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Data assimilation for urban noise mapping with a

meta-model

Antoine LESIEUR, Vivien MALLET, Pierre AUMOND, Arnaud CAN

Abstract

Accurately predicting dynamic noise levels in urban environments is non-
trivial. This study aims to optimally combine both simulated and empirical
data. Acoustic data from microphone arrays, traffic and weather data was
merged with a simulated noise map, created with a statistical emulator tool
(meta-model). Each hour, a noise map is generated by the meta-model with
the measured traffic and weather data. This map is algorithmically merged
with the measured readings to form a new composite map. The resulting an-
alyzed map is the best linear unbiased estimator under certain assumptions.
The performance is evaluated with leave-one-out cross-validation. The per-
formance of the method depends on the accuracy of the meta-model, the
input parameters of the meta-model and the structure of the error covari-
ances between the simulated noise level errors. With 16 microphones over
an area of 3 km2, this new method achieves a reduction of 30 % of the root-
mean-square error when compared to a meta-model only.

1. Introduction

A regulatory noise map is a representation of the equivalent average noise
level field over an urban area. These maps are useful to evaluate scenarios for
predictive applications, and are produced by many cities around the world.
Within Europe, every agglomeration with more than 100 000 inhabitants is
required to produce a noise map every 5 years. The standard reference for
producing noise maps in the EU is CNOSSOS-EU (Kephalopoulos et al.,
2012), it is currently applied following the directive 2015/996 (European
Commission, 2015).

Most urban scale noise maps use models similar to CNOSSOS-EU. They
proceed as follows, first, the emission algorithm is based on a discretization
of the road. Each road section is described by a set of point sources whose
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intensities depend on the road, traffic (flow rate and speed) and weather
data. Secondly, the propagation algorithm determines the sound attenuation
between each point source and each receiver based on geometry and weather
data, after a ray path calculation. When this method is applied at a city scale,
the high number of sources and receivers makes this method computationally
expensive. It is not adapted to the generation of hourly or even daily noise
maps: the computation time would be too high. This approach is limited
by the quality of the input data used to generate the noise map. Traffic
data may only be measured on a subset of roads, which may not provide an
accurate representation of wider situation.

Observation-based approaches have been developed to build maps solely
from noise measurements. (Wei et al., 2016) built an interpolating model
based on observations and a method to propagate the observed sound level.
(Aumond et al., 2018) statistically interpolated noise measurements with a
kriging approach; this approach gave satisfactory results in the vicinity of the
measurement devices but suffered from the lack of sensors when estimating
the noise level over a wider range.

Several attempts have been made to enrich noise maps with observational
data. (Ventura et al., 2018) assimilated observations from mobile phone mi-
crophones in order to improve a pre-calculated noise map. However this
process is useful only when a large number of mobile observations can be col-
lected for this task. The DYNAMAP project (Zambon et al., 2016) updates
noise maps by scaling the noise levels of pre-calculated noise maps using the
differences observed between measured and calculated original grid data for
different classes of roads. (De Coensel et al., 2015) speculated about combin-
ing a noise mapping model with mobile noise measurements to increase the
resolution of the noise map and fixed measurements to allow a dynamic noise
mapping. These methods however purely rely on statistical methods (Least
Mean Squares) and do not take into account either error propagation or traf-
fic dynamics models. (Eerden et al., 2014) finally infers the noise mapping
software inputs from noise observation by estimating the emission sources
from the observed noise measures in the vicinity of the roads. This method
uses a forecasting sequential approach rather than a spatial approach.

The approach proposed in this paper offers (1) to use a dynamic noise
mapping, quickly generated by a meta-model (also called surrogate model)
and based on real-time weather and traffic input data, and (2) to spatially en-
rich the noise map with noise observation data thanks to a data assimilation
process which includes a simulation error model.
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The objective of this paper is to develop a strategy to display accurate
hourly noise maps, starting with:

• An open source noise mapping software,

• Annually averaged input data for the simulation,

• Hourly traffic and weather data from local sensors,

• A network of microphones spread across the study area.

The approach presented in this paper uses both meta-model outputs and
observational data to allow a dynamic approach where 1-hour noise levels
can be evaluated. This provides a view on the city noise dynamics and a
finer analysis of the exposure to noise, at night and during peak hours and
it is very fast to compute. This paper proposes a three-step approach:

1. Meta-modeling: the noise map produced by a classical noise model is
quickly approximated using a meta-model. A meta-model is a replace-
ment for a noise model when only a limited number of selected input
parameters are allowed to change. The meta-model is trained with a
sample of simulated noise maps, from which it is possible to statisti-
cally represent the relation between the selected input parameters and
the corresponding noise maps.

2. Data assimilation design: the simulation error covariance matrix is
computed with some training observations.

3. Data assimilation process: the simulation is corrected anywhere in
space by the observation data.

A performance evaluation step will be executed with a leave-one-out cross
validation method.

This paper explains in section 2 the framework where the study lies (sec-
tion 2.1), the software and data used for the study (sections 2.2 and 2.3), how
the meta-model is built (section 2.4), how the data assimilation process works
(section 2.5) and the method conducted to validate the process (section 2.6).
In section 3, the performance of the data assimilation is evaluated.

2. Methods

2.1. Description of the framework

The proposed approach consists in relying on a metamodel which repro-
duces the outputs of a reference software in a very short computing time,
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and hourly traffic and acoustic data, to produce hourly noise maps. This
approach is inspired by a study done for air quality simulation (Tilloy et al.,
2013). All the steps of the data assimilation process are summarized in fig-
ure 1.

The approach has three steps:

• Build a meta-model from reference simulations (section 2.4);

• Build a gain matrix K used in the data assimilation algorithm (Ap-
pendix);

• Build a data assimilation algorithm which corrects the results based on
a error covariance matrix (section 2.5).

2.2. Reference noise mapping software

2.2.1. Presentation

The simulator used in this study is NoiseModelling v3.0 (Bocher et al.,
2019), an open source software designed to produce noise maps for evalu-
ating the noise impact on urban mobility plans. Its input are traffic data,
topographic data (buildings distribution, altitude, surface types, ...) and
meteorological data (temperature, hygrometry, probability of occurrence of
favorable atmospheric conditions ...). The version used in this paper is es-
pecially designed to run multiple simulations (Aumond et al., 2020). A first
call to the simulator computes a matrix of rays between the source/receiver
pairs, which is the longest step for a noise mapping software. Each call to
the reference noise mapping software with a new set of parameters is then
much faster since it only requires to compute the attenuation along each
pre-computed path.

The input traffic data along each road is discretized into a set of point
noise sources, an emission value is assigned which depends on the speed,
the flow rate and other traffic parameters (type of road, type of vehicle,
...). The output noise level field is represented by a regular grid of receivers.
NoiseModelling uses a path finding method similar to the one proposed by
CNOSSOS-EU which computes the path taken by the acoustic waves between
the sources and the receivers, taking into account the propagation distance,
the number of reflections and whether the diffractions are taken into account
or not. The software then computes the attenuation along each path for a
selected range of octave bands (63 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz,
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Figure 1: Functional diagram of the data assimilation process.
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4 kHz and 8 kHz) in accordance with the CNOSSOS-EU method. The sound
level at a receiver is the sum of the contributions of each source. The final
output is a grid of receivers with an attributed sound level value computed
in dB(A).

2.2.2. Characteristics of the simulation

The simulated area is an area located in the 13th district of Paris, France.
Its surface is about 3 km2. The receivers, where noise levels will be calcu-
lated, are located on a regular grid of step ∆x = 15 m. Receivers have also
been located at the location of the observation points. The total number of
receivers is n = 8456. All these receivers are positioned at a fixed height of
4 m. Note that the actual height of the microphones does not always match
the height of the simulation. The only available value for the height of the
microphone is the floor level where they were positioned, which is too vague
to be precisely set as an input value. The propagation parameters are: 250 m
for the propagation distance, 100 m for the distance after reflexion, one order
of reflection and one order of diffraction.

2.2.3. Standard noise map using annually averaged data

The nominal Lday field distribution given by the reference noise mapping
software with this input data is shown in figure 2. The nominal Levening and
Lnight have also been computed in the study.

2.3. Observation data

2.3.1. Noise data

This study uses data collected in the 13th district of Paris, France during
a measurement campaign conducted in 2015 by Lavandier et al. (2016). A
network of 25 microphones has been deployed across the study area. 16 of
them have been selected for the present study, the ones that had simultane-
ously an exploitable set of data during the entire time period. They have
recorded the noise level Lfi in dB for every one-third octave fi from 63 Hz to
20 kHz with a time step of ∆t = 125 ms, from January 1, 2015 to September
30, 2015. The indicator used in this study is LAeq1h

The spatial distribution of the sensors is shown in figure 3.

2.3.2. Annually averaged input data

The input files of the reference noise mapping software are the buildings
distribution and the annually averaged road traffic map during the daytime

6



0 250 500 750 1000 meters

 < 40
 40 - 45 
 45 - 50 
 50 - 55 
 55 - 60 
 60 - 65 
 65 - 70 
 70 - 75 
 > 75

Lday (dB(A))

Figure 2: Lday level distribution over the study area

(between 06:00 and 18:00, local time), the evening (between 18:00 and 22:00)
and the night (between 22:00 and 06:00) computed for the year 2014. These
data are respectively given by the IGN , the French national geographical
institute, and the city of Paris. Data like ground surface or altitude have
been ignored in this study.

2.3.3. Real-time 1 h traffic and weather data

The real-time 1 h traffic data on the main roadways of Paris during the
case study time period is available online on the city of Paris open data
platform. For every measured track section, at every hour, the hourly average
flow F (t) (vehicles/h) and the occupation rate R(t) (ratio of time during
which the sensors detect an occupation) are given. Given the track section
length `t and assuming an average vehicle length of `v = 4 m, it is possible
to estimate the average vehicle speed S(t) on the track section in km · h−1:

S(t) = 3.6 · F (t) · `v
R(t) · `t

(1)

7



Figure 3: Distribution of the sensors across the study area, the observation point colored
in black is the one which is displayed in figure 4

The real-time weather data has been taken from an open access source at
the Montsouris weather station near the study area. The weather station up-
dates its data every hour in real time. The reference noise mapping software
only takes into account the temperature but upcoming versions might also
take into account the wind intensity and direction, the temperature gradient,
and more generally, the probability of occurrence of favourable atmospheric
conditions.

2.4. Meta-model

This section introduces the tools built during the study and their justifi-
cation: the meta-model and the design of its parameters (2.4.4).

2.4.1. Construction of the meta-model

When a noise map is computed with annually averaged input data, one
may wonder how this noise map changes with a slight modification of the
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parameters, e.g, a multiplicative coefficient applied to the traffic flow or a
temperature variation in ◦C.

p ∈ Rk denotes the input vector of parameters and M(p) ∈ Rn is the
output of the reference noise mapping software. In order to speed up the com-
putation of the hourly maps, a meta-model M̂(p) which is very similar to
M(p) but with a computational time much lower (in this case, ∼ 100 ms ver-

sus ∼ 1 h) is built. M̂ is generated using a training sample of size r = 2·103,
{p(1), · · · ,p(r)} and the corresponding simulations {M(p(1)), · · · ,M(p(r))}.
M̂ is a weighted sum of a small number of maps obtained with a dimension
reduction algorithm described in section 2.4.2, the weights are computed
by a kriging interpolation function based on the weights of the training set
described in section 2.4.3.

2.4.2. Dimension reduction

A PCA (Principal Components Analysis) (Jolliffe, 1986) algorithm de-
termines which of the principal components explain most of the variance for
the training sample. The structure of the noise mapping behavior allows us
to explain more than 97 % of the variance with a short sequence of vectors
{mapi}i∈J1,kK (k ' 3) as previously shown in (Lesieur et al., 2020):

M(p) = x̄b +
k∑

i=1

wi(p)×mapi + ε, (2)

where x̄ is the average of the training set outputs:

x̄b =
1

r

r∑
i=1

M(p(i)), (3)

wi(p) is the projection coefficient of the centered M(p) on mapi,
mapTi (M(p)− x̄b), and ε is the residual error.

2.4.3. Kriging

The reader might be familiar with kriging in its classical geostatistical
background as it has been applied in some studies (Baume et al., 2009).
However, contrary to the usual kriging employed in several acoustics appli-
cations using geographical data, this paper applies kriging to the abstract
vector space of the input parameters which has no relation with the geo-
graphical 2D space.
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The goal of the second step is to obtain for each map i selected in sec-
tion 2.4.2 a fast approximation of the weight function:

wi : Rk → R
p 7→ wi(p)

(4)

where wi(p
(j)) is known for every p(j) in the training sample. Kriging (Math-

eron, 1962) is a technique which allows to determine an approximation ŵi(p)
of wi(p) by interpolating from the known values wi(p

(j)).
Once the kriging interpolators are computed for every projection vector,

the meta-model M̂ is defined as follows:

M̂(p) = x̄b +
k∑

i=1

ŵi(p)×mapi (5)

M̂(p) is a short sequence of elementary operations, hence its computation
is much lower than the reference noise mapping software and then allows:

• A fast real-time computation of a noise map with the real-time input
data;

• The generation of the statistical error covariance matrix Bstat with a
Monte Carlo method, which will be used in data assimilation (See 2.5.2).

2.4.4. Design of the parameters

The parameters selected as inputs of the meta-model are shown in Table 1
with their respective amplitudes. For each input, the amplitude corresponds
to the range of values observed in real-time.

Table 1: Input parameters and their input ranges for the meta-model. They are all dimen-
sionless multiplicative coefficients applied to the reference values (the annually averaged
daily values) except the temperature which is the actual value in ◦C.

Parameter Minimum value Maximum value
Light vehicle speed 0.1 2
Heavy vehicle speed 0.1 2
Light vehicle flow 0.1 2
Heavy vehicle flow 0.1 2
Temperature (◦C) -5 30
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The goal of this section is to infer a value for the input coefficient from
the real-time traffic data. As seen in the beginning of section 2.4.1, the input
which represents traffic variations in the meta-model is a multiplicative coef-
ficient applied to the annually averaged traffic data. It therefore models the
variation in time of the traffic, and assumes a constant spatial distribution.
Regarding the flow rate and the speed, the input data pi is the ratio between
the average quantity on the observed roads at a given time and the average
quantity on the observed roads over one year.

Since the observed traffic data do not discriminate the heavy vehicles
from the light vehicles, the same coefficient is applied to the heavy and light
vehicle input — in other words, the fraction of heavy vehicle is assumed to
be constant.

Figure 4 compares the time evolution of the measured noise level at an
observation point and the corresponding output value of the meta-model with
the input parameters built from the traffic and weather data. It shows that
the meta-model fairly reproduces the hourly noise level distribution.

28.01 01.02 04.02 07.02

60

65

70

75

Time (days)

L
eq

(d
B
)

Leq1h obs.
Leq1h MM

Figure 4: time evolution of the observed LAeq,1h and the meta-model output for the sensor
point colored in black in figure 3
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2.5. Data assimilation

2.5.1. Presentation

The data assimilation algorithm which will be used in this paper is called
BLUE, for Best Linear Unbiased Estimator (Bouttier and Courtier, 2002). It
makes use of the output of the meta-model and applies a correction which de-
pends on B, the covariance matrix of the simulation error, R, the covariance
matrix of the observational error, and the discrepancy between observations
and simulations at the observation location. Matrices B and R characterize
the spatial behavior of the model error and the observation error respectively.

At each timestep, a nominal noise map xb = M̂(p) is computed. It is
an estimation of the real, exact state noise level distribution field xt. It is
impossible to know the exact vector xt, either from the erroneous simulation
or the incomplete (and slightly erroneous) observations. It would be the noise
level field observed if each receiver had an ideal microphone on it. The set
of observations is denoted y ∈ Rp. Let:

• H ∈ Rp×n be the observation matrix which maps a state vector, e.g.,
xt, to the observed values y, so that y can be compared to Hxt. In
this case, each observation point has a simulated counterpart, H is
therefore a matrix in which each row is full of zeros except for a one in
the column that corresponds to the receiver located at the observation
point. The elements [H]ij are equal to one if and only if the jth receiver
corresponds to the ith observation point;

• eb ∈ Rn be the simulation error xb − xt, a random vector, which is
assumed to be unbiased E[eb] = 0;

• eo ∈ Rp be the observation error y −Hxt, a random vector, which is
assumed to be unbiased E[eo] = 0;

• B = E[ebebT ] ∈ Rn×n be the covariance matrix of the simulation error,

• R = E[eoeoT ] ∈ Rp×p be the covariance matrix of the observation error.

Based on xb,B,y,R and H, an analysis state vector xa is computed as
the “Best Linear Unbiased Estimator” which is linearly dependent on xb and
y, has unbiased error ea = xa−xt, and has an error variance with minimum
trace (Bouttier and Courtier, 2002). This estimator is uniquely defined as
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follows, under the assumption that the simulation and observation errors are
uncorrelated:

xa = xb + K(y −Hxb) (6)

where
K = BHT (HBHT + R)−1 (7)

K is called the gain matrix or the Kalman matrix. The observation errors at
two different receivers are not correlated. The observation error essentially
depends on the accuracy of the microphone which is described by its standard
deviation σr, therefore:

R = σ2
rIp (8)

with Ip the identity matrix of dimension p. In the rest of the study, σr =1 dB2,
which corresponds to the industrial accuracy of the sensor.

2.5.2. Computation of the simulation error covariance matrix B

A good estimation of the covariance matrix B is crucial to perform an
efficient data assimilation. There are two approaches to compute the simula-
tion error covariance matrix: analytical and statistical. On the one hand, the
analytical approach gives a covariance formula based on the assumption that
where there is an error on the noise estimation at a given location, the traffic
estimation is subject to similar errors in the surrounding streets. On the
other hand, the statistical approach generates an error covariance matrix be-
tween the meta-model output and the ideal meta-model output, with a large
random selection of noise maps made possible by the short computation time
of the meta-model in a Monte Carlo algorithm.

Analytical covariance matrix Bana. A parametrized simulation error covari-
ance function has been successfully used in a previous work (Ventura et al.,
2018). The simulation error cross correlations between two receivers i and j
are expressed in terms of:

• dij, the length of the shortest path along the road network between
the projection of receivers i and j on the closest road computed with a
Johnson algorithm (Johnson, 1977) and shown for a specific observation
point in figure 5,

• the nominal noise field itself, through a correlation function ρ(xi, xj),
where xi and xj are the values of xb at points i and j as proposed by

13



(Riishøjgaard, 2002). The corresponding simulation error covariance
between points i and j reads:

[Bana]ij = σ2
b exp

(
−dij
Ld

)
exp

(
−|xi − xj|

Lb

)
(9)

where σ2
b is the characteristic variance of each point, Ld is a characteristic

distance in m and Lb is a characteristic noise level value in dB.

0 250 500 750 1000 meters

 0 - 350 
 350 - 700 
 700 - 1050 
 1050 - 1400 
 1400 - 1750 
 1750 - 2100 
 2100 - 2450 

distance (m)

Figure 5: This map displays the distance along the road network between the highlighted
point and the other points of the simulated map

Figure 6 shows the covariance between the same specific point and the
other points, using the analytic covariance function with σ2

b = 67 dB2(A),
Ld = 500 m and Lb = 6 dB (A = 1.03). These values were validated by a
method called χ2 diagnosis which checks whether the observations are consis-
tent with the formulation of their error covariance (see appendix for further
details). These values are consistent with other studies that computed the
correlation length of the noise error distribution such as (Aumond et al.,
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2018). It points out that the correlation is mostly significant for the points
located in the neighborhood of the selected point.
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Figure 6: This map displays the analytical covariance between the highlighted point and
the other points of the simulated map

Statistical covariance matrix Bstat. The meta-model allows to run a large
number of simulations. It is possible to compute the error covariance matrix
between the simulated noise map and the ideal meta-model output, within
the subspace {mapi}i of the meta-model Bstat with a Monte Carlo algo-
rithm (Fishman, 1996), sampling the uncertainties. Let {p(1), · · · ,p(N)} be
N random draws of a uniform distribution over the input interval (in this
case study, N = 3·104). Then, with:

x̄b =
1

N

N∑
k=1

M̂(p(k)) (10)
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Bstat is defined by:

Bstat =
1

N − 1

N∑
k=1

(
M̂(p(k))− x̄b

)(
M̂(p(k))− x̄b

)T
(11)

Figure 7 shows, for the same point as in figure 6, the covariance function
computed with the Monte Carlo algorithm. Since the dimension of the sub-
space is very low, it has a much more global distribution, the low ranking
implies that an error covariance at some receiver is likely to be correlated
with an error covariance of any receiver elsewhere in the study area. The
point is not only correlated to its neighborhood but with all the points of the
map located near a roadway.
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Figure 7: This map displays the statistical covariance of each point with the highlighted
point

Sum of the analytical and statistical covariance matrices. The covariance ma-
trix Bana built as in section 2.5.2 has shown good results in studies where
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the data assimilation is computed on one fixed nominal noise map (Ventura
et al., 2018). On the other hand, the statistical matrix Bstat cannot be used
alone for data assimilation since it only applies on the reduced subspace and
thus cannot be used to compute the covariance of xb − xt. In the appendix,
the authors have shown that a good error covariance matrix for a data as-
similation process, performed on a noise map generated with a meta-model,
is the sum of the two previous covariance matrices: Bana + Bstat.

2.6. Validation method

The leave-one-out cross-validation consists in removing the observations
of a given microphone from the data assimilation process. Only the obser-
vations from the other microphones are used to correct the noise level map.
This procedure is carried out for all microphones, one by one — only one
microphone is removed at a time. At the location of the removed micro-
phone, the meta-model performance is compared to the performance after
assimilation of the observations of the other microphones. This allows to
check whether the assimilation properly propagates in space the corrections
that originate from the observed locations. The cross-validation evaluates
the effects of the data assimilation at locations without any observations.

The bias and RMSE indicators defined in table 2 are used to quantify the
performance of the simulations for the LAeq1h.

Table 2: Scores for the performance evaluation of a model. (ci)i is the simulated sample.
(oi)i is the corresponding observed sample. n is the total number of elements in the
sample. c̄ and ō are respectively the mean of (ci)i and (oi)i. RMSE stands for Root Mean
Square Error.

Score Formula

Bias
1

n

n∑
i=1

(ci − oi)

RMSE

√
1

n

n∑
i=1

(ci − oi)2
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3. Results

3.1. Cross validation

3.1.1. Dispersion

Figure 8 shows the error dispersion for all the indicators at every step of
the data assimilation process (meta-modeling, data assimilation with B =
Bana, data assimilation with B = Bana + Bstat). The distribution gets nar-
rower as the precision of the data assimilation process increases. This evo-
lution is also presented in table 3 where the evolution of the absolute bias is
showed at each level of correction.

Table 3: Dispersion in dB(A) of the error between the observation and the simulation or the
analysis in leave-on-out cross-validation for all the microphones during all the measurement
campaign

error amplitude (dB) [0, 1] [1, 3] [3, 5] > 5
meta-model 18 % 33 % 26 % 22 %
assimilation with B = Bana 26 % 41 % 22 % 10 %
assimilation with B = Bana + Bstat 30 % 44 % 18 % 8 %

In addition, Figure 9 shows the time evolution of the observed and as-
similated sound levels at the same reception point and during the same time
period as in figure 4. The temporal evolution of sound levels is finely repro-
duced by the data assimilation process.

3.1.2. RMSE

The root mean squared error of the LAeq,1h is displayed for each month
in figure 10 at every step of the data assimilation process. The reduction of
the error covariance is noticeable. At each step, the RMSE is reduced and
goes down to an average of 2.9 dB(A) at the final stage.

As expected in section 2.5.2, the matrix B = Bana + Bstat better charac-
terize the error covariance behavior and gives better results than Bana alone
for both dispersion and RMSE.

3.1.3. Distance to the network

This section proposes to connect the individual performance of the re-
ceiver with its position in the road network. Table 4 shows the performance
of the data assimilation process at each receiver.

18



−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

Error dispersion (dB)

o
cc
u
rr
en

ce
ra
te

(%
)

meta-model

assimilation

assimilation with Bstat

Figure 8: Dispersion in dB(A) of the error between the observation and the simulation
(blue) or the assimilation in leave-on-out cross-validation (green) for all the microphones
during all the measurement campaign.

Figure 11 shows the RMSE reduction percentage ρ (equation (12)) in the
leave-one-out cross validation context with respect to the distance of the ob-
servation point to the network (i.e., the distance to the nearest microphone).

ρ = 100 · RMSEmeta−model−RMSEassimilation

RMSEassimilation

(12)

The dependency on the distance to the network is mainly unnoticeable.
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Figure 9: time evolution of the observed LAeq,1h and the leave-one-out data assimilation
process output for the sensor point colored in black in figure 3

This is explained by the distribution of the Monte Carlo covariance matrix
which is mainly non-local. The RMSE reduction shows that an error covari-
ance between two points of the network depends on other factors than the
distance between them or the difference between their noise levels. Some
future studies shall work on identifying these factors, such as for instance,
the nature of the roads linked to the receivers.

3.2. Spatial analysis

Figure 12 shows how the correction due to the observations propagates
across the study area when B = Bana + Bstat. It follows the intuition that
for every observation point, the correction its neighborhood receives grows
with the underestimation of its sound level.

4. Discussion

The global RMSE reduction of all the points is noticeable and proves the
efficiency of this approach. Since B has been built partly under the assump-
tion that the noise errors are correlated along the road network, the data
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Figure 10: RMSE in dB(A) of the error between the observation and the nominal noise
level values (blue) or the analysis in leave-on-out cross-validation (green) for all the mi-
crophones, for each month of the measurement campaign. It is noticeable to observe that
the summer months have a higher error rate, which is strongly corrected by the data
assimilation.

assimilation procedure shall apply in so far as the traffic is the predominant
source of noise pollution at the observation points, and the bias remains low.

Amongst all the parameters shown in table 1, the parameter “wall absorp-
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Table 4: Performance of the noise map and computed with the meta-model and the
assimilation regarding the observations at each microphone point, the values are given in
dB(A)

Node Bias meta-model Bias assimilation RMSE
251 -2.19 -0.16 1.97
252 -3.41 -1.79 3.72
254 -0.12 0.13 2.20
255 0.88 0.92 2.65
256 0.42 0.86 2.28
259 1.72 1.42 3.71
261 -2.65 -1.30 3.07
262 -0.37 0.67 2.07
264 3.00 0.93 3.17
265 1.71 0.72 3.22
266 -2.02 -0.59 1.75
268 -5.22 -2.31 4.08
270 -2.93 -0.46 1.87
272 -2.81 -1.04 2.62
274 -4.35 -1.60 2.90
275 -0.35 -0.05 3.25

tion coefficient” is not taken into account in the data assimilation process. It
has in fact been set to 0.2 during the whole study. Another value would give
better results on some areas of the case study and worse results on others,
since there is a variability of the absorption coefficient along the buildings.
The meta-model has been built this way for other analyses such as sensitiv-
ity analysis or inverse modeling, where more parameters are necessary in the
meta-model than the condition parameters (Le Gratiet et al., 2017).

The number of parameters chosen for this study is restricted, some meta-
models segregate road categories into minor, medium and major roads due to
their different traffic dynamics (Barrigón Morillas et al., 2005). With a finer
granularity, it is possible to better seize the noise dynamics. However, in this
study, the lack of traffic data out of the major axes will preclude achieving
higher levels of precision.

The observational data in this study have not been specifically collected
for data assimilation purposes. An interesting approach would be to explore
how the spatial distribution and the number of receivers affect the results
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Figure 11: RMSE reduction rate versus the distance to the network for data assimilation
with the statistical covariance matrix Bstat

of the data assimilation procedure. The CENSE project aims to study this
question by displaying a large amount of microphones across a study area
in order to optimize the data assimilation reference procedure for model and
observation-based noise mapping design.
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Figure 12: This map displays an example of the correction induced by the assimilation
of the observations at a given time. The error disks are the eb at the observation points,
and the map represents the data assimilation correction over the map. The chosen date
is June, 21 at 22:00, during a popular music festival (fête de la musique), hence the
observation error and the correction are rather high. The positively corrected area is a
lively neighborhood with a high density of bars and restaurants (Butte-aux-Cailles).

5. Conclusion

The data assimilation applied to noise maps generated through a meta-
model improves the performance of the generated noise map, from an average
RMSE of 3.9 dB(A) to 2.8 dB(A), and better grasps the hourly evolution of
the noise level distribution across the study area than a meta-model alone.

The process was carried out in three steps, the collection of data for the
road traffic, the generation of the meta-model (section 2.4.1), and then the
data assimilation itself (section 2.5.1)

This gain matrix K has been computed with the simulation error covari-
ance matrix B and the observation error covariance matrix R. B is the sum
of two matrices Bstat and Bana.
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• On the one hand, Bana is called the analytical covariance matrix and
relies on a simulation error propagation analytical model whose param-
eters have been designed with a so-called χ2 diagnosis (section 2.5.2).
It takes into account the physical behavior of a simulation error on a
road network.

• On the other hand, Bstat has been statistically generated with a large
number of calls to the meta-model using a Monte Carlo algorithm (sec-
tion 2.5.2). It describes the behavior of the error between the meta-
model output given by the traffic and weather observations and the
ideal meta-model output.

New data assimilation techniques relying on a meta-model are yet to be
explored. The first among them is inverse modeling which aims at approach-
ing the true input parameters of the meta-model with the help of the noise
observations. This method requires an enrichment of the meta-model with
more uncertain input data (height of the building, ground absorption, to-
pography uncertainty, etc.) in order to increase the number of degrees of
freedom. The distribution of the sensors across the network also needs to be
optimized, and further investigation will be dedicated to the optimization of
the network of sensors.
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Appendix A. χ2 diagnosis

Appendix A.1. χ2 diagnosis

With dij and |xi − xj| known for all (i, j) ∈ J1, nK2, the characteristic
values σb, Ld and Lb must be tuned to optimize the efficiency of the analytical
covariance matrix.

To do so, a χ2 diagnosis is carried out. It consists in checking the consis-
tency between the available innovations νt = yt −Htx

b
t and their variances

St = HtBHT
t +Rt for each time step t. This method has proved to be useful

in the meteorology (Ménard et al., 2000) and in other fields. Let χ2
t be the

scalar:

χ2
t = νT

t S−1t νt (A.1)
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Its expected value is

E[χ2
t ] = E[νT

t S−1t νt]

= tr(S−1t E[ννT ])

= tr(S−1t St) = tr(Ipt) = pt

(A.2)

pt being the dimension of yt−Htx
b
t at time t. The dimension of yt may vary

in time since the microphones may not be all simultaneously active, and so
does Rt, Ht and St. Let A be the value:

A =
1

|T |
∑
t∈T

χ2
t

pt
(A.3)

The parameters σb, Ld and Lb are chosen so that A is close to 1.

Appendix A.2. Note on the χ2 diagnosis

According to the definition of section 2.5.2, the covariance matrix Bana

is no longer the simulation error covariance but the covariance of the vector
ΨTΨxt − xt, with Ψ the matrix which concatenates the basis vector of the
reduced subspace. Hence the characteristic parameters obtained with the χ2

diagnosis are ill defined. However, since xb remains a fairly good approxi-
mation of ΨTΨxt, the orders of magnitude of the characteristic parameters
obtained with this method are still satisfying.

Appendix B. Sum of the analytical and statistical covariance ma-
trices

By construction of the meta-model, xb lies in the subspace generated by
the maps set of the metamodel {mapi}i∈J1,kK with k � n. This suggests
to decompose the observation in two orthogonal components êb ∈ Im(ΨTΨ)
and ẽb ∈ Im(ΨTΨ)⊥ as illustrated in figure B.13. The current section shows
that the construction of xb allows that a new covariance matrix B can be
generated by adding the analytical covariance matrix defined in section 2.5.2
Bana to a statistically defined covariance matrix Bstat.

The simulation error can be decomposed as follows: eb = êb+ ẽb. êb is the
modeling error that grasps the error due to model approximations, and the
discrepancy between the estimated input parameters and the true parame-
ters. ẽb is the fluctuation error due to the noise level components which are
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Figure B.13: Geometrical interpretation of the relation between the statistical and the
analytical covariance matrices

not related to the traffic noise. Its covariance matrix is expressed with the
analytical covariance matrix described in section 2.5.2. Under the assump-
tion that these two components are independent (E[êbẽbT ] = E[ẽbêbT ] = 0),
B can be expressed as

B = E[ebebT ] = E[(êb + ẽb)(êb + ẽb)
T

]

= E[êbêbT + ẽbẽbT + ẽbêbT + êbẽbT ]

= Bstat + Bana + E[ẽbêbT + êbẽbT ]︸ ︷︷ ︸
=0

= Bstat + Bana

(B.1)

A way to check the validity of this assumption is to evaluate the norm of
the projection ΠIm(Bstat) of the eigenvectors of Bana onto Im(Bstat). In this
case study, for each eigenvector vi of Bana. The values remain low

‖ΠIm(Bstat)(vi)‖
‖vi‖

< 5 % (B.2)
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