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Abstract
Count time series obtained from online social media data, 
such as Twitter, have drawn increasing interest among 
academics and market analysts over the past decade. 
Transforming Web activity records into counts yields time 
series with peculiar features, including the coexistence of 
smooth paths and sudden jumps, as well as cross- sectional 
and temporal dependence. Using Twitter posts about coun-
try risks for the United Kingdom and the United States, this 
paper proposes an innovative state space model for multi-
variate count data with jumps. We use the proposed model 
to assess the impact of public concerns in these countries 
on market systems. To do so, public concerns inferred from 
Twitter data are unpacked into country- specific persistent 
terms, risk social amplification events and co- movements 
of the country series. The identified components are then 
used to investigate the existence and magnitude of country- 
risk spillovers and social amplification effects on the vola-
tility of financial markets.
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1 |  INTRODUCTION

With globalization, the need to understand the dynamics of country- risk perception and its effects on 
financial markets has become a relevant issue to investors, central bankers and governments for both 
portfolio diversification and debt issuance (Campbell et al., 2001; Hassan et al., 2003; Huber et al., 
2019). Major political events are known to be an important driver of market volatility (Bialkowski 
et al., 2008); however, a measure of the underlying country- risk perception is still lacking.

The effect of new information on volatility in international markets has been studied extensively 
in the past few years. Previously, it was held that global risks are the only considerable risks in 
financial markets, but more recently, researchers have begun to examine country risks and global 
risks to uncover local factors that cause stock market return volatility. Moreover, options have been 
traded on the VIX index since 2006, thus allowing volatility to be considered an asset.

The identification of public concerns related to specific issues of interest (e.g. country risks) 
requires a data source that can be used to proxy the perception of the general public. Unfortunately, 
existing sources of information on country- specific risks are either qualitative (World Economic 
Forum, 2017) or low frequency (Howell, 2011) and often represent the perceptions of small panels 
of experts, thus ruling out the possibility of using them as proxies for the general public’s concerns.

To address this gap, in this paper, we focus on count series generated from big textual data re-
garding country- specific risks via online social media. This type of data is characterized by sudden 
information avalanches and is affected by topic- specific trends, thus requiring adequate statistical 
tools to disentangle these components. In this paper, we propose a new state space model for Web 
count data that allows country- specific risk series to be categorized into three separate components, 
each capturing a specific feature driving the intensity of the observables. In particular, (i) a smooth 
term represents the latent intensity of country- specific risk concerns, while (ii) a multiplicative 
jump component captures their social amplification, and (iii) a global component controls for com-
mon factors. This method of decomposing country- risk perception offers new ways to evaluate the 
impact of social media phenomena on market and sociopolitical systems. In this paper, we focus 
on the analysis of risk perception issues, but the proposed framework enables the use of count time 
series to analyse any Web phenomenon characterized by social amplification.

To overcome the limitations of the aforementioned data sources, we investigate user- generated 
Web data. Content generated by the Web community, such as online social media post- writing and 
sharing activities, have been widely used to track aggregate behaviour and infer the dynamics of 
the public’s attention, perceptions and concerns about specific topics of interest (Rogers, 2013). 
Compared to other data sources (e.g. surveys and official statistics), big textual data from the Web 
allow for (i) larger sample sizes, (ii) higher velocity and (iii) real- time collection (Varian, 2014).

Data from social media generally consist of a collection of character strings, which can be trans-
formed into other data types for analysis with standard statistical methods (Einav & Levin, 2014). For 
example, count data can be generated from texts through filtering conditions, which may consist of 
regular expressions (RegEx) or metadata restrictions (e.g. the author, geolocation or date). Count data 
from the Web are becoming increasingly valuable and widely used in several fields. For example, data 
from Google’s search engine and Twitter have been used recently to improve forecasting accuracy 
in macroeconomics (D’Amuri & Marcucci, 2017) and finance (Ranco et al., 2015). The analysis of 
Web- based count data requires suitable and simple statistical tools designed for analysis and making 
predictions.

Figure 1 shows the daily number of Twitter posts published from April 2016 to March 2017 that 
contain the term ‘risk’ and refer to the United States (US) or to the United Kingdom (UK). The 
series share some peculiar features: (i) smooth evolution and (ii) several jump events. The observed 
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series are also characterized by positive auto-  and cross- correlation, thus suggesting the presence 
of both temporal and cross- sectional dependence. Social media users’ concerns regarding global- 
scale risks (e.g. trade wars, global financial crisis and pandemics) may also impact country- specific 
activity, thus inducing the positive cross- correlation between the observed series in Figure 1. To 
account for this fact, we enlarge our sample by including a third series regarding global risks, which 
are not imputable to a specific country, and use it as a common driver of US and UK observables. 
State space (or parameter- driven) models provide a flexible and interpretable framework for the 
structural analysis of serially dependent time series (Durbin & Koopman, 2012). To account for the 
correlation structure of the data, we propose a new state space model in which the smooth temporal 
evolution of the observed variables is driven by a dynamic latent series representing social media 
users’ concerns.

A parameter- driven Bayesian model for multivariate count data was recently proposed by Aktekin 
et al. (2018). In their framework, the cross- sectional sum of past observations affects the dynamics 
of all latent series. Similarly, Zaman et al. (2014) proposed a method for predicting the time path of 
retweets. However, our goal is to decompose the public’ latent concerns regarding country- specific 
risks.

An additional distinctive feature of the data in Figure 1 is the presence of country- specific and 
non- synchronized activity peaks. These sudden jumps cluster over time and have different degrees of 
persistence and scale. Time series characterized by smooth trajectories with discontinuities that clus-
ter over time are usually associated with exceptional events or structural breaks and call for the use of 
Markov- switching processes (Chen et al., 2019; Frühwirth- Schnatter, 2006).

The sudden and transient nature of these jumping patterns allow them to be characterized as excep-
tional risk amplification events affecting the intensity of social media users’ concerns. Social ampli-
fication phenomena are known to occur on Web platforms, such as Twitter, especially for risk- related 
issues (Fellenor et al., 2018). We define social amplification as the sudden intensification of online 
communications containing a specific risk- related theme (e.g. a country). See Kasperson et al. (1988) 
for a theoretical framework of the social amplification of risks. The concerns of online communities 
can be amplified by salient events, online news coverage and other sociocultural factors affecting risk 
perception (Renn et al., 1992). Recently, Strekalova and Krieger (2017) found evidence of risk ampli-
fication in health- related risk debates occurring on Facebook. Similarly, Wang et al. (2016) analysed 
Twitter posts to identify the intensity of societal concerns regarding climate change- related risks.

Country risks are important in the explanation and prediction of market volatility indices (Ferreira 
& Gama, 2005). In particular, market operators are interested in identifying the specific contribution 
of each driver of public concerns in explaining the fluctuations of a volatility index to determine the 
country- risk spillover effects (Hoti, 2005). The measurement of country- risk perception may also 
empower government institutions with a new tool suitable for enacting their policy objectives, such as 

F I G U R E  1  Top: daily time series of counts of Twitter posts from 1 April 2016 to 1 March 2017 for the US (left) 
and the UK (right). Bottom: autocorrelation of order 1 and instantaneous cross- correlation between the US and UK
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issuing of new government bonds. Moreover, by disentangling the different components of country- 
related public concern and their relationship with volatility, it is possible to assess the relative contri-
bution of rational and irrational behaviours in explaining volatility indices. Motivated by these facts, 
in this paper, we are concerned with the identification and disentanglement of country risks, which are 
then used to explain the fluctuations of a market volatility index, the VIX.

The contributions of this paper are manifold. First, we identify the timing, persistence and scale 
of social amplification events. Second, series- specific (country) effects are disentangled from com-
mon (global) contributions to intensity while controlling for exogenous factors that may contribute 
to explaining fluctuations in public concerns. Finally, the extracted intensities are used to highlight 
country- specific contributions to fluctuations in the VIX index.

The reminder of the paper is organized as follows. Section 2 presents the new statistical model for 
count time series data. The inferential procedure and algorithms are then described in Section 3. Next, 
the proposed methodology is used in Section 4 to study count data from Twitter posts that mention 
risk. Finally, Section 5 summarizes the main findings.

2 |  A STATE SPACE MODEL FOR WEB COUNT DATA

Despite widespread interest in analysing risk perception and social amplification in online social 
media, statistical tools capable of exploiting specificity in the aforementioned data are limited. The 
peculiar features of count data obtained from social media, as discussed in the previous section, de-
serve special attention in the definition of a proper statistical model. We note that counts extracted 
from Web data and our dataset share similar characteristics, thus making the proposed statistical 
framework applicable to a wide range of empirical studies.

Modelling time series of counts pose several challenges, such as discreteness of the observations, 
temporal and cross- sectional dependence and over- dispersion. Despite renewed interest over the past 
decade (e.g. see Weiß, 2018), these issues still need to be resolved. Recent contributions include the 
dynamic Skellam model (Koopman et al., 2017) used for studying financial tick- by- tick data, Yang 
et al. (2015) study of health data with excess zeros, and the self- excited threshold Poisson model de-
veloped by Wang et al. (2014). Within the Bayesian approach, Park et al. (2011) used a zero- inflated 
Poisson model to study counts of user generated content in an on- line community.

In this Section, we propose a novel state space model for multivariate count time series which 
allows for: serial and cross- sectional correlation, sudden signal amplification events which cluster 
over time, and smooth dynamics. Computationally, the proposed model scales linearly in the cross- 
sectional dimension. We classify textual data from Twitter according to geographical markers (i.e. 
mention of the country in the text) to obtain a multivariate count time series {y1,t, …, yJ,t, zt}t consist-
ing of country- specific series yj,t for each j = 1, …, J, as well as a global series zt that stems from texts 
without a geographical reference to any of the selected countries. See Section 4 and the Supplement 
for further details on the construction of the dataset.

Starting from the count data illustrated in Figure 1, we aim to extract and disentangle components 
of the underlying dynamic intensity driving the observed counts: the public’s concerns for country risk. 
As discussed in Section 1, the existence of unobserved public concerns driving Twitter posting activity 
suggests the use of a state space framework for count time series (Davis et al., 2016). This choice allows 
us to model data on their natural scale while preserving a direct interpretation of the components of the 
model. We follow this approach and assume that the country- specific observables, yj,t, are Poisson dis-
tributed with a persistent, smooth latent intensity process, xj,t, which represents country- risk concerns. 
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This also allows for positive autocorrelation and instantaneous cross- correlation, as found in the data 
(see Section 1 and the preliminary analysis in Section S.6.2. of the Supplement).

We account for persistent, smooth dynamics of positive- valued intensity xj,t by assuming a non- 
central Gamma distribution as the transition density of the process: 

The non- central Gamma distribution is obtained as a Poisson mixture of Gamma. Hence if 
x |z ∼ a(a + z, c) with z ∼ oi(b), then x ∼ NcGa(a, b, c), where a(a, c) denotes a Gamma distribu-
tion with shape a and scale c. It has density 

A non- central Gamma transition density defines an autoregressive Gamma process of order 1 (Gouriéroux 
& Jasiak, 2006), or ARG(1). The parameter �j in Equation (3) governs the magnitude of innovation in 
the latent state process, whereas � j, �j account for persistence. Gouriéroux and Jasiak (2006) proved 
the stationarity of the ARG(1) process if 𝛽 j𝛿j < 1 and derived the conditional mean and variance as 
�[xj,t+1 |xj,t] = �j�j + � j�jxj,t and � [xj,t+1 |xj,t] = �2

j
�j + 2� j�

2
j
xj,t. The choice of the ARG process for 

the latent states is motivated by its flexibility and the fact that it facilitates the structural interpretation of 
the latent states (public concern in our empirical application).

As discussed in Section 1, the sudden jumps magnifying the volume of observed counts in Figure 
1 are due to social amplification phenomena. To avoid bias in the estimation of public concern, xj,t,  
we introduce a positive multiplicative factor, �j,t, thus obtaining the overall public concerns with am-
plification as 

The multiplicative factor allows us to disentangle the contribution of transient social amplification events, 
xj,t�j,t, from the persistent evolution of country- risk concerns, xj,t. Furthermore, because jumps in Twitter 
counts are persistent and cluster over time (see Section 1), we assume that country- specific social ampli-
fication is driven by an L- state hidden Markov chain {sj,t}

T
t=1

, such that �j,t = �j,sj,t
, where �j,l is a state- 

specific parameter. The transition probabilities of each chain j are assumed to be time- invariant and 
denoted by �j,l,k = P(sj,t = k |sj,t−1 = l), with transition matrix Λj. Finally, to account for the effects of 
exogenous variables on latent intensity, we include country- specific covariates, vj,t, in the analysis.

The resulting univariate model with local Markov- switching jumps has a state space representation: 

(1)xj,t+1 |xj,t ∼ NcGa(�j, � jxj,t, �j).

P(x) = exp
(
−

x

c

) ∞∑

k= 0

xa+ k−1

ca+ kΓ(a + k)

bkexp( − b)

k !
, x ∈ ℝ+, a > 0, b > 0, c > 0.

(2)x̃j,t = xj,t(1 + �j,t) = xj,t + xj,t�j,t.

(3)
yj,t|xj,t, �j, sj,t ∼oi(xj,t(1+�j,sj,t

)+exp(v�
j,t
�j))

xj,t+1|xj,t ∼NcGa(�j, � jxj,t, �j)

T A B L E  1  Spearman’s rank correlation among observed counts (yj,t, zt) and latent local intensities, without 
amplification (xj,t) and with amplification (x̃j,t)

Observations Latent multivariate Latent univariate

y
US,t, y

UK,t y
US,t, zt y

UK,t, zt x
US,t, x

UK,t x̃
US,t, x̃

UK,t x
US,t, x

UK,t x̃
US,t, x̃

UK,t

0.257 0.447 0.387 0.066 0.071 0.234 0.249
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To assess the univariate model’s (3) ability to capture country- specific latent dynamics, we investigate 
the correlation structure of the observables counts and filtered latent intensities. Table 1 reports that the 
Spearman’s rank correlation between the observed count time series is 0.257, whereas it is 0.234 between 
the latent intensities. This result indicates that the univariate model is unable to correctly extract the latent 
intensity at country level since the correlation between the observables is entirely transferred to the latent 
intensities. This is undesirable since we want latents to only capture the share of intensity specifically 
attributable to country- level features, removing the effect of common factors. This calls for the use of a 
multivariate framework that accounts for positive correlation among the observables while allowing the 
impact of co- movements and confounding factors to be disentangled from country- specific intensity.

To account for the cross- sectional dependence structure among the yj,t, we distinguish country- 
specific public concerns from global ones, and include a common latent factor, wt, in country- level 
intensity. The latent process wt encodes Twitter users’ perceptions of global (rather than country- 
specific) risks; thus, it is assumed to drive the temporal evolution of the global series, zt. Note that 
including series zt helps in isolating the impact of common risk factors and seasonal effects from 
the country- specific concerns. This specification leads to a multivariate model with local Markov- 
switching social amplification, whose conditional independence relationships are summarized by the 
DAG in Figure 2. The state space representation is 

We refer to the components of country- level intensity as follows: ‘local’ xj,t, ‘amplification’ xj,t�j,sj,t
, 

‘global’ wt and ‘covariates’, exp(v′
j,t
�j).

The contribution of the proposed model for multivariate count time series is manifold. First, it 
accounts for series- specific and global latent intensities driving the observed counts, allowing to dis-
entangle the impact of common factors from idiosyncratic latent dynamics. Jumps have been mainly 
studied in the context of real- valued time series (see Andersen et al., 2007, and references therein) 
using an additive specification. Instead, we allow for jumps in count time series through a series- 
specific multiplicative term which amplifies the effect of series- specific intensities. Despite their 

(4)

zt|wt ∼oi(wt +exp(v�
z,t
�z))

yj,t|wt, xj,t, �j, sj,t ∼oi(wt +xj,t(1+�j,sj,t
)+exp(v�

j,t
�j))

xj,t+1|xj,t ∼NcGa(�j, � jxj,t, �j)

wt+1|wt ∼NcGa(�w, �wwt, �w)

F I G U R E  2  DAG of the model: observables (shaded grey circles), autoregressive components of the latent 
intensities and states (solid white circles) and amplification factors of latent intensity (dashed white nodes). Arrows’ 
directions indicate the causal dependence relationships of the model
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limited use in the literature (e.g. see Caporin et al., 2017), series- specific multiplicative jumps allow 
for a more flexible modelling as compared to the widespread additive specification. Finally, we do 
not make the temporal independence assumption for the jump terms and model them using a hidden 
Markov chain that allows to infer different states of excitation within the time series of counts.

Besides, the functional form of model (4) permits a direct structural interpretation of the latent 
variables and parameters as series- specific or global intensities, and amplification. This is granted by 
the assumption of an ARG process for the latent intensities. Differently, the commonly used lognor-
mal specification Wang and Wang (2018); Heinen and Rengifo (2007), despite allowing the inclusion 
of similar terms in the intensity, would make the interpretation more difficult due to the nonlinear 
exponential link function.

Jørgensen et al. (1999) presented a state space for multivariate Poisson data where the observed 
counts are driven by a common Markov process. However, our framework is more general in two 
respects. First, we assume a different state transition that allows for both stationary and nonstationary 
processes. Second, our inferential procedure also holds for different observation densities. Recently, 
Chen et al. (2019) proposed a Markov- switching Poisson integer- valued GARCH model to account 
for consecutive zeros and time- varying volatility in count data. Since their model is univariate and 
observation driven, which means that the latent intensities are perfectly predictable, it is unable to 
account for features of the data highlighted in Section 1. Alternative approaches for multivariate count 
time series have been developed by Wang and Wang (2018), who modelled dependence by assuming 
a factor structure for latent intensities, and Heinen and Rengifo (2007), who exploited copulas to im-
pose dependence among the observables while assuming a VARMA process for the dynamics of log 
intensities.

From a forecasting perspective, Berry and West (2020) used the decouple/recouple strategy to 
define a dynamic model for multivariate counts that is computationally scalable in the number of se-
ries. Conversely, our interest lies in identifying and disentangling the structural components of latent 
public concerns. This motivates the parametric assumptions underlying our model (4), which prevent 
the direct applicability of their decouple/recouple strategy.

Given the structural form of model (4), the likelihood function is a high- dimensional integral 
with no closed- form solution. Hence, we apply a data augmentation approach and introduce the 
latent state variables sj,t, xj,t, wt in the set of observations, thus obtaining the complete- data likeli-
hood function 

where j,l = {t: sj,t = l} and Nlk(Sj) = #{sj,t−1 = l, sj,t = k} are the number of transitions from state l to 
state k of the j- th chain Sj. Motivated by our interest in identifying of social amplification phenomena in 
data, we assume L = 2 and impose �j,1 = 0 for every j. This leads to identifying regime 1 as having no 
jumps and regime 2 as the social amplification regime. However, the model specification is general and 
allows for any number of regimes L > 1 that can be identified using the constraint 𝜉j,1 < … < 𝜉j,L.

(5)

L(Y, Z, V, S, W, X|�)=

T∏

t= 1

NcGa(�w, �wwt−1, �w)

T∏

t= 1

J∏

j= 1

NcGa(�j, � jxj,t−1, �j) ⋅

L∏

l= 1

J∏

j= 1

∏

t∈j,l

(wt +xj,t(1+�j,l)+exp(v�
j,t
�j))

yj,t

yj,t!
exp(− (wt +xj,t(1+�j,l)+exp(v�

j,t
�j))) ⋅

T∏

t= 1

(wt +exp(v�
z,t
�z))

zt

zt!
exp(− (wt +exp(v�

z,t
�z)))

J∏

j= 1

L∏

l= 1

L∏

k= 1

�
Nlk(Sj)

j,l,k
p(sj,0|Λj),
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3 |  BAYESIAN INFERENCE

3.1 | Prior specification

In this paper, we adopt a Bayesian approach that provides a simple way to introduce regularization via 
the specification of appropriate prior distributions and permits a flexible modelling of jumps through 
hierarchical priors. The parameters �j and �j (similarly, �w and �w) of the non- central Gamma distri-
bution in (4) are not separately identifiable, thus requiring the introduction of constraints for their 
estimation. To solve the identification issue, we introduce a soft constraint by specifying a truncated 
prior distribution for �j, �w, which bounds them away from zero, and then test the robustness of the re-
sults for various truncation levels. In all the analyses performed, we find that the parameters �j, �w are 
never stuck at the lower bound, thus providing evidence that the proposed constraint is non- binding. 
See the Supplement for further details regarding the proposed truncation scheme and values of the 
hyper- parameters.

We assume a flexible hierarchical prior for the country- specific social amplification factor, �j,2. 
The overall prior structure for each j = 1, …, J is 

The notation Ta(a, b;�) stands for a Gamma distribution truncated on the interval S𝜏 = (0, 𝜏) ⊂ ℝ+, 
parametrized by τ. Finally, the unnormalized prior distribution for � j is conjugated for the shape parameter 
of a Gamma distribution (see Llera & Beckmann, 2016) with positive real hyper- parameters a� , b� , c�. 
The conjugacy property allows for efficient posterior sampling via the inverse transform method without 
the need for a tuning parameter. Figure 3 reports the directed acyclic graph (DAG) of the model and prior 
structure.

3.2 | Posterior approximation

The joint posterior distribution of parameters and latent variables is 

Since this distribution is not tractable, we develop a MCMC algorithm to generate random draws from the 
posterior distribution and approximate all posterior quantities of interest. We refer to Appendix A and the 
Supplement for the detailed derivation of posterior distributions.

Estimating the trajectory of latent intensity is known as the filtering problem. For special classes 
of state space models, such as linear Gaussian state space models, the filtering distribution is known 
in closed form, and efficient algorithms are available (e.g. the Kalman and Hamilton filters). In more 
general frameworks such as Equation (4), when no closed- form expressions are available, the filtering 
problem may be solved by resorting to simulation- based methods, such as particle filters. We follow 
this strategy and rely on the selection/mutation (SM) algorithm (e.g. see Cappé et al., 2005) to obtain 

(6)

�j ∼a(a� , b�) � j|�j ∝
a
� j−1

� �
� jc�

j

Γ(� j)
b�

�j,2|� j, �j ∼a(� j, 1∕�j),

�j ∼ (�,Σ) �z ∼ (�
z
,Σ

z
)�j,l ∼ir(�

j
)

�j ∼a(a� , b�) � j ∼a(a� , b�) �j ∼Ta(a� , b�;S�),

�w ∼a(a�w
, b�w

) �w ∼a(a�w
, b�w

) �w ∼Ta(a�w
, b�w

;S�w
).

P(�, S, W, X |Y, Z, V) = P(�)L(Y, Z, V, S, W, X |�).
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filtered estimates of the paths of latent states wt and xj,t. The SM algorithm addresses the degeneracy 
issue by selecting, at each point in time, a set of particles based on the associated weights and then 
simulating an independent extension for each selected trajectory. The static parameters governing the 
dynamics and amplification factors are sampled using an adaptive Metropolis– Hastings (aRWMH) 
step (Atchadé & Rosenthal, 2005). Finally, hyper- parameters are directly sampled from their corre-
sponding posterior full conditional distributions.

We use the convention Xj = {xj,t: t = 1, …, T} and X = {Xj: j = 1, …, J} and similarly for the 
other variables and parameters. The MCMC algorithm is articulated in two main blocks, drawing the 
path of global intensity (wt) and country- specific components (xj,t, sj,t, �j,sj,t

), as follows:

1. Sample the global latent intensity and the static parameters:
(1a) Sample the latents W conditionally on (Y, Z, V, �w, �w, �w, X, �, S) using a particle filter 

with the SM algorithm;
(1b) Sample the static parameters of the ARG process for wt:

• sample �w from P(�w |W, �w, �w) via aRWMH;
• sample �w from P(�w |W, �w, �w) via aRWMH;
• sample �w from P(�w |W, �w, �w) via aRWMH;

(1c) Sample the coefficients �z from P(�z |Z, Vz, W) via aRWMH;
2. Independently for each j = 1, …, J, sample the country- specific latent intensity, hidden Markov 

chain and static parameters:
(2a) Sample the latents Xj conditionally on (Yj, Vj, �j, � j, �j, �j, W, Sj) using a particle filter with 

the SM algorithm;
(2b) Sample the hidden chain Sj conditionally on (Yj, Vj, W, Xj, �j,Λj) using the FFBS algorithm;
(2c) Sample the rows of transition matrix Λj from P(�j,l |Sj) for l = 1,2;
(2d) Sample, in block, the parameters associated with the jump terms:

• sample �j from P(�j |�j, � j);
• sample � j from P(� j |�j, �j) via the inverse transform method;
• sample the amplification �j,2 from P(�j,2 |Yj, Xj, W, � j, �j, Sj) via aRWMH;

(2e) Sample the static parameters of the ARG process for xj,t:
• sample �j from P(�j |Xj, � j, �j) via aRWMH;
• sample � j from P(� j |Xj, �j, �j) via aRWMH;

F I G U R E  3  DAG of model (4). It exhibits the hierarchical structure of priors and related hyper- parameters: 
observables (shaded grey circles), latent parameters (solid white circles) and fixed hyper- parameters (dashed white 
circles). Arrows’ directions indicate the causal dependence relationships of the model
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• sample �j from P(�j |Xj, �j, � j) via aRWMH;
(2f) Sample the coefficients �j from P(�j |Yj, Vj, Xj, Sj, �j) via aRWMH.

We tested the sampler’s performance in simulated experiments and compared it to a lognormal speci-
fication for latent intensities wt, xj,t. The results suggest that our framework is better suited for minimizing 
the risk of miss- classifying ordinary fluctuations of the observables as social amplification events, which 
is one of the objectives in our application. See the Supplement for further details. Note that model (4) 
and the proposed sampler can be easily modified to analyse binary or integer- valued time series since the 
observational densities in Equation (4) only affect the distribution to be approximated by the particle filter.

4 |  EMPIRICAL APPLICATION

In this application we model the public concern among Twitter users regarding country- related risks 
in the UK and US. According to Chung (2011), ‘easy access to and efficient sharing of risk infor-
mation [...] could accelerate the intensity as well as the speed of social attention to risk issues’. 
Accordingly, we apply model (4) to count data generated from Twitter posts mentioning risk to extract 
the intensity of country- risk concerns (e.g. political, macroeconomic, financial or environmental) and 
identify risk amplification events.

The period of investigation, which ranges from 1 April 2016 to 1 March 2017, is characterized by 
the UK’s European Union membership referendum (23 June 2016), the US presidential elections (8 
November 2016), and their aftermath, including the Brexit negotiations and the Trump administration 
taking office. Referendums and presidential elections are major political events, so they receive broad 
media coverage and are characterized by intense speculation on their outcome and consequences. 
Since these events can potentially generate public concern regarding their implications at the national 
and international level, this dataset provides an ideal setting for disentangling the different compo-
nents of country risks and evaluating their impact on the volatility of financial markets. Figure 4 
summarizes the workflow of the empirical application.

4.1 | Data collection

Tweets containing the word risk were collected by programmatically querying the Search API of 
Twitter (Makice, 2009). Further details about the data strategy and query parameters are included 
in Section S.6.1 of the Supplement. For each day of the period under investigation, we count the 
number of Twitter posts (considering both tweets and retweets) matching specific country dictionary 

F I G U R E  4  Flow chart of the implemented research procedure
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conditions (see RegEx Tables 17 and 18 in the Supplement), which are used to identify tweets refer-
ring to country- specific risks affecting either the US or UK. By doing so, we obtain the count time 
series yUS,t and yUK,t. Note that filtering risk data by country dictionaries without focusing on specific 
subtopics offers a broad lens to view all the (potentially time- varying) salient dimensions of country- 
risk perception. Conversely, some of these dimensions may be missed when using topical dictionaries 
since they cannot provide, a- priori, an exhaustive list of all the drivers of country risks.

Moreover, while country dictionary conditions (e.g. country names and acronyms) are exhaustive, 
unambiguous and stable over time, topic dictionary conditions with the same qualities are much more 
difficult to construct. Similarly, we create the global series zt by counting tweets about risk(s) that 
do not refer directly to the US or UK (i.e. tweets that do not match either country’s dictionary con-
ditions). Tweets counted the global series may refer to risks related to policies (e.g. Trump’s foreign 
policy), events (e.g. the Brexit) and international factors (e.g. protectionism and international trade 
wars) which may affect both countries.

To control for the possible effect of breaking news and scheduled events that are expected to affect 
the volatility of financial markets, we also include (i) the share of newspaper articles containing the 
word risk, at both the country and global level, and (ii) the country- specific number of expected high- 
volatility events as covariates. See Section S.6.1 of the Supplement for further details.

4.2 | Results

Our data consist of T = 334 daily observations for J = 2 countries (the US and UK), and a global se-
ries. The count series for the UK and US are rescaled by a factor of 0.1 and the global series by a factor 
of 0.001. We run the Gibbs sampler for 20,000 iterations after discarding the first 4000 as burn- in.

Figure 5 shows the original data and the estimated latent intensity, distinguishing the persistent 
country- specific part (red line) from the estimated social amplification phenomena (red stars). The 
sampler identifies jumps that correspond to days characterized by the highest variation rates in the 
observations. In the first 4 months, which include the Brexit referendum, the path of the persistent 
component for the UK experienced a tumultuous period with higher average values compared to the 
following months. For the US, latent intensity appears rather stable, with some turmoil from mid- July 
to the US elections in November, as Donald Trump’s polling against Hillary Clinton rose steadility 
(Bovet et al., 2018), as well as when he took office in late January 2017.

F I G U R E  5  Left: observed data (black triangles) and the posterior mean of filtered states (dashed red lines) 
and jumps (red stars). Right: posterior distribution of the social amplification factor [Colour figure can be viewed at 
wileyonlinelibrary.com]
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The days in which social amplification phenomena occur are reported as grey shades in Figure 6,  
along with the distribution of their duration. The different country- level results corroborate the interpretation 
of social amplification as a local and unsynchronized phenomenon. In particular, most UK events occur be-
fore and right after the Brexit referendum, whereas social amplification in the US is more concentrated when 
Donald Trump took office. In particular, we find that during the first 3 months of the sample, corresponding 
to the period immediately prior to the EU referendum, which was characterized by the Brexit victory and 
resignation of PM David Cameron, social amplification of risk with respect to the UK was frequent.

However, we find that events of social amplification are relatively more frequent for the US (i) at the 
beginning of June 2016, (ii) in August 2016 and (iii) from late December 2016 to February 2017. As afore-
mentioned, interval (ii) was characterized by temporary reductions in the gap between Clinton and Trump 
in the polls, whereas the interval (iii) follows Donald Trump taking office as the President of the United 
States, and corresponds to the commencement of Trump’s ‘America First’ domestic and foreign policy.

Moreover, from the right- hand column of Figures 5 and 6, we find that the average duration of am-
plification events in the UK is lower compared to the US, but their amplitude is higher in relative terms, 
capturing the fact that social amplification in the UK is more exceptional and intense compared to the 
US. This provides evidence in favour of the interpretation of social amplification as a transient phenom-
enon, which rapidly dissipates without having any persistent effect on the public’s perception of risk.

The composition of total intensity for the countries under investigation is shown in Figure 7, which 
reports the daily share of each component over the total. Overall, we find that in both countries, (i) the 
share of local intensity, xj,t, evolves quite smoothly over time, and (ii) social amplification, when oc-
curring, accounts for about 70% of the total intensity in both countries. These results provide evidence 
of time variation in the drivers of country- risk perception, highlighting the role of social amplification 
in periods of extraordinary political events (e.g. referendums, elections, new presidents taking office), 
and the relative importance of the local and global components of risk perception on ordinary days. 
In particular, since August 2016 the weight of country- risk concerns, xj,t (dark grey), is significantly 
higher for the US than the UK, whereas the latter series is found to be mainly driven by the global 
term, wt (light grey). This may be a consequence of UK- related concerns experiencing a drop a few 
weeks after the Brexit referendum, aligning with the level of non- country- related risks. This drop may 
also be due to a switch in the nature of Brexit- related risks after the referendum, which started being 
perceived as global risks. Overall, these results suggest that for the UK, local factors are the most 
influential driver of public concern only in the first part of the sample, whereas the forces driving 
the intensity of US concerns are more evenly distributed, with the local factor playing the major role.

F I G U R E  6  Left: observation (black triangles) and estimated hidden chain sj,t or the US and UK: regime 2 (grey 
bars) and regime 1 (white bars). Right: distribution of the duration of the social amplification regime (regime 2)
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To deepen the analysis of social amplification phenomena, Table 2 reports the three most frequent 
words written during these periods (i.e. days t such that sj,t = 2). Interestingly, we find that the these words 
change over time, providing evidence that social amplification is not related to a specific event or topic; 
instead, it rather captures swings in posting activities regarding all topical dimensions of country risks.

For example, the jump in the US series in May 2016 refers to concerns related to the possible 
spread of the Zika virus in the US. Interestingly, the UK- risk perception jumped in January 2017 in 
response to Donald Trump taking office, thus showing that local events may have significant ripples in 
the public’s concerns regarding other countries. In summary, the results presented in Table 2 support 
the hypothesis that on days with social amplification, people are more intensively communicating 
their concerns regarding major political events. Hence the public concerns regarding these country 
risks may be amplified through social media.

We extend our analysis to include Germany and China and obtained results similar to those for the US 
and UK. Furthermore, we used topic- based classification of tweets to investigate political and economical 
risk dimensions. Interestingly, we find that the social amplification of the intensity of economic risks oc-
curred close to the Brexit referendum, whereas Donald Trump taking office is associated with a political risk 
social amplification phenomenon. We refer the reader to Section S.6 of the Supplement for further details.

Motivated by the long- standing debate on the relationship between risk perception and financial 
markets, we now investigate the performance of the extracted intensity of country- risk concerns in 
explaining fluctuations of a volatility index, the VIX. This analysis offers new ways to evaluate the 
impact of social media amplification phenomena on market volatility. Figure 8 plots the total intensity 
of country- risk concerns for the US and UK (blue and red) against the VIX index (black).

To explore this relationship further, we exploit the decomposition of country risks into the per-
sistent and social amplification components (see Equation (2)) to assess the contribution of each factor 
in explaining fluctuations in the VIX. Table 3 reports the estimation results of the linear regression: 

where we assume a non- informative prior and use four alternative specifications for the vector of covari-
ates, fj,t: (i) local intensity with amplification, x̃j,t, (ii) jumps, xj,t�j,sj,t

, (iii) local intensity, xj,t and (iv) local 
intensity and amplification, (xj,t, xj,t�j,sj,t

)′. We consider three models: two including only a single country 

(7)ΔVIXt = � + ��
1
Δf1,t +…+ ��

J
ΔfJ,t + �t, �t ∼ (0, �2),

F I G U R E  7  Daily composition of intensities in percentage: local xj,t (dark grey shade), amplification xj,t�j,2 (red), 
covariates exp(�′

j
vj,t) (gold), and global wt (light grey) [Colour figure can be viewed at wileyonlinelibrary.com]
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T A B L E  2  Dates of occurrence of social amplification (regime 2) and the three most frequently used words in 
posts of the corresponding days (excluding retweets and tweet duplicates)

US UK

From To Top 3 words From To Top 3 words

1 April 2016 1 April 2016 jobs, ban, lives 4 April 2016 4 April 2016 cfos, brexit, 
country

21 April 2016 21 April 2016 judges, liberal, 
forecast

12 April 2016 12 April 2016 forecast, tata, 
steel

31 May 2016 31 May 2016 zika, researchers, 
infection

25 April 2016 25 April 2016 terror, new, high

12 June 2016 13 June 2016 synthetic, drugs, 
pose

9 May 2016 9 May 2016 forecast, may, 
pollution

27 July 2016 27 July 2016 data, security, 
ups

26 May 2016 27 May 2016 students, 
referendum, 
vote

15 August 2016 15 August 2016 million, increase, 
children

2 June 2016 2 June 2016 vote, global, 
growth

25 August 2016 25 August 2016 just, blood, using 7 June 2016 7 June 2016 forecast, big, 
brexit

18 September 2016 18 September 2016 ups, early, heart 20 June 2016 25 June 2016 brexit, forecast, 
exit

31 December 2016 1 January 2017 obama, ideals, 
trump

27 June 2016 27 June 2016 data, security, 
fire

5 January 2017 6 January 2017 trump, data, lives 18 November 
2016

18 November 
2016

bankers, warn, 
exodus

16 January 2017 16 January 2017 trump, jobs, man 11 January 
2017

11 January 
2017

trump, details, 
users

24 January 2017 26 January 2017 fbi, hillary, grave 23 January 
2017

23 January 
2017

free, people, 
high

28 January 2017 4 February 2017 security, grid, 
utility

15 February 
2017

15 February 
2017

legal, sector, 
people

F I G U R E  8  VIX (solid black line, left axis) and local intensities with amplification (right axis): the US (dashed 
blue line) and the UK (dashed red line). For visualization purposes, local intensities have been rescaled by a factor of 
0.01 [Colour figure can be viewed at wileyonlinelibrary.com]
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(a- b) and another with both countries (c). The best model for explaining fluctuations in the VIX includes 
the total risk intensity for both countries. We find that including risk intensity for both countries tends to 
improve the model’s performance, thus suggesting the existence of cross- country risk spillover effects. 
Moreover, by disaggregating local intensity from the jump component, the results show that neither com-
ponent in isolation has a better performance than their combination. If we also consider the results of the 
full model (bottom- right part of Table 3), this may be interpreted as evidence that both components are 
relevant, with social amplification playing a major role.

This analysis shows that the flexible decomposition of country- risk intensity enabled by our frame-
work allows us to investigate the impact of its components (and combinations of them) on a market 
index, such as the VIX.

5 |  CONCLUSIONS

In this paper, we investigated the relation between country- risk perception and financial markets 
using a measure of public concern at the country level extracted from online social media data. Count 
time series obtained from Web data pose several challenges, including the coexistence of jumps and 
smooth dynamics, with cross- sectional effects and common dynamics. To address these challenges, 

T A B L E  3  Bayesian linear regression of VIX on local intensity with amplification, Δx̃j,t (top- left); local intensity, 
Δxj,t (top- right); jumps, Δxj,t�j,sj,t

 (bottom- left); local intensity, Δxj,t, and jump, Δxj,t�j,sj,t
 (bottom- right). Standard 

deviations of the posterior distributions are in parentheses. Coefficients with posterior credible intervals not containing 
zero are shaded in grey

(a) (b) (c) (a) (b) (c)

US only UK only US, UK US only UK only US, UK

const −0.008 −0.007 −0.005 const −0.008 −0.006 −0.008

(0.081) (0.081) (0.080) (0.081) (0.081) (0.081)

Δx̃
US

0.162 0.171 Δx
US

0.153 0.157

(0.083) (0.082) (0.155) (0.153)

Δx̃
UK

0.232 0.246 Δx
UK

0.337 0.324

(0.130) (0.128) (0.318) (0.320)

DIC 744.814 745.544 742.997 DIC 747.778 747.635 748.673

const −0.007 −0.006 −0.005 const −0.007 −0.005 −0.005

(0.082) (0.082) (0.081) (0.082) (0.080) (0.081)

Δx
US
�

US
0.121 0.136 Δx

US
0.221 0.202

(0.083) (0.083) (0.157) (0.157)

Δx
UK

�
UK

0.156 0.180 Δx
US
�

US
0.151 0.159

(0.121) (0.122) (0.086) (0.087)

Δx
UK

0.533 0.500

(0.342) (0.337)

Δx
UK

�
UK

0.226 0.237

(0.130) (0.129)

DIC 746.655 747.019 746.354 DIC 746.580 746.514 746.283
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we designed a novel state space framework for multivariate time series of counts that is able to ac-
count for both of these features. The total intensity of each country series is given by the combination 
of a series- specific autoregressive term driving the persistent smooth dynamics, an idiosyncratic jump 
term that accounts for social amplification, and a global term that captures co- movements.

The proposed method is applied to count time series extracted from Twitter posts about UK and 
US country risks. Using our model, we were able to identify periods of social amplification and relate 
them to specific events. Finally, to highlight the value of extracted components, we investigated their 
impact on the VIX and found evidence of country- risk spillover effects, driven primarily by social 
amplification phenomena. The proposed methodology is general and has a wide range of applications 
in other scientific fields where count time series are popular, such as biomedical and epidemiological 
applications.
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SUPPORTING INFORMATION
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APPENDIX A

POSTERIOR DISTRIBUTIONS
This section reports the posterior distributions of the parameter in model (4). See the Supplement 
for the detailed computations. The adaptive random walk Metropolis– Hastings (aRWMH) steps 
have been designed following Atchadé and Rosenthal (2005), with an asymptotic acceptance rate of 
r = 0.30.

A.1 Sampling latents: W, Xj, and Sj

The trajectory of the global latent intensity W is estimated conditionally on (Y, Z, V,�z, �w, �w, �w, X, �, S).  
Since the filtered distribution from the state space in Equation (4) is not available in closed form, we 
approximate it using a particle filter based on the Selection/Mutation (SM) algorithm (Cappé et al., 
2005). For analogous reasons, the SISR method is used to generate the trajectory of the country- specific 
autoregressive latent intensity Xj, for j = 1, …, J, conditionally on (Yj, Vj,�j, �j, � j, �j, �j, W, Sj).

The trajectory of the latent state variables Sj = (sj,1,…, sj,T )�, for each j, is obtained using the FFBS 
algorithm (Frühwirth- Schnatter, 2006).

A.2 Sampling �
w
 and �

j

The posterior distribution for �w and �j, for each j = 1, …, J, are 

We sample from these posterior distributions using an adaptive random walk Metropolis– Hastings 
(aRWMH) step with truncated lognormal proposal.

A.3 Sampling �w and �
j

The posterior distributions for �w and �j, for each j = 1, …, J, are 

P(�w|W, �w, �w)∝Ta(�w|a�w
, b�w

;�w)

T∏

t= 1

NcGa(wt|�w, �wwt−1, �w),

P(�j|Xj, �j, � j)∝Ta(�j|a� , b�;�)

T∏

t= 1

NcGa(xj,t|�j, � jxj,t−1, �j).
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We sample from them using an aRWMH step with lognormal proposal.

A.4 Sampling �
w
 and �

j

The posterior distributions for �w and � j, for each j = 1,…, J, are 

We sample from them using an aRWMH step with lognormal proposal.

A.5 Sampling �
j
 and �

j

The posterior distribution for �j and � j, for each j, are given by 

We sample from the latter distribution via the inverse transform method.

A.6 Sampling �j,2

We sample from the posterior distribution of the jump sizes �j,2, for each j, using an aRWMH step 
with Gamma proposal 

P(�w|W, �w, �w)∝a(�w|a�w
, b�w

)

T∏

t= 1

NcGa(wt|�w, �wwt−1, �w),

P(�j|Xj, � j, �j)∝a(�j|a� , b�)

T∏

t= 1

NcGa(xj,t|�j, � jxj,t−1, �j).

P(�w|W, �w, �w)∝a(�w|a�w
, b�w

)

T∏

t= 1

NcGa(wt|�w, �wwt−1, �w),

P(� j|Xj, �j, �j)∝a(� j|a� , b�)

T∏

t= 1

NcGa(xj,t|�j, � jxj,t−1, �j).

P(�j |�j,2, � j) ∝ a

(
a� + � j(c� + 1),

b�

1 + b��j,2

)
, P(� j |�j,2, �j) ∝

(
a��

c� +1

j
�j,2

)� j

Γ(� j)
b� +1

P(�j,2 �Yj, W, Xj, �j, � j, Sj) ∝ �
� j −1

j,2
exp

⎛
⎜
⎜
⎝
− �j,2

⎛
⎜
⎜
⎝
�j +

�

t∈j,2

xj,t

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

�

t∈j,2

(wt + xj,t(1 + �j,2))yj,t
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A.7 Sampling �z and �j

The posterior distribution of the coefficients of the covariates, �z and �j, for j = 1, …, J, are given by 

To improve the mixing of the chain, we use an aRWMH step with a Normal proposal to sample element 
wise from the posterior distribution of �z and �j.

A.8 Posterior for Λj

The posterior distribution for each row l of each transition matrix Λj is 

P(�z|Z, Vz, W)∝ exp

(
−

1

2
(��

z
Σ
‼

−1

z
�z−2�

‼

�

z

Σ
‼

−1

z
�z)

)

⋅

T∏

t= 1

(wt +exp(v�
z,t
�z))

zt exp
(
−wt −exp(v�

z,t
�z)

)
,

P(�j|Yj, Vj, Xj, W, �j, Sj)∝ exp

(
−

1

2
(��

j
Σ
‼

−1

�

�j−2�
‼

�Σ
‼

−1

�

�j)

)

⋅

T∏

t= 1

(x̃j,t +exp(v�
j,t
�j))

yj,t exp(− x̃j,t −exp(v�
j,t
�j)).

P(�j,l |Sj) ∝ir(�
‼ j1

+ Nl1(Sj), …, �
‼ jL

+ NlL(Sj)).
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