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Distributed Control Barrier Functions for
Global Connectivity Maintenance

Nicola De Carli, Paolo Salaris, Paolo Robuffo Giordano

Abstract— In this work, we propose a framework for the
distributed implementation of Quadratic Programs-based con-
trollers, building upon and rectifying a significant limitation in a
previously presented approach. The proposed framework is pri-
marily motivated by the distributed implementation of Control
Barrier Functions (CBFs), whose primary objective is to make
minimal adjustments to a nominal controller while ensuring
constraint satisfaction. By improving over some limitations in
the current state-of-the-art, we are able to apply distributed
CBFs to the problem of global connectivity maintenance in
presence of communication and sensing constraints. Specifically,
we consider the problem of preserving connectivity for a group of
quadrotors with onboard sensors under distance and field of view
constraints. Leveraging distributed control barrier functions, our
approach maintains global graph connectivity while optimizing
the performance of the desired task. Numerical simulations
validate its effectiveness.

I. INTRODUCTION

Coordinated teams of robots are finding more and more
applications in critical domains, including tasks such as
mapping, surveillance, disaster response, exploration, border
security, and patrol missions [1]–[3]. Effective autonomous
coordination in multi-robot systems relies on the possibility
to exchange information across the network and on the
availability of accurate relative localization in a shared
coordinate frame. However, centralized infrastructures like the
Global Positioning System (GPS) may not always be available,
motivating research on the topic of sensor-based cooperative
localization in a common frame using, e.g., onboard cameras
or Ultra Wideband (UWB) sensors [4]–[6].

Communication and sensing interactions in robot teams
are often modeled by graph theory, and connectivity of
the interaction graph is crucial for information flow and,
thus, for convergence of cooperative algorithms such as for
localization. In real-world scenarios, however, communication
and relative sensing may be hindered by limitations such as
maximum range, limited Field of View (FoV), and so on.
Therefore, any motion strategy unaware of these limitations
can result in graph disconnections and the consequent mission
failure. This has indeed motivated extensive research on the
topic of connectivity maintenance for ensuring the fulfilment
of missions also in presence of sensing/communication
constraints [7]–[12]. Connectivity maintenance strategies can
be categorized as local [13]–[15] and global [8]–[12]. The
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local approaches aim at maintaining all local connections,
but they can severely restrict robot mobility. In contrast, the
global approaches employ algebraic graph theory concepts,
such as the connectivity (or Fiedler) eigenvalue, enabling
robots to create and lose edges at runtime while preserving
global graph connectivity, thus granting greater mobility at
the cost of an increased complexity [16].

Preserving connectivity of the sensing graph can be even
more challenging than for the communication graph because
of the typical stricter sensing constraints (which, sometimes,
can also result in a directed sensing graph). As a result, there
exists a need for connectivity maintenance algorithms that
minimally impact the execution of any higher-level mission.
While most of the works on connectivity maintenance are
based on gradient descent of suitable potential functions [8]–
[10], [12], recent works [11], [17] have leveraged (centralized)
Control Barrier Functions (CBFs) to achieve minimal modifi-
cations of any nominal controller, providing both constraint
satisfaction and performance optimization [18]. Consequently,
when compared to methods based on potential functions,
CBF-based methods offer greater freedom of movement while
respecting the constraints, which is a critical advantage in
multi-robot coordination.

CBFs have become a widespread tool for ensuring con-
straint satisfaction while optimizing performance in nonlinear
control problems [18]. They have found applications in
various multi-agent scenarios, including collision avoidance
[19], connectivity maintenance [11], [17], target tracking
for observability maintenance [20], and temporal logic tasks
[21]. These works either solved the CBF-induced Quadratic
Program (QP) in a centralized way [11], [17], or employed pre-
allocation schemes, ensuring distributed constraint satisfaction
but at the cost of optimality [19]–[21]. Some other methods
[22] could achieve centralized optimality but without ensuring
constraint satisfaction at all times. In [23], a novel solution
was introduced that converges to the optimal centralized
solution in finite time while guaranteeing constraint satis-
faction at each instant. This approach was extended in [24]
to accommodate multiple CBFs constraints. However, this
approach suffers from restrictive assumptions regarding the
local Lie derivative of the CBF. Specifically, [23] requires
that the local Lie derivative norm should never approach zero,
and even small values can easily lead to numerical problems.
The assumption of a non-vanishing local Lie derivative proves
excessively restrictive and, as it will be shown in the following,
it is often not met in various applications of interest including
connectivity maintenance.

Our work builds upon [23] but it removes the assumption



of a non-vanishing local Lie derivative of the CBF. This
improvement enables us to design a CBF-based approach for
maintaining global connectivity in a formation of quadrotors
with range and FoV constraints and, crucially, without the
need to comply with the (restrictive) assumptions of [23].
Furthermore, the CBF control design allows for a better
performance w.r.t. the more classical approaches based on
potentials (e.g., [9]), since the performance of the main task
can be explicitly optimized while always ensuring constraint
satisfaction. Furthermore, with respect to [11], [17], the
proposed approach is fully distributed and it includes FoV
limitations.

The paper is structured as follows: Section II introduces
modeling assumptions, Section III presents the distributed
CBFs algorithm, Section IV applies the algorithm to connec-
tivity maintenance, Section V showcases simulation results,
and finally, Sect. VI provides concluding remarks.

II. PRELIMINARIES

A. Interaction Model

We consider a group of N robots whose sensing inter-
actions are modeled by a time-varying directed graph. The
existence of a directed edge edk(t) := (i, j) is associated to
a state dependent weight āij(t) ≥ 0, such that āij(t) > 0
if robot i can sense robot j and āij(t) = 0 otherwise.
Furthermore, we denote the undirected counterpart of the
sensing graph with Gu := (V, Eu(t)), which is used to
model the communication interactions (assumed bidirectional).
Therefore, an edge euk(t) := (i, j) ∈ Eu(t) exists if either
robot i can sense robot j or vice versa. The weight associated
to the edge is given by aij(t) := āij(t)+āji(t) ≥ 0, such that
aij(t) > 0 if either robot i can measure robot j or vice versa,
and aij(t) = 0 otherwise. Two robots i and j are defined as
neighbors at time t if (i, j) ∈ Eu(t) and the set of neighbors
of robot i is denoted by Ni(t) := {j ∈ V|(i, j) ∈ Eu(t)}.
Given the weighted adjacency matrix Aw(t) := [aij(t)] ∈
RN×N associated to the undirected graph, the Laplacian
matrix associated to the graph Gu is defined as Lw(t) =
diag(Aw(t)1N ) − Aw(t), where 1N ∈ RN is a vector of
all-ones. The Laplacian matrix is positive semidefinite with
Lw1N = 0, i.e. it has zero row-sum. The Laplacian of
a graph has eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λN with
eigenvectors {1N/

√
N,v2, ...,vN} and the second (a.k.a.

Fiedler) eigenvalue λ2 > 0 if and only if the graph is
connected [16], [25].

Considering this particular setup with directed sensing
graph and undirected communication graph is relevant
whenever the robots need to sense each other and the onboard
sensors are not omnidirectional, as it is, e.g., the case of
onboard cameras with limited fov.

B. Formation Model

We consider a group of N quadrotor UAVs equipped
with onboard Inertial Measurement Units (IMUs), calibrated
cameras and relative distance sensors, which are able to
exchange data over a radio communication channel. Similarly
to previous works [4], [26], we consider a simplified kinematic

model in R3 × S1 for the i-th quadrotor with body-frame
velocities and yaw rate commands ui :=

[
vTi ωi

]T
:[

ṗi
ψ̇i

]
=

[
Ri 0
0 1

] [
vi
ωi

]
= T (ψi)ui (1)

where pi ∈ R3 is the robot position, ψi ∈ S1 is the yaw and
Ri := Rz(ψi) ∈ SO(3) is the associated rotation matrix.
We denote the state of the i-th robot as qi =

[
pTi ψi

]T
.

For convenience, we also denote the stack of the state of
each robot as q =

[
qT1 . . . qTN

]T ∈ (R3 × S1)N and
analogously for the input u. Then, the full dynamics can be
written as

q̇ = T̄ (ψ)u, (2)

with T̄ (ψ) := diag(T (ψi)) being a block-diagonal matrix.
The robots are assumed to be equipped with a camera-like

sensor with limited range and FoV and a sensor providing
relative distance measurements. In particular, when robot j
is visible by robot i, we assume that robot i can obtain a
measurement of the relative position of robot j in its own
body-frame, i.e.:

ipij = R
T
i (pj − pi) (3)

From such measurements, the robots are able to estimate their
relative orientation, see e.g. [10] assuming that the sensing
graph remains weakly connected, hence, motivating the
necessity of connectivity maintenance keeping into account
sensing constraints.

III. DISTRIBUTED CONTROL BARRIER FUNCTIONS

In this section, we describe our contribution concerning
distributed CBFs, which build upon the approach presented
in [23]. In particular, as explained in the Introduction, we are
able to lift the restrictive assumption concerning the local Lie
derivative of the control barrier function not vanishing [23].
We use the global connectivity maintenance task to show the
importance of lifting such assumption.

A. Introduction

Consider a system in control-affine form:

ẋ = f(x) + g(x)ξ (4)

In this equation, x = [xT
1 . . . xT

N ]
T ∈ Rn denotes the state,

while ξ = [ξT1 . . . ξTN ]
T ∈ Rm represents the input. The

functions f(x) = [f1(x1)T . . . fN (xN )T ]
T and the block-

diagonal g(x) = diag(gi(xi)) represent the system dynamics.
It is important to note that (2) belongs to this class of systems.

In many applications, the evolution of the state of a
dynamical system needs to be restricted to a set C, referred
to as safe set, which can be described by the superlevel set
of a differentiable function h : Rn → R:

C := {x ∈ Rn : h(x) ≥ 0}. (5)

For example, in the connectivity maintenance case one wants
to maintain λ2 ≥ ϵ with ϵ > 0, hence, one can define
h(x) := λ2− ϵ. Let us consider the following two definitions
instrumental for the following.



Definition III.1. A continuous function α : (−b, a) →
(−∞,∞) is an extended class K function if it is strictly
increasing and α(0) = 0.

Definition III.2 ( [18]). Let C be defined by (5). h(x) is
a control barrier function (CBF) for the system (4) if there
exists a locally Lipschitz extended class K function α such
that:

sup
ξ∈Rm

[Lfh(x) + Lgh(x)ξ + α(h(x))] ≥ 0 ∀x ∈ Rn (6)

where Lfh and Lgh are the Lie derivatives along the
flows of f(x) and g(x) respectively. Any locally Lipschitz
controller satisfying (6) renders the safe set C forward
invariant and, if C is compact, asymptotically stable [27].
The class of constraints that we consider is the same as those
considered in [23], that is, functions h(x) such that the CBF
parameters of (6) are locally obtainable, meaning that (6) can
be expressed as:

N∑
i=1

aT
i (x

Ni
i )ξi +

N∑
i=1

bi(x
Ni
i ) ≤ 0 (7)

where xNi
i :=

[
xT
i {xT

j }j∈Ni

]T
is the stack of the state of

robot i itself and the one of its neighbors. Notice that, aT
i =

−Lgih while, bi can vary based on the type of constraint
considered and design choice. For connectivity maintenance,
one could consider bi = −κi(x)(α(h(x)) + Lfih(x)), with
κi(x) being any partition of the unity, i.e.

∑N
i=1 κi(x) =

1, for example κi = 1
N . Note that, as shown in, e.g., [7],

by estimating in a distributed way the Fiedler eigenpair,
the gradients for global connectivity maintenance can be
computed locally, as required by (7).

B. QP formulation

We assume that a nominal controller provides a Lipschitz
continuous desired input ξd which does not need to satisfy
the condition in (6). Then, the following Quadratic Program
(QP) is formulated in order to modify in a minimally invasive
way the nominal controller, so that condition (6) is always
satisfied

min
ξ∈Rm

.
1

2

N∑
i=1

∥∥∥ξi − ξd
i

∥∥∥2

2

s.t.
N∑
i=1

aT
i ξi +

N∑
i=1

bi ≤ 0

(8)

where we omitted the state dependency of ai and bi for
the sake of readability. However, we remind that these
terms change over time as the state evolves along the
system trajectories. Defining ā :=

[
aT
1 . . . aT

N

]T
and

b̄ :=
∑N

i=1 bi, we make the following assumption.

Assumption 1. The QP (8) is feasible, i.e. b̄ ≤ 0 whenever
ā = 0.

The QP problem in (8) is centralized. The objective is
to develop a distributed algorithm that achieves asymptotic
convergence to the time-varying centralized optimal solution
of the QP while always enforcing the safety constraint. To

achieve this objective, we introduce the following equivalent
QP

min
(ξ,y)∈Rm+N

.
1

2

N∑
i=1

∥∥∥ξi − ξd
i

∥∥∥2

2

s.t. aT
i ξi +

∑
j∈Ni

(yi − yj) + bi ≤ 0, ∀i ∈ V
(9)

where y =
[
y1, . . . yN

]T ∈ RN is an auxiliary variable, with
the element yi associated to robot i. The equivalence among
(9) and (8) was shown in [23]. In particular, this implies that
each solution (ξ′,y′) satisfying the constraint in (9), also
satisfies the constraint in the original QP (8) and vice versa.
The constraints in the previous QP can be equivalently written
in matrix form as:

Āξ +Ly + b ≤ 0 (10)

with Ā = diag(aT
i ), L is the unweighted Laplacian matrix of

the time-varying undirected graph and b =
[
b1 . . . bN

]T
.

The equivalence between (8) and (9) is based on the fact that
1TL = 0. One may, then, formulate the following QP

min
(ξi,y)∈Rmi+N

.
1

2

∥∥∥ξi − ξd
i

∥∥∥2

2

s.t. aT
i ξi +

∑
j∈Ni

(yi − yj) + bi ≤ 0
. (11)

The challenge here is that consistency of y needs to be
preserved across the agents, i.e. the local copy yj of agent i
needs to be equal to the local copy yj of agent j. To solve
this issue, in [23] the Karush-Kuhn-Tucker (KKT) optimality
conditions of the problem (9) were studied and a distributed
adaptive law for updating y was proposed so that y converges
to the optimal y∗. Hence, each robot solves (11) but with
only ξi as decision variables, while y is fixed in the QP. The
optimal solution y∗ from the KKT conditions needs to satisfy
the following condition ∀i ∈ V:{

aT
i ξ

d
i + lTi y

∗ + bi ≤ 0, if āT ξd + b̄ ≤ 0

aT
i ξ

d
i + lTi y

∗ + bi = kaT
i ai, if āT ξd + b̄ > 0

(12)
where li is the i-th row of L and

k = (āT ξd + b̄)/ ∥ā∥22 (13)

Since k ≤ 0 when āT ξd + b̄ ≤ 0, a sufficient condition for
y∗ is simply to satisfy (12) as

aT
i ξ

d
i + liy

∗ + bi = kaT
i ai ∀i ∈ V (14)

which can be rewritten in matrix form as

Ly∗ = kaa − Āξd − b. (15)

with

aa =

 a
T
1 a1

...
aT
NaN

 . (16)



At this stage we can highlight the difference between what
has been proposed in [23] and our contribution. In [23], local
variables are defined as

ki =
1

aT
i ai

(aT
i ξ

d
i + liy

∗ + bi) (17)

and it was shown that, if ki = kj∀(i, j) ∈ E , then condition
(12) is satisfied. Hence it was proposed to update the variables
y according to the following finite time modified consensus:

ẏ = −k0sign(Lk) (18)

with k =
[
k1 . . . kN

]T
. A crucial point is that, due to

(17), this approach requires ∥ai(t)∥ > 0 ∀t, ∀i which, as also
acknowledged in [23], can be quite restrictive. Indeed, as it
will be discussed in the next section, this assumption is often
not verified also for the standard problem of connectivity
maintenance.

To cope with this issue, we propose the following solution.
Each robot can estimate k in (13) with two dynamic
average consensus, one for computing the numerator average
navg := 1/N

∑N
i=1(ai

T ξdi + bi) and one for computing the
denominator average davg := 1/N

∑N
i=1 ∥ai∥2, from which

each robot can obtain its estimate of k as ki = navg/davg.
Then, the only unknown left in (15) is y∗. While solving a
linear system in a distributed manner is generally challenging,
leveraging the sparsity of the Laplacian matrix and its positive
semidefinite nature enables a distributed solution for finding
y∗ in (15) through the simulation of the following dynamical
system:

ẏ(t) = −ky (Ly(t)− r(t))− kavgȳ(t)1N (19)

with
r := diag(ki)aa − Āξd − b (20)

and ȳ = 1
N 1T

Ny is the mean of y, which can be estimated
with a dynamic average consensus. This system corresponds
to the continuous-time version of the Richardson iteration [28],
which is used to solve linear systems in parallel computing
schemes where the matrix to be inverted is positive definite
(in this case L+ 1N1T

N ). An alternative, which potentially
may lead to faster convergence, is represented by the Jacobi
over-relaxation method [28]. We point out that (19) is fully
distributed, in fact each robot implements:

ẏi = −ky

 ∑
j∈Ni(t)

(yi − yj)− kia
T
i ai + aT

i ξ
d
i + bi

− kavgȳ.

(21)
Notice that the only equilibrium of this system is given by
the minimum-norm solution to (15). We also point out that,
the average of y is not relevant as it has no effect on the
QP constraint since L1N = 0. We add the second term in
(19) with the purpose of guaranteeing boundedness of y. We
also point out that L1N ⊆ 1N for all t, meaning that the
consensus subspace is infinitesimally L-invariant [29].

Let r̄ denote the mean of r, and define y⊥ := y − ȳ1N ,
and similarly r⊥. Consider the error e⊥ := Ly⊥−r⊥. Then:

ė⊥ = L (−ky(Ly⊥ − r⊥))− ṙ⊥

= −kyLe⊥ − ṙ⊥

ẏavg = −kavgȳ + ky r̄

. (22)

where in the first equation the average dynamics of ẏ⊥ do
not appear as they are in the null space of L. We point
out that, if the graph is time-varying, then L is switching
in time. Suppose that the graph switches in time, in such
a way that the union of the graphs is connected, then
stability of (19) can be shown [16, Sect.4.2]. Also, it is
worth noting that we did not account for the dynamics
of the dynamic average consensus utilized to estimate ȳ(t)
in the preceding analysis. In practice, given that y is not
required to be zero-mean but merely bounded, selecting kavg
considerably smaller than ky ensures that the impact of the
disagreement in computing ȳ remains negligible in (19). Then,
the error e⊥ is practically exponentially stable with rate
c := ky minτ∈[t0,t] λ2(t) and y⊥ converges to a ball of size
1
c supτ∈[t0,t] ||ṙ⊥|| centered in y∗

⊥ = L†r, with † indicating
the Moore-Penrose pseudoinverse, which gives the minimum-
norm solution to equation (15). The origin of the average ȳ
is practically exponentially stable as well and, in particular,
what is of interest in this case is the fact that it remains
bounded. Also, notice that, with the proposed solution, it is
not required to have ∥ai∥ > 0 ∀i.
Remark 1. This approach can be extended to the case of
multiple CBF constraints using soft minimum functions as
shown in [24].

Interestingly, solving the QP (11) without auxiliary vari-
ables is equivalent to pre-allocation schemes such as in [19]–
[21], which maintains safety but leads to suboptimal solutions.
The role of the auxiliary variables is, in fact, to optimally
allocate the constraint among the robots.

We also point out that, for simplicity of exposition, we
considered a cost function of the type

∑N
1=1

∥∥ξi − ξdi ∥∥22.
The extension to a more generic quadratic cost function∑N

i=1
1
2ξ

T
i Hiξ +w

T
i ξi with Hi ≻ 0 is straightforward, see

[30] for the expression of k in this case.

IV. CONNECTIVITY MAINTENANCE

As we stated in Sect. II-A, a very classic result in graph
theory is that an undirected graph is connected if and only
if λ2 > 0. When the connectivity of the graph depends on
sensing and/or communication constraints, e.g. limited range
and field of view, a classical approach to ensure connectivity
is summarized below by considering several previos works
on this subject [8]–[12], [17]:

• design a weighted adjacency matrix Aw = [aij ], such
that the weight aij smoothly goes to zero when the edge
between robot i and robot j approaches disconnection
(because of the sensing/communication constraints);

• estimate in a distributed way the Fiedler eigenpair, i.e.
(λ2,v2) of the corresponding weighted Laplacian matrix
Lw [7], [31];

• design a control strategy, e.g. based on potential func-
tions [8]–[10], [12] or based on CBFs [11], [17], which
ensures that λ2(t) ≥ ϵ with ϵ > 0 ∀t.

A fundamental assumption is that, at the initial time t0, the
undirected graph Gu is connected, i.e., λ2(t0) > 0. We point
out that an approach based on CBFs, as in the present work,



does not require λ2(t0) ≥ ϵ, in fact, the safe set can be shown
to be asymptotically stable under the effect of the CBF [11],
[18]. In this work, we consider distance constraints, expressed
as dmin ≤ dij ≤ dmax, where dij = ∥pj − pi∥ and field of
view constraints cij = βT

ije1 ≥ cmin, where βij =
ipij/dij

is the relative body-frame bearing, e1 = [1 0 0]
T and

cmin is the cosine of the maximum FoV angle αmax (see
Fig. 1). Notice that cij is the cosine of the angle among

Fig. 1: The figure shows a drone with maximum field of view angle
αmax and range limits dmin and dmax

the bearing and the robot x-axis to which the camera is
assumed to be aligned with. As mentioned in Sect. II-
A, we adopt symmetric weights, i.e. aij = aji, given
by aij = āij + āji, with āij = wdij

wbij , where wdij

(resp. wbij ) is a continuously differentiable weight which
smoothly varies from 1 to 0 as the distance (resp. FoV)
limit of the sensor is approached. Considering symmetric
weights allows to perform connectivity maintenance on the
undirected graph Gu, ensuring weak connectivity of the
directed sensing graph. For wdij

and wbij , we employ the
following smooth step functions. Consider the following two
functions ζl(x, xmin, x

th
min) = (x−xmin)/(x

th
min−xmin) and

ζu(x, xmax, x
th
max) = (x−xthmax)/(xmax−xthmax), the weights

are expressed as (see Fig. 2):

w (ζl, ζu) =



w = 0 if ζl < 0

w = 6ζ5l − 15ζ4l + 10ζ3l if 0 < ζl < 1

w = 1 if ζl > 1 and ζu < 0

w = 1− 6ζ5u + 15ζ4u − 10ζ3u if 0 < ζu < 1

w = 0 if ζu > 1
(23)

Then, the gradient of the Fiedler eigenvalue with respect to

dmindthmin dthmax
dmax

dij

0.0

0.2

0.4

0.6

0.8

1.0

w
d
ij

cmin cthmin

cij

0.0

0.2

0.4

0.6

0.8

1.0

w
b i
j

Fig. 2: Weight functions for sensing constraints. On the left distance
weight and on the right FoV weight (notice that cij ≤ 1).

the robots position can be expressed as it follows [7]:

∂λ2
∂qi

=
∑
j∈Ni

(v2j − v2i)
2 ∂aij
∂qi

(24)

where v2i is the i-th component of the Fiedler eigenvector
v2 and v2i as well as λ2 are computed in a distributed way

using the algorithm presented in [31] and a discrete-time PI
consensus [32]. Then in order to maintain λ2 ≥ ϵ, each robot
solves the following QP:

min
ui∈R4

.
1

2

∥∥∥ui − ud
i

∥∥∥2
2

s.t. −
∑
j∈Ni

(
(v2j − v2i)

2 ∂aij

∂qi

)
T (ψi)ui −

1

N
α0(λ2 − ϵ)3

+
∑
j∈Ni

(yi − yj) ≤ 0,

(25)

where we chose to use the extended class K function
α(x) = α0x

3 with α0 > 0 and y is computed according
to (19). Feasibility of the centralized QP for connectivity
maintenance is proven in [11] and the same proof is applicable
here as the solution of the union of the local QPs is the same
as the centralized one. Notice that, as mentioned in Sec. III,
it can happen that ∂λ2

∂qi
= 0 but ∂λ2

∂q ̸= 0, for example when
all the weights of the i-th robot are already at their maximum
or when v2i = v2j ∀j ∈ Ni. In this case, the global QP
is still feasible and the i-th robot can simply set ui = ud

i .
Here, the assumption ai ̸= 0, made in [23], as in many other
applications, is not verified, hence, motivating the alternative
approach that we propose.

The algorithm requires the following quantities to be
communicated:

• 7 scalar variables for the Power Iteration method [31]
and related consensus

• 4 scalar variables to estimate ki using two PI consensus
• 1 scalar variables to estimate y in (19) and its average

Also, either N (which is used in (25)) is fixed and known
by all robots, or it may be estimated using consensus. As
previously mentioned, other possibility can be used for κi(x),
other than κi = 1/N , which may be computed using a
consensus, e.g. see [21].

V. SIMULATION RESULTS

This section presents the results of a simulation of T = 80s
with N = 6 quadrotors, starting from a connected random
configuration. The nominal input to the quadrotors is provided
by the active sensing controller proposed in [30], which
generates trajectories that are exciting for the robot local-
ization but unaware of the sensing constraints. We point
out that these trajectories are particularly challenging in our
context because the active sensing [30] forces the relative
positions among the robots to change very rapidly and, as a
consequence, the Laplacian entries and eigenvalues, making it
harder to estimate the Fiedler eigenpair and track the optimal
solution. The resulting input of each agent is filtered by the
connectivity maintenance CBF by solving (25) and updating
yi according to (21). A lower-level safety layer implements
collision avoidance using another CBF. The connectivity
maintenance runs @25Hz, with the corresponding consensus
running @150Hz, while the estimation of the Fiedler eigenpair
runs @250Hz and the corresponding consensus run @750Hz.
A quadrotor can sense its neighbors if they lie within the
distance range [1, 4.5]m, with a maximum FoV angle set at 60
degrees. The minimum threshold for the Fiedler eigenvalue λ2



is set to ϵ = 0.2 and α0 = 100. The norm of the desired input
velocity is saturated at 1m/s and the yaw-rate at 1rad/s.
The parameters for the power iteration proposed in [31] are
set to β = 100 and γ = 40, while the consensus used is
a discrete-time PI from (31) in [32] with gains kp = 0.05,
kI = 0.008 and ρ = 0.9. In (21), we use ky = 50 and it runs
@250Hz. The robots start to move after 1s for allowing the
power iteration to reach a satisfactory convergence before
starting to move.
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Fig. 3: The plot represents λ2, the lower bound ϵ and the estimates
of the Fiedler eigenvalue λ̂2i for each robot (in dashed lines). Notice
that for most of the time the estimates are overlapping the real λ2.
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Fig. 4: The plot shows, for each robot, the estimate ŷi given by
(21) (in dashed green) tracking the optimal y∗

i (in solid blue).

In Fig. 3, we report the Fiedler eigenvalue λ2 along with,
the lower bound ϵ and the local estimations for each robot (in
dashed lines). We point out that, when λ3 (and possibly λ4)
get close to λ2, the estimation becomes much less reliable
(as well-known) with the estimate v̂2 approaching the hyper-
plane spanned by v2-v3 (and possibly v4).
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Fig. 5: Comparison among the inputs obtained solving the QP in
a distributed way (25) (in dashed green) and in a centralized way
(8) (in solid blue). Each plot contains each input components for
a certain drone. One can see that after a short initial transient, the
trajectories are almost superimposed for most of the time.

We verify the tracking of the optimal y∗ in Fig. 4 by
plotting y⊥ and the solution L†r to Ly = r as ground truth.

In order to verify the convergence of the distributed solution
to the centralized one, we run in parallel the distributed
CBFs (25) and the corresponding centralized one (8), whose
inputs are not applied and only used as a comparison. The
comparative analysis of the resulting inputs is presented in
Fig. 5, where it can be noticed the optimal solution is tracked
very closely for most of the time.

VI. CONCLUSIONS

We have presented a framework for a class of distributed
QP-based controllers that typically arise when employing
Control Barrier Functions, and we have addressed a significant
limitation of the recent literature in this field. Each agent
solves a local QP and locally adapts an auxiliary variable.
The solutions of the local QPs asymptotically converge to a
neighborhood of the centralized optimal solution. This im-
provement allows us to apply distributed CBFs to the problem
of global connectivity maintenance for quadrotor formations,
accounting for distance and field of view constraints. The
effectiveness of the approach is shown by comparing the
obtained inputs with the ones provided by the corresponding
centralized CBF.
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