2(u+tcp,v+t¢,w+m,5+tb)—/ [ (u+tp)de.
2 2

Dividing this inequation by t # 0 and letting ¢ tend to 0, we get

9%v, %y
— — v2 2
/(”0“)-0<’/’0‘P>+% G Il dxz/f-(pdx.
’ % % !
b
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Choosing ¥ = a = b = 0, and letting ¢ vary in D(£2;R?), we infer
3
Zcik(uk —v)=fi in$2, Vie{l,2,3}.
k=1

Setting ¢ = a = b =0, we get

9%vq 824y
82a:§ 6213
_ 9 v 9%
/<v0u>_o(qg)+% i |G| w3 |de=0,
w
2 Fo 0
853 0
Oxs

then, integrating by parts and letting 9 vary, deduce

3 2
g Pw 936 .
I;C(xk(vk_Uk)+%;GQBTﬁ+%Ga3Tx§+%Ga4Tx3 :O m Q,

for o € {1,2}. The choice ¢ =19 = b =0 leads to

ng 0
821)2 0
x da3 -G da dr = 0,
Q Duw B
ox T3
09 0
8{1}3

yielding
2 P
Dvg 0? 026
Z —%Gga v - %G33 e - %G347 =0 in {2

3 2 2 ’
= Oxy O0x3 O0x3

while ¢ =9 = a = 0 yields
2
PP, 0? 025
Z _%G4a71}3 — %G437w — %G447 =0 in £2.
= Oz s

Collecting the above equations, we infer that (u,v,w, d) is the unique solution
to the system of equations

C'{1,2,3}{1,2,3}(“ -v)=f in £2,
o' 93 )
Croypes(v—u)+x (G{l,Q}{l,z} 2t + G{1,2}{3,4}87x§ (?)) =0 in £,
3,v/ 52 w .
G{3,4}{1,2}87mg +G{3,4}{3,4}87x§ (5) =0 in £2,
(w,v,w,8) € L*(2;R?) x Dy.
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Since G is invertible, so is G 3 4}(3,4}- Setting E = —G{_3174}{374}G{3’4}{1’2}, the

third line of (65) implies that 2 (1:;) B
3 3

D'(£2;R?). By [6, Remark 1 (iv), (v)]), the matrices G(3,41{1,2y and E vanish
in the isotropic case but not, in general, in the anisotropic case. We deduce
that 3%3 (13]) E8 23 + k(z1, x9), for some distribution k € D’(£2';R?). The
last line of (65) then implies that k € L?(£2’;R?). Integrating with respect
to x3 over (0,L), taking into account the homogeneous Dirichlet boundary
conditions satisfied by w, d, g;’ on 2 x {0,L}, we infer that k = 0, hence

(5) EZ - 8” . The system (65) is thus equivalent to (24,26), where

H =Gip12) + Gy B =Gy 0GB00.2)-

One can check that H is symmetric. A straightforward computation shows that
7 Gt = 8 v H% ”2 , hence H is definite positive (because G is so). Coming
back to ( ) we deduce that the limit couple (u,v) is the unique solution to
(25). The relative simplicity of the effective strain energy @ in (25) covers the
interesting torsional and extensional phenomena emerging in the fibers. The
effective strain energy @, yields a better insight into the effective behavior of
the fibers.

7.3 Justification of (19)

The components of the matrix G associated to the quadratic form 2¢"°™ on
R* defined by (5,10) are given by
Gy = fBlestate) + Mle) s (e, (ale) + Mle) v (66)

where g(7) denotes the solution to the minimization problem (5,10) associated
to the Euler-Lagrange equation

{ — div,Be,(q(1)) = div,BM(7) in S, (67)
(Bey(gq(1))) - n=—(BM(7)) -n on 08,
equivalent to

][B (e,(@(m) + M(7) : e,()dy =0 Ve H'(S;RP). (68

By (66) and (68), we have

Gij = ][SBey(q(ei)) : M(ej)dy + ][SBM(CZ‘) : M(eJ)dy
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I
By (67), denoting by n’ the outward normal to 85 and setting n = (I’E') ),

fB%mm%M@Mwif%mm%BM@My
S S
1

= Tq q
151 Jos
. q
151 Jas

(e;)®@n: BM(ej)d”;‘-l1 — ][ q(e;) - divy,(BM(e;))dy
s

(e;) ®n : Be,(q(e;))dH' + ][Sq(ei) -div, (Bey(q(e;)))dy

On the other hand,
F aten) - div, (Be, ale;))dy
s

=51/ q(e;) - (Bey(q(e;))n)dH" — ][Sey(q(ei)) - Be, (q(e;))dy

: b e e :e e; .
= S 8541(61') ®@n : Bey(q(e;))dH ][SB J(a(e)) s e, (gle;))dy

The above equations imply (19).
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