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Abstract—While the literature on channel state information
(CSI)-based authentication and key distillation is vast, the two
topics have customarily been studied separately. This paper
proposes unsupervised learning techniques to disentangle de-
terministic from stochastic fading to decompose observed CSI
vectors into “predictable” and “unpredictable” components. The
former, primarily due to large-scale fading, can be used for
node authentication. The latter, primarily due to small-scale
fading, can be used for secret key generation (SKG). The
parameterization of the decomposition is performed using the
following metrics: (i) a CSI fingerprint “separability” crite-
rion, expressed through the maximisation of the total variation
distance (TVD) between the empirical CSI fingerprints; (ii) a
statistical independence metric for CSI collected at different users
in neighboring locations, using the d-dimensional Hilbert Schmidt
independence criterion (dHSIC) test statistic; (iii) an estimation
of information leakage at different users to determine the amount
of necessary hashing for privacy amplification in the SKG using
the FBLAEU machine learning based conditional min-entropy
estimator. Employing principal component analysis (PCA), kernel
PCA and autoencoders on synthetic and natural CSI datasets,
this work shows that explicit security guarantees can be provided
by using physical layer security for authentication and key
agreement.

I. INTRODUCTION

Sixth generations (6G) systems will be required to meet
diverse constraints in an integrated ground-air-space global
network. In particular, meeting overly aggressive latency con-
straints and operating in massive connectivity regimes with
low energy footprint and low computational effort while
providing explicit security guarantees can be challenging [1].
In addition, the extensive introduction of artificial intelligence
(AI) and machine learning (ML) and the rapid advances in
quantum computing are further developments that will increase
the attack surface of 6G systems [2], [3]. More importantly, the
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massive deployment of low-end Internet of things (IoT) nodes
[4], often produced following non-homogeneous production
processes and with expected lifespans exceeding 10 years,
poses pressing questions concerning future security architec-
tures.

At the same time, the integration of communications and
sensing, along with embedded (on-device) AI, can provide
the foundations for building autonomous and adaptive security
controls, orchestrated by a vertical security plane in coordina-
tion with a vertical semantic plane, dubbed as context-aware
smart security [5], [6].It is in this framework that we envision
the incorporation of physical layer security (PLS) schemes
in 6G security protocols, introducing security controls at all
layers for the first time [7]. This exciting prospect does not
come, however, without challenges. Despite intense research
interest in PLS for more than two decades, its incorporation in
actual security products remains largely elusive. A key reason
behind this is that PLS relies on the physical aspects of the
transmission [8] rather than mathematical algorithms. This
limitation will be overcome in 6G as channel engineering will
be widely used to meet communication needs and enable PLS.

In this direction, we propose in this work smart pre-
processing algorithms of observed channel state information
(CSI) vectors for CSI-based authentication and secret key
generation (SKG). We aim to separate the authentication sig-
natures (CSI fingerprints) from reciprocal random components
that can be used for SKG. Despite the immense bibliography
on CSI-based authentication and SKG, a systematic treatment
of the CSI as jointly a source of uniqueness (deterministic
fading) and entropy (stochastic fading) is missing. Therefore,
this paper aims at filling this gap and building pre-processing
for joint SKG and authentication.

A. Unsupervised learning based pre-processing
Overall, our approach leverages unsupervised learning in

the form of dimensionality reduction as a generic tool to
transform CSI measurements with dependencies across dif-
ferent dimensions (time, frequency, space, antenna) into i)
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location dependent components and ii) random components
that decorrelate over very short-distances.

The proposed pre-processing is based on the observation
that large-scale fading, which is determined by path-loss
and shadowing, is location-dependent and can be useful for
authentication purposes [9]. On the other hand, small-scale
fading is stochastic in nature and can constitute an entropy
source for SKG, e.g., see [10] and [11]. To disentangle these
two processes we employ unsupervised learning techniques,
namely principal component analysis (PCA), kernel PCA
(KPCA), and autoencoders (AEs). Our aim is to perform a
power-domain decomposition (large versus small scale) of the
CSI into deterministic and stochastic fading. The goal is to
retrieve from the observed CSI: a predictable (deterministic)
component primarily due to large-scale fading, and an unpre-
dictable (stochastic) component primarily due to small-scale
fading.

The proposed decomposition is designed to satisfy three
criteria: (i) maximum separability of CSI-based authentication
fingerprints, measured by the total variation distance (TVD)
between empirical measures; (ii) minimum dependence be-
tween the sources of shared randomness at different nodes,
measured by a normalized version of the d-dimensional Hilbert
Schmidt independence criterion (dHSIC) [12] test statistic;
(iii) minimization of the conditional min entropy (information
leakage) at different users in neighbouring locations, measured
using the FBLAEU estimator [13]. We validate our pro-
posed pre-processing approach using both synthetic datasets
generated by the Quadriga models [14] and experimentally
measured outdoor CSI datasets from Nokia [15] for a massive
multiple input multiple output (mMIMO) setting.

B. Contributions

The main contributions of this paper are:

1) Unsupervised ML-based pre-processing schemes: We
propose pre-processing schemes based on PCA, KPCA,
and two different AEs to disentangle the predictable
components from the unpredictable components in the
CSI.

2) Maximum separability criterion of CSI fingerprints
for authentication: The paper uses the TVD to study
the separability of the components used for node-
authentication. This contribution provides insights into
the effectiveness of the proposed approach for authen-
tication based on the nearest neighbour classifier.

3) Study of spatial correlation and reciprocity trade-off
for SKG: We investigate the trade-off between spatial
correlations (SC) and dependencies at different locations
and reciprocity between the uplink and downlink for
SKG. We evaluate the degree of spatial dependence using
a novel metric, referred to as normalized dHSIC.

4) Information leakage estimation: A conditional min-
entropy estimator is used to evaluate the necessary hash-
ing rate (privacy amplification) for SKG. Finally, the
quality of the SKG keys is validated using the National
Institute of Standards and Technology (NIST) test suite.

5) Full SKG chain presented: In SKG literature it is
common to describe but not implement the privacy ampli-
fication stage. In this work, we present the full SKG chain
and discuss trade-offs in terms of key rate and information
reconciliation rate as well as the impact of different pre-
processing schemes.

Overall, the contributions made in this paper provide a sys-
tematic treatment of the CSI as jointly a source of uniqueness
and a source of entropy. The proposed ML pre-processing
schemes, evaluation of spatial independence, study of random-
ness, and assessment of spatial uniqueness provide a fresh
perspective on joint SKG and authentication using CSI data.

The rest of the paper is organized as follows. Sections II and
III review the background concepts for CSI-based authentica-
tion and SKG and introduce the metrics proposed as design
criteria. Section IV presents the proposed approaches for
disentangling predictable CSI components from unpredictable
ones using PCA, KPCA, and two different AEs. Section V
presents the datasets and section VI includes numerical results.
Section VII presents the discussion and concluding remarks.

II. CSI-BASED NODE AUTHENTICATION

This section provides an overview of CSI-based node
authentication and its underlying principles, including the
proposed metrics for pre-processing.

A. Process and Principle
CSI-based authentication is a technique used to verify the

identity of a device. The process involves the following steps:
1) The device collects CSI information, which is a set

of measurements that describe the state of the wireless
channel.

2) The device either processes the information locally or
sends it to the authentication server, which can be located
in the cloud, edge or on a local network.

3) The CSI information is used to determine the authenticity
of the device by comparing it with a reference database
of known and trusted CSI patterns.

4) If the CSI information is consistent with that of a known
and trusted device, the authentication server grants access
to the wireless network. Otherwise, access is denied.

Therefore, authentication requires a verifiable source of
uniqueness, related, for example, to node positioning and fin-
gerprinting. A promising use case concerns the identification
of false base stations, leveraging public knowledge of genuine
base stations locations. Early results on using azimuth and
elevation angles of arrival as location features in mMIMO
settings have been shown to provide resistance against location
spoofing.

In all cases, the CSI fingerprints used for authentication
must be statistically separable for each location. Also, it is
beneficial if the fingerprints vary only slowly [16]. Various
approaches to exploit different types of channel parameters for
CSI-based authentication have been proposed in the literature
[17]–[19]. In this work we propose pre-processing techniques
to enhance the statistical separability of CSI-fingerprints, val-
idated via a comparison of performance achieved without the
pre-processing.
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B. Metrics

One of the key contributions of our work is to intro-
duce a new design criterion for pre-processing to extract
highly separable fingerprints from CSI vectors. Specifically,
we propose using a probability distribution distance metric
as the cost function for tuning the parameters of the pre-
processing step. The goal is to maximize the separability
between fingerprints of nearby nodes, in order to improve the
accuracy of authentication.

We utilize the TVD metric to evaluate the separability of
CSI-based authentication fingerprints. TVD is a well-known
distance measure between two probability distributions and
measures the L1 distance between their empirical measures.

Definition. Let µ and ν be two Borel probability measures on
a metric space X , then the TVD between µ and ν is defined
as follows [20]:

TV D(µ, ν) = sup
A⊂X

∣∣µ(A)− ν(A)
∣∣ ,

where the supremum is over Borel-measurable sets. For two
probability distributions µ and ν defined on a countable
configuration space XN , the TVD is defined as:

TV D(µ, ν) =
1

2

∑
x∈XN

∣∣µ(x)− ν(x)
∣∣ .

The TVD serves as a distance metric to measure the
separability of the extracted fingerprints for authentication
purposes. It calculates the L1 distance between two probability
distributions by summing the absolute differences between
their probabilities at each possible configuration in the space.
The greater the TVD, the more distinguishable the two dis-
tributions and the more reliable the extracted fingerprints
for authentication. Conversely, if the TVD is small, the two
distributions are similar and the extracted fingerprints are less
reliable.

We note in passing that it is possible to build an attack-
resilient profile by utilizing various techniques to identify
spoofing attacks, such as clustering analysis of the extracted
fingerprints, as proposed in [21]. Additionally, the correlation
between any two adjacent CSI measurements within a specific
time window can be taken into account for user authentication
[21]. Such aspects are outside the scope of this work and will
be considered in future studies.

III. BACKGROUND CONCEPTS ON SKG

In the following we review background concepts on the
SKG protocol and provide a brief commentary on how it
relates to cryptographic schemes for key generation and related
metrics.

A. Process and Principle

The SKG protocol comprises three steps, explained below:
1) Advantage distillation: In this step, the users use pilot

signals transmitted over the coherence time to excite the
channel, in order to obtain highly correlated observation
sequences at two remote nodes, referred to as Alice and

Bob. These analog measurements are then converted into
binary sequences using quantization.

2) Information reconciliation: This step is used to detect
and correct discrepancies in the quantizer outputs at the
legitimate parties.

3) Privacy Amplification: In this step, the legitimate users
use hashing to generate a maximum entropy unpre-
dictable secret key. The hashing rate is determined by
the estimation of the conditional min entropy, accounting
for observations at potential eavesdroppers.

To generate secret keys from wireless fading coefficients,
three factors are exploited: (i) the channel reciprocity between
two nodes, Alice and Bob, during the channel’s coherence
time; (ii) temporal variation due to node mobility and dynam-
ics [22]; and (iii) spatial independence (typically measured
through decorrelation) at distances of the same order of mag-
nitude as the wavelength, i.e., in the order of a few centimetres
for sub-6GHz systems. In more detail, according to Jakes’
model, the channel will be uncorrelated when a third party is
located half a wavelength away [23]. However, experimental
results show that half-wavelength distance spatial decorrelation
is valid only in very rich scattering environments [24]–[27].

Additionally, the keys need to be generated from stochastic
fading components to be unpredictable; attacks on SKG from
deterministic fading have been launched using ray-tracing and
have been successfully demonstrated experimentally [28]. De-
spite this, many existing works perform SKG without system-
atically removing predictable components of wireless channel
coefficients [29]–[31] and without explicitly accounting for
them in the privacy amplification step, which is customarily
omitted in published work.

In this paper, we focus on minimizing SC and dependencies
at potential attackers, referred to as Eves, in the vicinity of
legitimate users, explicitly as a design criterion in the pre-
processing stage. Without any pre-processing of the observed
CSI, an attacker can distil highly correlated observations with
these at the legitimate nodes due to deterministic fading.
Although these dependencies can be removed through privacy
amplification, this approach requires the use of i) larger
quantizers; and ii) heavier hashing, leading to less energy-
efficient solutions and potentially erroneous implementations1.

Remark: The proposed CSI pre-processing offers the ad-
vantage of linking SKG to the concept of a cryptographic
pseudorandom number generator (PRG) during the advantage
distillation phase. In more detail, with respect to a PRG, we
refer to the following standard definition of pseudorandomness
in cryptography [32]:

Definition. The ensemble {G(Un)}n∈N is pseudorandom, iff
for any probabilistic polynomial-time algorithm A, for any
positive polynomial p, and for all sufficiently large n,

|Pr(A(G(Un); 1
l(n)) = 1)−Pr(A(Ul(n); 1

l(n)) = 1)| < 1

p(n)
.

1It should be noted that any correlations in the time, frequency, space,
or antenna domains between the reconciled sequences at Alice, Bob, and
potential Eves should be explicitly taken into account when evaluating the
conditional min-entropy to estimate the target privacy amplification rate.
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Here, the probabilistic polynomial-time algorithm A can
be seen as a statistical test, and a generator G fails the
test if an algorithm A exists such that the above condition
does not hold. In cryptography, a semantically secure PRG
has the property of “unpredictability” (resistance to next bit
predictors), which means that an observer who knows i bits
of the output of the PRG should be unable to predict the
(i+1)-th bit with a probability that is greater than 1

2 by more
than a negligible quantity that increases only polynomially
in time 1

p(n) . With respect to SKG, independence between
the observations of the legitimate users and the observations
of Eve ensures unpredictability as independence is a stronger
condition.

B. Metrics

Although various polynomial time statistical tests of unpre-
dictability have been proposed, such as the ones in the NIST
suite [33], these tests were designed to asses the randomness
of a single sequence generated by a PRG. As a result, they are
not equipped to evaluate dependencies and cross-correlations
of sequences observed at legitimate and adversarial nodes in
close proximity in the context of SKG. In order to address this
issue, in this work we make use of four metrics of increasing
statistical accuracy in capturing dependencies, and correspond-
ingly of increasing computational complexity. Namely, in this
work we evaluate i) the mismatch probability (MP) between
observed sequences assuming a one-bit quantizer; ii) the
Pearson cross-correlation coefficient; iii) a novel metric for
measuring dependencies, referred to as dHSIC; and finally, iv)
the conditional min-entropy of the observed sequences. The
metrics are discussed in detail in the following.

1) Mismatch probability: It is important to balance the
reduction of dependencies between legitimate and adversarial
observed sequences during pre-processing with preserving the
reciprocity between the observed sequences at Alice and Bob.
To assess reciprocity, we use a one-bit quantizer about the
median point along the time dimension on the CSI sequences
observed in the uplink (Alice to Bob) and downlink (Bob to
Alice). The mismatch probability (MP) between Alice and Bob
is defined as the ratio of the number of bits in disagreement to
the total number of bits. These mismatches are subsequently
corrected during the information reconciliation step, but a high
MP requires a lower rate reconciliation decoder to ensure zero
frame-error-rate (FER) reconciliation2, i.e., key-disagreement-
free SKG, which becomes impractical for short blocklengths
beyond a certain point.

2) Pearson cross-correlation coefficient: One widely used
metric for measuring the degree of correlation between two
variables is the Pearson cross-correlation coefficient (CC),
which has been applied in the literature as an indirect mea-
sure of unpredictability in the context of PLS. However,
we note that decorrelation alone may not be sufficient to
prove unpredictability, in the case of non-linear dependencies
and non-Gaussian distributions. Instead, the independence of
observations between legitimate and adversarial entities is a

2A frame refers to a code block, and the frame error rate represents the
likelihood or frequency of errors occurring within a single block.

stronger criterion that guarantees unpredictability and allows
the design of SKG to align with the definition of a PRG at
the advantage distillation step.

3) dHSIC: We propose to use the dHSIC [12] to measure
dependencies between the observed CSI vectors. The dHSIC
is a kernel-based statistical test of independence that applies
a positive-definite kernel on N -dimensional random variables
(RVs) to determine whether the dimensions are independent.
The null hypothesis indicates that the vectors are mutually
independent and their joint probability density function can
be expressed as the product of the marginals, while the
alternative hypothesis denotes that the vectors consist of at
least two dependent components. An estimator of the statistical
functional is defined as dHSIC(H̃), which can be calculated
using the following equation [12, Def 2.6]:

dHSIC(H̃) =
1

M2

M∑
i,j=1

N∏
l=1

(
1M×M◦Kl

ij

)
+

1

M2N

N∏
l=1

M∑
i,j=1

Kl
ij

− 2

MN+1

M∑
i,j=1

N∏
l=1

(
1M×1 ◦Kl

ij

)
,

(1)
where the operator ◦ denotes the Hadamard product and
1M×M is an M ×M matrix of ones. Also, Kl =

(
Kl

ij

)
=(

kl(xi, xj)
)

∈ RM×M is the Gram matrix of the positive
semi-definite Gaussian kernel kl, defined ∀xi, xj ∈ R by, kl =

exp

(
−∥xi−xj∥2

σ2

)
, with bandwidth σ =

√
med

(
∥xi−xj∥2

)
2

and med(·) is the median heuristic.
According to [12, Theorem 3.1], with respect to the hypoth-

esis test at hand, the critical value (for a specific significance
level α) can be obtained as below,

CVα =
[
DdHSIC′

]
⌈(B+1)(1−α)⌉+∑B

i=1 1{dHSIC′(H̃)=dHSIC′(H̃i)}

,

where the vector DdHSIC′
contains the B Monte-

Carlo realisations of dHSIC ′(H̃) in an increasing or-
der; the re-sampling function dHSIC ′

(
H̃

)
, H̃ =(

r1(h̃1), · · · , rN (h̃M )
)

is constructed by r1, · · · , rM random
re-samplings without replacement. The operators ⌈.⌉ and [.]j
denote the ceiling function and the j-th element of a vector
respectively, and 1{·} is the indicator function.

We propose a normalised metric for measuring the level
of dependence between variables, based on the dHSIC test
statistic and the corresponding critical value. The metric is
expressed as

∆ =
dHSIC(H̃)

CVα
1dHSIC(H̃)>CV α, (2)

where ∆ is close to unity when the variables exhibit low
dependence and grows without bound with increasing depen-
dence.

4) Conditional min entropy: The randomness of binary
sequences is commonly evaluated using the min-entropy met-
ric [34], [35]. The min-entropy measures the minimum number
of binary strings that are required to generate the observed
sequence with high probability. Specifically, the min-entropy
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of a sequence r is defined as G∞(r) = − log2 maxr∈R p(r),
where R is the set of all possible values of r. In the context
of key generation at the output of a PRG, the key k should
satisfy the randomness inequality [36]:

|k| ≤ G∞(r). (3)

However, the min-entropy metric does not account for any
leakage to an eavesdropper and is therefore only suitable when
no leakage is expected, such as when keys are generated
using a cryptographic PRG. In the case of SKG, to evaluate
the randomness of keys in the presence of an eavesdropper,
we use the conditional min-entropy [37], which measures
the minimum number of binary strings that are required to
generate the key k, given the eavesdropper’s observations, i.e.,

G∞(r|rE) = − log2 max
r∈R,rE∈RE

p(r|rE), (4)

where RE is the set of all possible observed sequences at
the eavesdropper. In fact, the difference between the min-
entropy and the conditional min-entropy represents the amount
of information leaked to the eavesdropper [38]:

Leakage = G∞(r)−G∞(r|rE). (5)

The above metric provides a measure of the leakage and can be
used to determine if pre-processing improves the conditional
min-entropy and reduces leakage.

Finally, we also need to account for the additional leakage
that occurs during the information reconciliation phase due to
side information exchange. As a result, the length of the final
key can be upper-bounded as follows [39]:

|k| ≤ G∞(r|rE)− |sA|, (6)

where |sA| denotes the length of the syndrome. It is worth
noting that (6) assumes a worst-case scenario where the side
information is independent of the leakage during advantage
distillation [39].

IV. PROPOSED POWER DOMAIN PRE-PROCESSING

As explained in earlier sections, we employ three different
techniques: PCA, KPCA, and AEs. PCA is a linear decom-
position that can effectively capture the dominant components
of the CSI. KPCA and AE, on the other hand, are capable of
capturing non-linear dependencies within the data. Fig. 1 pro-
vides a visual representation of our proposed pre-processing
techniques and their role in implementing authentication and
SKG using CSI matrices. This figure illustrates the flow of the
pre-processing steps, highlighting how the techniques capture
the desired components for authentication and SKG. After the
pre-processing stage, the predictable components obtained can
be appropriately used to train a classifier or run a hypothesis
test for authentication. The unpredictable components, on the
other hand, are utilized in subsequent steps of the SKG pro-
cess, including quantization, information reconciliation, and
privacy amplification, to generate the secret key. As discussed
in previous sections, to evaluate the statistical separability
of CSI-based authentication fingerprints, we use the TVD,
while to evaluate the spatial dependencies after quantization
we incorporate four different metrics (MP, CC, dHSIC and
conditional-min entropy).

A. Pre-processing using PCA

Let Hu = [h1u, · · · ,hNu] denote the observed CSI matrix
at Bob (aggregating the CSI vectors from all Alices) and
U the M × M matrix whose rows are the eigenvectors of
the matrix Cov(Hu), sorted in decreasing order. In many
scenarios, e.g., Rician and generally line of sight settings, it
is plausible to assume that the first few principal components
(PCs) correspond to the dominant large-scale fading terms,
while the rest of the PCs correspond to small scale fading
terms and noise. Using the eigenvectors D̂×M matrix U1:D̂

corresponding to the first D̂ PCs, we want to isolate the
predictable part of the observed channel that will be used for
CSI-based authentication, as follows,

Ĥu = UH
1:D̂

Wu, (7)

where symbol .H denotes the Hermitian transpose and the
D̂ ×N matrix Wu is given by,

Wu = U1:D̂Hu, (8)

and Ĥu =
[
ĥ1u, · · · , ĥNu

]
for u ∈ {a, b} is a M × N

matrix. Furthermore, we want to identify a region of PCs with
indices {D̃1, . . . , D̃2}, corresponding to components H̃u =[
h̃1u, · · · , h̃Nu

]
for u ∈ {a, b} over which low dependence

and correlation between Alices and Eves is achieved while
keeping the MP below a threshold.

Note that the PCs beyond D̃2+1 are dominated by noise and
should be neglected (denoising). To efficiently disentangle the
CSI matrix into predictable and unpredictable parts, the triplet
{D̂, D̃1, D̃2} is chosen such that the TVD is maximized for
the first D̂ PCs while ∆, leakage and the MP are kept as low
as possible for the range {D̃1, . . . , D̃2}. We discuss the trade-
off between minimizing ∆ (as a measure of independence)
and the MP in detail in Section VI.

B. Pre-processing using KPCA

KPCA is a natural extension of PCA, that applies a kernel
function to map the data into a higher-dimensional space F
[40], allowing for capturing nonlinear characteristics of the
CSI matrix. Here, the eigenvalue problem is solved in the
feature space for the KPCA decomposition,

K̃α = Nλα, (9)

where αi = Vi√
λi
, i = 1, . . . , N , and, matrix V and vector

λ (λ ⩾ 0) denote the eigenvectors and the eigenvalues,
respectively. Also, K̃ is the centralized Gram matrix, given
by,

K̃ = K− 1

N
1N×NK− 1

N
K1N×N+

1

n2
1N×NK1N×N (10)

where the Gram matrix K ∈ CN,N is based on the positive
semi-definite complex Gaussian kernel and 1N×N is an N×N
matrix of ones.

Then, the first D̂ nonlinear PCs could be extracted through
computing projections of the original data on the eigenvectors
Vi in feature space F, as above,

Y1:D̂ = αH
1:D̂

K̃. (11)
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Fig. 1: Block diagram for proposed PLS-based authentication and secret key generation. The pre-processing schemes
disentangle the predictable components from the unpredictable components in the CSI. The predictable components are used

for authentication and the unpredictable components are used for secret key generation.

Fig. 2: A representative block diagram of PCA.

In order to estimate the predictable and the unpredictable
parts as before, we apply KPCA reconstruction; unlike in PCA,
this can not be done explicitly since ϕ is unknown. Hence,
we approximate the reconstruction matrix based on the kernel
ridge regression [41]. It follows that the predictable part of the
observed channel is computed as follows

Ĥu = βKY
1:D̂

, β = Hu(KY
1:D̂

+ γI)−1, (12)

where KY
1:D̂

=
(
k(yi, yj)

)
is the complex Gaussian Gram

matrix of the first D̂ PCs and γ is the hyperparameter of the
ridge regression. Subsequently, we derive the unpredictable
part of the observed CSI directly as the residual of removing
the predictable part, i.e.,

H̃u = Hu − Ĥu, (13)

In the case of KPCA, unlike in PCA, denoising is not
performed.

C. Pre-processing using AEs

AEs are unsupervised learning architectures that utilise and
learn two functions, an encoder that maps the M dimensional

Fig. 3: A representative block diagram of AE1.

input matrix hnu into D̂ dimensional encoded values wnu

∀ n = 1, . . . , N for u ∈ {a, b} and a decoder that maps the
encoded values back to an M dimensional output ĥnu, ∀n =
1, . . . , N and for u ∈ {a, b}, such that the loss-function

E1 =
1

N

N∑
n=1

∥hnu − ĥnu∥22, for u ∈ {a, b}, (14)

corresponding to the mean square error (MSE) between the AE
input and output, is minimal. An AE can be used to extrapolate
a D̂-dimensional representation wnu, ∀n = 1, . . . , N that can
capture the dominant components. We treat the output of the
decoder ĥnu,∀n = 1, . . . , N, for u ∈ {a, b} as the dominant
predictable components under the conjecture that most of the
received signal strength is due to large scale fading effects.
Here again, we assume that the residuals{

h̃nu(D̂)
}N

n=1
= {hnu − ĥnu}Nn=1, for u ∈ {a, b} (15)

correspond to the unpredictable components of the CSI matrix.
In light of this, the value of D̂ is a hyperparameter that

can be tuned to a more fine-grained loss function focusing
on SKG; in particular, we build an alternative loss function
to balance the spatial correlation with the reciprocity of the
residuals in the uplink and the downlink. Since we want to
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Fig. 4: A representative block diagram of AE2.

lower correlation, the loss function can also explicitly specify
a correlation term instead of the MSE. Consequently, the
following loss function is proposed:

E2 =
1

N

N∑
n1=1

n2∈U(n1)

h̃H
n1uh̃n2u, for u ∈ {a, b}, (16)

as the inner product of the residual at each location and that
from the neighbouring locations. Here, U(n1) is the nearest
neighbours of the n1-th Alice-Bob pair.

V. DATASETS

To validate the proposed methodology, we perform ex-
periments on synthetic datasets using the Quadriga channel
simulator and real experimental datasets collected from Nokia
[15].

A. Quadriga synthetic dataset

We considered single-antenna legitimate nodes, referred to
as Alices and a base station referred to as Bob; Alices’
spatial locations are denoted by {xn}Nn=1 n = 1, . . . , N ,
where {xn}Nn=1 ∈ RL and L denotes the spatial dimensions
considered (typically L = 2). We obtain the channel response
at N = 400 equi-distant (1 m) spatial locations within a
square area on the ground, between x = 100 and x = 290
and y = −100 and y = 90 and a base station located at
(x, y, z) = (0, 0, 10) using the ”Berlin-UMa-NLOS” configu-
ration in Quadriga channel models [14], [42], as depicted in
Fig. 5. We assume that for any specific Alice, all other Alices
can act as attackers (Eves).

This configuration’s terrestrial Urban Macrocell parameters
are extracted from measurements in Berlin, Germany. To
create temporal variations in the channel, the Alices are
assumed to move at a low speed of 0.5 m/s. The number of
CSI snapshots per Alice is set to M = 256, while the carrier
frequency is set to 2.68 GHz.

Let the channel function mapping the spatial locations to the
M × 1 CSI vectors {hn}Nn=1 be denoted by H : RL → RM ,

Fig. 5: Node positions in the Quadriga synthetic dataset.

where M is the number of snapshots in the time domain (after
concatenation of the real and imaginary components into a
single column vector). The CSI observations at Alice and Bob
after the exchange of pilot signals can be modelled as

ynu = hns+ nnu, n = 1, . . . , N , u ∈ {a, b}, (17)

where the index a denotes an Alice, b denotes Bob; nna and
nnb are circularly symmetric Gaussian noise variables and the
pilot symbols s are drawn from the binary phase-shift keying
(BPSK) constellation [43]. The zero-force CSI estimates at
Alice and Bob, respectively, are denoted by hna = yna and
hnb = ynb for n = 1, . . . , N .

B. Nokia experimental dataset

A massive multiple-input multiple-output (mMIMO) chan-
nel measurement campaign was conducted on the Nokia
campus in Stuttgart, Germany. The campaign area consisted
of multiple roads with high buildings (15 m high approxi-
mately), acting as reflectors and blockers for the radio wave
propagation. The transmit antenna array was placed on the
roof-top of one of these buildings. The geometry of 64-element
transmit-array was such that there were 4 rows with 16 single-
polarization patch antennas, with a horizontal spacing of λ/2,
and vertical spacing of λ.

The transmit antenna array transmitted 64 time-frequency
orthogonal pilot signals at 2.18 GHz carrier frequency, using
orthogonal frequency division multiplexing (OFDM) wave-
forms according to the 10 MHz LTE numerology (i.e., 600
subcarriers with 15 kHz spacing). The pilot signals have been
arranged so that the sounding on 50 separate subbands (each
consisting of 12 consecutive subcarriers) required 0.5 ms.
Within that pilot burst period, the propagation channel was
assumed to be time-invariant. The pilot bursts were sent
continuously with a periodicity of 0.5 ms.

The receiver user equipment (UE) was mounted on a mobile
cart and consisted of a single monopole antenna mounted
at 1.5 m height, a Rohde and Schwarz TSMW receiver
and a Rohde and Schwarz IQR hard disc recorder, which
continuously captured the received base-band signal. Both the
transmit array and the receiver were frequency synchronized
via GPS. During the measurements, the receiver cart moved
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Fig. 6: Pictorial representation of the Nokia campus in Stuttgart, Germany, where the dataset was recorded. The blue bar on
the left side corresponds to the location of the massive MIMO transmit antenna, placed on a rooftop, while the arrow points
the antenna boresight. The black dashed lines depict the measurement tracks, along which the UE cart moved. The tracks are
numbered from 1 to 24; in this work we utilized the datasets of tracks 6 and 12, which are parallel and at 1 m distance from

each other [15].

along several routes at walking speed (3.6 kmph), which
corresponded to a spatial channel sampling distance of less
than 0.5 mm. Post-processing was used to extract, for each
pilot burst and subband, the 64-dimensional CSI vector.

In this work, we used datasets on tracks 6 and 12, depicted
in Fig. 6, that are parallel at a vertical distance of 1 m. In
detail, we assumed that Bob is the base station and Alice walks
along track-6, while Eve performs an ”on the shoulder attack”
and walks in parallel to Alice on track-12, i.e., legitimate
and adversarial nodes are at all times 1 m away. In order to
remove frequency domain (within the coherence bandwidth)
and antenna domain correlations, we have downsampled the
dataset. In detail, we kept the measurements from every 10th
subcarrier and every 4th antenna, i.e., we used sub-sampling
factors of 5 and 6, respectively.

Furthermore, as the Nokia dataset consists of only uplink
data, we used alternate consecutive measurements to approxi-
mate downlink data and have further downsampled the data in
the time domain, keeping every 5th channel sample. In detail,
starting from sample index 1, we labeled odd index samples as
uplink and even indexed samples as downlink. As a result, for
each Alice and Eve, we used CSI vectors of length M = 800,
concatenating real and imaginary parts.

It is worth noting that in practice uplink and downlink
channels can be non-reciprocal due to a multitude of factors,
including but not limited to: i) different dimensions of antenna
arrays at Alice and Bob; ii) non linearities of power amplifiers
(AM/AM and AM/PM distortions), whose characteristics are
generally different in the UE and gNB; iii) antenna imperfect
calibration in UE and gNB; iv) digital processing differences;
v) Tx and Rx chains imbalances more generally and more
importantly vi) asynchronous transmissions of the uplink and
downlink in time division duplex (TDD) systems. All of these
aspects need to be systematically investigated as they will
impact the MP and by extension the required reconciliation
rate to achieve zero FER; however, they are out of the scope

TABLE I: Estimated pdf parameters for the Quadriga and the
NOKIA datasets.

Quadriga NOKIA track 6 NOKIA track 12

α̂ β̂ p-val α̂ β̂ p-val α̂ β̂ p-val

Rician 0.56 0.59 0.11 Rician 0.02 0.01 0 Weibull 0.02 2.59 0

Weibull 1.01 2.07 0 Normal 0.03 0.01 0 Nakag. 1.52 0 0.4

Nakag. 1.05 1.01 0 Weibull 0.03 2.64 0 Rician 0.02 0.01 0

Rayleigh 0.71 - 0 Nakag. 1.34 0 0 Normal 0.02 0.01 0

this study and are left as future possible extensions of the
results presented in this paper.

Before presenting the details of the pre-processing, we
discuss the statistical analysis of the two datasets.

C. Analysis of datasets

We fitted the empirical distributions of the amplitude and the
phase for the Quadriga and the Nokia datasets (tracks 6 and 12)
to 16 parametric probability density functions (PDFs). Table I,
summarizes the estimated PDFs’ parameters of the amplitude
resulting in the lowest Akaike’s information criterion (AIC)
values, along with the p-values of the Kolmogorov-Smirnov
(KS) goodness-of-fit test (the null hypothesis being that the
data follow the specified distribution). Also, Fig. 7, depict
the fitted PDFs of the distributions tabulated Table I on the
amplitude (left column) and the fitted PDF of the uniform
distribution on the phase (right column), for the Quadriga and
NOKIA datasets.

According to the p-values of the KS test, the amplitude
of the Quadriga-based channel follows a Rician distribution,
while the phase follows a Uniform(−π, π) distribution (see
Fig. 7). However, the amplitude of Nokia’s track 6 CSIs is
bimodal (mixture distribution) and does not fit any of the
chosen distributions, as shown in Fig. 7 and confirmed by the
p-values of the KS test. On the other hand, for Nokia track
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Fig. 7: Fitting of the underlying channel distribution of the
amplitude and the phase.

12, the p-value of the Nakagami(1.52,0.0004) distribution (p-
value = 0.4) implies that the channel is likely to follow the
above distribution while the phase is uniformly distributed.
In conclusion, Table I and Fig. 7 indicate that real datasets
might not be well fitted to any of the usual distributions
customarily used for the evaluation of SKG rates in literature,
as is the case for track 6. In the future, we will consider
non-parametric analysis, mixture distributions and the use of
generative models for fitting real datasets.

VI. NUMERICAL RESULTS

In this section, we provide a comprehensive evaluation of
the proposed approaches using both synthetic and real datasets.
We first begin with results on maximising the separability of
CSI fingerprints. We analyze the variation of TVD with respect
to D̂. Since the results for CSI-based authentication are similar
for all proposed approaches, we present them solely for the
PCA for conciseness.

Subsequently, in the second half of the section, we turn
our attention to unpredictable components used for SKG. We
examine the reciprocity versus correlation trade-off of the
PCA, KPCA, and AE by analyzing two key metrics: the
average CC between locations and their nearest neighbours,
and the average MP between Alice and Bob. To investigate
this trade-off, we plot the variations of these metrics as the pair
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Fig. 9: Separability of 6 neighbours for the original signal
and the D̂ = 1 PC for SNR= 20 dB.

D̃1, D̃2 changes. Furthermore, we evaluate the randomness of
the generated keys using the normalized dHSIC test statistic as
well as conditional min entropy estimators. Finally, the various
methods are compared in terms of overall key generation rates.

A. CSI-based node authentication

In Fig. 8, for the Quadriga dataset, the average TVD
between the first D̂ PCs at any Alice and any of her neighbours
is depicted. We observe that D̂ = 1 results in the largest value
of TVD, while the point D̂ = 0 corresponds to the original
measurements. With an increase in the SNR, there is a slight
increase in the TVD; with a decrease in noise, the variance of
the first PCs increases, and hence the TVD decreases.

To showcase the impact of increasing TVD, in Fig. 9, we
show the variation of the amplitude of the original CSI vs.
time and that of the first PC vs. time for four neighbouring
Alices. We observe that when compared to the original signal
in Fig. 9(a), the time series corresponding to the first PC in
Fig. 9(b) are clearly distinguishable. Similar results are shown
for the Nokia dataset in Fig. 10 and 11, for which, notably,
the increase in the separability is more accentuated.

To provide a first validation of the proposed pre-processing,
we compare the performance of CSI authentication for the
original signal, the first principal component (representing
large-scale fading), and the residuals (representing small-scale
fading), using the NOKIA dataset. For the evaluation, we
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Fig. 11: Original signals and first PC of 4 neighbouring
Alices in the Nokia dataset for SNR= 20 dB.

employed a binary
√
M - nearest neighbour (NN) classifier

(based on the common Euclidean distance) to distinguish
between track 6 and track 12 [44]. We considered several
sample sizes M = {250, 500, 1000, 2000, 4000} and utilized
70% of each dataset for training and 30% for testing.

The results in Fig. 12 clearly demonstrate the superior
performance of CSI-based authentication using the first PC
(large-scale fading) compared to the original CSI and the
small-scale fading3. Specifically, for sample sizes up to 1000,
the large-scale fading provides an average increase in classifi-
cation accuracy and f1-score of around 6% and 15% compared
to the original CSI and small-scale fading. It is important
to note that for larger sample sizes (M = 2000, 4000),
the classification performance gap between the large-scale
fading and the original channel is lower (up to an average
of 5%). This is because the

√
M -NN classifier struggles to

efficiently distinguish between tracks 6 and 12 due to their
close proximity (1 meter). However, even at such larger sample
sizes, the large-scale fading is superior to small-scale fading
in terms of accuracy and f1-score.

We also evaluated the performance of CSI-based authenti-
cation using the Quadriga dataset, following the same exper-
imental setup as before, with sample size M = 256 (total

3The use of stochastic fading for authentication is presented here to further
exemplify its unsuitability as an authentication feature.

TABLE II: Average
√
M -NN classification performance, in

terms of classification accuracy and f1-score, for each 2
neighbouring Alices in the Quadriga dataset for SNR=20 dB

for M = 256.
Accuracy f1-score

Predictable 0.793 0.7582
Original 0.5629 0.5901

Unpredictable 0.5752 0.5986
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Fig. 12: Average a) accuracy and b) f1-score of the binary√
M -NN classifier between track 6 and track 12 of the
NOKIA dataset, for the original signal, the first PC

(predictable) and the residuals (unpredictable).

number of snapshots per location). The results, presented in
Table II, demonstrate that accuracy is significantly improved
when keeping only the first PC compared to the original CSI
and the small-scale fading. On average, when keeping only
the first PC leads to a 20% higher classification accuracy
and a 15% higher f1-score when distinguishing between
two neighbouring Alices. The table provides an overview of
the average

√
M -NN classification performance in terms of

accuracy and f1-score for each pair of neighbooring Alices
in the Quadriga dataset at an SNR of 20 dB. The predictable
component achieves an accuracy of 0.793 and an f1-score of
0.7582, outperforming the original channel (accuracy: 0.5629,
f1-score: 0.5901) and the unpredictable component (accuracy:
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Fig. 13: Trade-off between CC and MP for SNR = 20 dB for
the Quadriga dataset. Darker colours indicate lower values.

0.5752, f1-score: 0.5986).

B. Secret key generation

1) PCA: First, we study the effect of pre-processing using
PCA for SNR = 20 dB in Fig. 13, starting with the Quadriga
dataset. Figs. 13(a), and (b) illustrate the variation of two
metrics: i) the average CC between the locations and their
nearest neighbours; and ii) the average MP between the Alices
and Bob, respectively, with respect to the variation in the pair
{D̃1, D̃2} in steps of 2. With no pre-processing, the average
CC is approximately 0.30. However, with a sufficient number
of dimensions D̃1 − D̃2 retained, an increase in the number
of dimensions omitted D̃1−1 results in a decrease in the CC.
Specifically, for D̃1 = 2 and D̃2 = 20, we observe a drop in
the CC to 0.18, with no significant increase in MP.

We posit that this range of PCs captures sufficiently well
small scale fading terms. This regime is indicated as ”Dom-
inance of uncorrelated components” in Fig. 13(a) while the
corresponding region is referred to as ”Low Mismatch Prob-
ability” in Fig. 13(b). Note that the drop in CC is more
pronounced beyond D̃1 = 14, beyond which noise becomes
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Fig. 14: Trade-off between CC and MP for SNR = 5 dB for
the Quadriga dataset.

dominant, resulting in an increase of the MP. This regime is
referred to as ”Dominance of Noise” in Fig. 13(a). The cor-
responding region is marked as ”High Mismatch Probability”
in Fig. 13(b). In Fig. 14, the trade-off between CC and MP is
shown for SNR= 5 dB. As expected, with a decrease in SNR,
the effect of noise is more pronounced. Therefore, the regime
of noise dominance and high MP is seen even at D̃1 = 10. An
important conclusion of this analysis is that for low SNRs it
is possible to omit any pre-processing to avoid compromising
the MP.

A trend similar to CC is observed for ∆ in Fig. 15, espe-
cially for higher values of D̃1 indicating likely independence.
On the other hand, ∆ for D̃1 < 8 does not follow the CC
drop, indicating the limitations of CC compared to ∆ to
capture dependence. For example, omitting the first 6 PCs may
guarantee a low CC but not a significant decrease in ∆ and
statistical independence. The impact of the observation vector
length on ∆ will be investigated in detail in future work.

Next, we present results for the Nokia dataset starting
with SNR = 20 dB in Fig. 16. With no pre-processing, the
average CC is approximately 0.38. However, with a sufficient
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TABLE III: KPCA results for the Quadriga dataset,
considering SNR={5, 20} dB. D̂ = 0 denotes no

pre-rpocessing.

D̂ 0 1 2 3 4 5 6 7 8 9 10

SN
R

=5
dB ∆ 1.93 1.7 0.75 0.66 0.69 0.61 0.53 0.54 0.49 0.49 0.43

MP 0.36 0.38 0.4 0.41 0.41 0.42 0.43 0.43 0.43 0.43 0.43

SN
R

=2
0d

B

∆ 4.07 3.93 3.11 3.04 3.21 3.2 3.16 3.04 3.05 3.04 2.93

MP 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.16

number of dimensions retained, an increase in the number of
dimensions omitted decreases the CC. Specifically, for D̃1 = 6
and D̃2 = 30, we observe a drop in the CC to 0.15, with no
significant increase in MP. As in the Quadriga dataset, we posit
that this is the regime in which the predominant large scale
predictable components have been removed, and the small
scale fading components have been retained. Importantly, a
trend similar to CC is observed in the average ∆ in Fig. 17,
especially for D̃1 ≥ 4 after which value the dependence level
collapses. Finally, similarly to Quadriga, for a low SNR=5 dB,
any pre-processing would induce high MP and is therefore
advised to be omitted.

2) KPCA: Next, we evaluate the performance of KPCA.
Recall that, in this case, we only apply the parameter D̂ to
derive the residuals that will be used as SKG seeds. Tables III
and IV indicate that an increase in D̂ leads to lower values of
∆ and higher values of MP. More precisely, focusing on Table
III, ∆ undergoes a significant decrease for D̂ ⩾ 2, leading to
a slight increase in MP. Moreover, comparing the outcomes
of the PCA and the KPCA, KPCA seems to lead to a ”faster”
decrease of ∆. The results provided in Table IV concern the
NOKIA dataset and similarly show a significant decrease in ∆;
overall, compared to PCA, KPCA seems slightly more efficient
in decreasing dependencies.

3) AE: The layers and the activation function of the AE are
given in Table V and follow [45]. For brevity, the AE with

0 5 10 15 20 25 30

5

10

15

20

25

30

Dimensions to omit

D̃
-

D
im

en
si

on
s

to
ke

ep
fr

om
D̃

1
to

D̃
2

0.2

0.3

0.4

0.5

0.6

Low
cross
correlation

Dominance
of
Noise

(a) Average CC (Original= 0.38)

0 5 10 15 20 25 30

5

10

15

20

25

30

Dimensions to omit

D̃
-

D
im

en
si

on
s

to
ke

ep
fr

om
D̃

1
to

D̃
2

0.2

0.3

0.4

0.5

0.6

Low
mismatch
probability

High
mismatch
probability

(b) Average MP

Fig. 16: Trade-off between CC and MP for SNR = 20 dB
for the Nokia dataset.

TABLE IV: KPCA results for the NOKIA dataset,
considering SNR={5, 20} dB.

D̂ 0 1 2 3 4 5 6 7 8 9 10

SN
R

=5
dB Residual-∆ 10.22 4.37 2.74 1.15 0.83 0.88 0.71 0.73 0.72 0.74 0.73

MP 0.39 0.39 0.46 0.45 0.44 0.45 0.46 0.44 0.46 0.45 0.46

SN
R

=2
0d

B

Residual-∆ 32.11 25.13 17.78 10.8 9.7 10.6 9.6 9.34 9.55 9.67 9.74

MP 0.1 0.14 0.16 0.15 0.14 0.14 0.16 0.14 0.2 0.17 0.22

MSE loss function is referred to as AE1 and that with dot-
product loss function is referred to as AE2. The input to the
AE2 is formed by grouping the 200× 1 CSI vector (100 real
and 100 imaginary) of each spatial location with 200×1 long
CSI vector from each of the 8 nearest neighbours surrounding
the location. In other words, the dimension at the input and
the output is 400× 1. This ensures that the loss function can
minimize the correlation between the users while minimizing
the reconstruction error between the input and the output.
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Fig. 17: Evolution of ∆ with D̃1 for D̃2 = 30 for the Nokia
dataset.

TABLE V: The layers and activation function for AE1. For
AE2 the only change is that the dimensions of the input and

the output layers are 400.
Layer Dimensions Activation
Input 200 Linear

1 100 tanh
2 50 softplus
3 20 tanh

Intermediate D̂ linear
4 20 relu
5 50 softplus
6 100 tanh

Output 200 Linear

Two types of training are possible. Either Bob and the set of
Alices train separate AEs with their local datasets in localized
training, or, Bob trains a global AE whose parameters are
distributed to the Alices in centralized training.

From Tables VI and VII, note that, as in the case of PCA,
the lower the SNR, the lower the CC and the higher the MP.
Moreover, with an increase in the encoding dimensions D̂, the
AE has more freedom to represent the predictable components.
Therefore, with an increase in D̂, we observe a drop in the
CC. For the Quadriga dataset, AE2 achieves a CC of 0.22
for D̂ = 8 and SNR= 20 dB for the residual components,
without a significant increase in MP for centralized training.
This CC is almost equal to what the PCA achieves for the
Quadriga dataset D̃1 = 2 and D̃2 = 20. For the Nokia dataset,
AE2 achieves a CC of 0.07 which is smaller than what PCA
achieves in all cases.

Also, the ∆ of the residuals shows a significant decrease
from that of the original components, especially for SNR=
20 dB. Observe that in AE2, since the loss function is the dot
product between residuals instead of the MSE, we can observe
a significant drop in CC of the residuals for AE2 compared to
AE1. However, this is accompanied by an increase in the MP,
especially for localised training. Also, as expected, centralised
training results in a much lower MP when compared to
localised training. A very similar trend is observable in the
case of the Nokia dataset also. In this case, the residual CC
for D̂ = 8 and SNR= 20 dB, is much lower than what PCA
attains for the same data set for D̃1 = 6 and D̃2 = 30.

TABLE VI: AE: Key results for Quadriga.
D̂ 1 8

SNR (dB) 5 20 5 20

AE type AE1 AE2 AE1 AE2 AE1 AE2 AE1 AE2

Original-CC 0.21 0.21 0.30 0.30 0.21 0.21 0.30 0.30

Residual-CC 0.20 0.19 0.27 0.24 0.18 0.15 0.25 0.21

Original-∆ 2.18 2.18 4.5 4.5 2.18 2.18 4.5 4.5

Residual-∆ 1.57 1.11 3.38 2.8 0.98 0.65 2.65 2.6

MP for Localized 0.37 0.39 0.19 0.27 0.39 0.45 0.17 0.36

MP for Centralized 0.35 0.36 0.14 0.15 0.34 0.40 0.15 0.15

TABLE VII: AE: Key results for Nokia dataset.
D̂ 1 8

SNR (dB) 5 20 5 20

AE type AE1 AE2 AE1 AE2 AE1 AE2 AE1 AE2

Original-CC 0.30 0.30 0.39 0.39 0.30 0.30 0.39 0.39

Residual-CC 0.13 0.11 0.25 0.17 0.04 0.05 0.10 0.07

Original-∆ 15.7 15.7 33.1 33.1 15.7 15.7 33.1 33.1

Residual-∆ 2.51 2.17 11.2 8.81 0.14 1.20 1.92 4.16

MP for Centralised 0.43 0.34 0.15 0.13 0.49 0.36 0.29 0.13

MP for Localised 0.47 0.44 0.37 0.40 0.49 0.42 0.36 0.34

TABLE VIII: Evaluation of conditional min-entropy and
leakage using FBLEAU numerical estimator [13]. The table

shows average values per bit.
Min entropy Leakage Conditional min entropy

No-pre-processing 0.9942 0.1680 0.8262
PCA 0.9955 0.1008 0.8947
AE2 0.9990 0.0189 0.9801

C. Randomness and key-rate analysis of the pre-processing
schemes

In the previous subsections, we analyzed the CC and MP
trends of different schemes. However, it is also crucial to
discuss the unpredictability of binary sequences at both the
pre-processing and final stages using the conditional min-
entropy and the leakage as metrics. In this subsection, we
present the results of the proof-of-concept analysis of these
metrics using only PCA and AE2 schemes, for compactness
of presentation.

We estimate the conditional min-entropy and leakage at
the input of the reconciliation decoder, with and without
pre-processing, using the FBLEAU ML-based estimator [13]
and the results are displayed in Table VIII4. The evaluation
indicates that although the original data has high entropy,
considerable leakage is observed if no pre-processing is ap-
plied. The results show that applying PCA can decrease
the leakage and retain min-entropy. Additionally, we can
observe that AE2 provides a further improvement by reducing
the leakage to Eve. These results demonstrate that the pre-
processing techniques proposed in this study can indeed reduce
information leakage to neighbouring nodes, leading to larger
values of conditional min-entropy and therefore lower hashing
rates. These findings are aligned with the decrease seen in
the normalized dHSIC test statistic and provide further proof
of the decrease in dependencies of observed CSI vectors in
neighbouring locations using the proposed pre-processing.

4We note in passing that if no reconciliation is used then the theoretically
achievable secret key rate cannot be attained, resulting in sub-optimal imple-
mentations.
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Next, to evaluate the final key rate expressed in Eq. (6), we
perform information reconciliation using cyclic redundancy
check (CRC) aided polar codes with a list size of 128 and
a block length of 512 bits (considered a frame) over the
quantized data [46]. In our setup, Alice encodes the channel
observations ya into ua denoted by ua = yaGn, where
a generator matrix Gn for polar codes with a blocklength
of n = 2m. Alice sends a syndrome signal, sa, through
the channel, consisting of 11 CRC bits and the remaining
high-entropy bits from ua, determined by an entropy-based
selection criterion. Bob’s goal is to estimate Alice’s channel
observations, ŷa, using his own channel observations, yb, and
the received syndrome signal, sa. Bob employs CRC-aided
successive cancellation list decoding for this task. The frame
error rate (FER) quantifies the probability of Pr(ya ̸= ŷa).
After Bob estimates Alice’s channel observations, both Alice
and Bob can independently generate secret keys from ya.

The FER for different coding rates are depicted in Fig. 18.
The coding rate in the simulations ranges from 0.3 to 0.95
with a step size of 0.05. Please note that the zero FER code
rates have not been marked in the plot due to the logarithmic
scale for the FER, i.e., for no pre-processing the minimum
code rate to achieve zero FER is 0.35, while for PCA and
AE it is 0.3 and 0.75, respectively. Note that as the MP of
the quantized sequences at Bob and Alice increases, lower
rate reconciliation is needed to achieve SKG without any key
disagreement. Nevertheless, to determine the final key rate
the amount of information leakage needs also be taken into
account.

With respect to achieving zero FER when using short code-
length reconciliation, in practice, the success of the informa-
tion reconciliation step can be verified by transmitting parity
bits. If the derived result from the information reconciliation
does not match the parity check bits, Bob and Alice can
request extra syndrome data from each other to finally obtain
a sequence that satisfies the parity check bits. It is important
to note that the mentioned parity bits are independent from the
CRC bits used in the CRC-aided polar code and these extra
parity checks would reduce the SKG rate further. A discussion
on further parity checks is beyond the scope of the paper.

Table IX shows the bit MP of the generated sequence
for each scenario and the information reconciliation coding
rate that allows reliable reconciliation (zero FER in SKG),
assuming that a key disagreement rate (tends to) zero. The
bit MP for the original data is 0.0174 and with a coding rate
of 0.35, the mismatched bits can be corrected. After applying
PCA, the bit mismatch probability increases to 0.0318, which
can be recovered with a coding rate of 0.3 or 0.25. On the other
hand, using autoencoders (AE) significantly improves the bit
mismatch probability to 0.0038, and with a coding rate of 0.75,
they can be recovered. The fact that AE is non-linear provides
more degrees of freedom compared to PCA, which is linear,
in terms of isolating entropy-rich, reciprocal components with
low information leakage to nearby nodes.

Based on the results in Tables VIII and IX, we also evaluate
the overall key generation rate in bits/sec/Hz, accounting for
the whole SKG chain, given by the product of the conditional
min-entropy and the reconciliation code rate. The resulting
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Fig. 18: The FER results for information reconciliation with
different rates.

TABLE IX: The bit mismatch probability, maximum
information reconciliation code rate with zero key

disagreement, and the key generation rate for Nokia dataset.
Data Bit mismatch Prob. code rate SKG rate (bits/sec//Hz)
Original 0.0174 0.35 0.33
PCA 0.0318 0.25 - 0.3 0.223
AE 0.0038 0.75 0.735

values are given in the last column of Table IX. The number
of bits required to generate a key of size |r| can be evaluated
as |r|/(conditional min-entropy × code rate) (note that this
quantity represents the input size for privacy amplification,
considering |r| to be the output size).

In this work we maintain a consistent output key size of
256 bits (that can be used for example with the advanced
encryption standard (AES) with key size k=256). Table IX
shows the corresponding key generation rate where the higher
the key generation rate, the faster we can generate keys. Our
analysis reveals that AE2 provides the highest key generation
rate at 0.73 b/s/Hz, while PCA offers 0.22 b/s/Hz, which
is below that achieved without pre-processing. Our previous
conclusion that nonlinear pre-processing is advantageous (i.e.,
AE as opposed to PCA) carries over for the overall achievable
key rate. Looking at the bigger picture, to obtain 256 key
bits while satisfying (6), longer input sequences are required
without pre-processing or when using PCA compared to AE.

After determining the maximum allowable size of the final
key, we use a one-way collision-resistant compression function
to compress the sequences to the desired size (i.e., 256 bits).
Commonly used compression functions for this purpose are
universal hash functions, while in this work we propose the use
of cryptographic hashing such as SHA256, to ensure that the
generated keys are maximum entropy and resistant to brute-
force attacks at the input of the hash function.

Furthermore, to verify the randomness of the generated
keys, we subject them to tests from the NIST randomness test
suite [33]. These tests evaluate various aspects of randomness,
such as uniformity, independence and unpredictability, to
ensure that the generated keys are of high quality and meet
the necessary security standards. In this work, we consider a
subset of these tests as shown below since some tests require
size larger than 106 bits and are not practical for the current
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study [47]. The results of the tests are provided in Table X,
where the success rate and average p-value of each test are
reported. The results are averaged over the two pre-processing
mechanisms (PCA and AE). We can see that the average
success rate approaches one, hence, the generated keys pass
comfortably the NIST tests.

TABLE X: Randomness evaluation using the NIST test suite
from [33].

Test Success rate Average p-value
Frequency (monobit) test 0.9892 0.4876
Frequency within a block test 0.9922 0.4987
Runs test 0.9916 0.4817
Longest run of ones in a block test 0.9915 0.5085
Serial test 0.9804 0.4943
Cumulative sum test 0.9845 0.5092

D. Comparison of the pre-processing schemes

Summarizing the three schemes, the study indicates that
for PCA omitting the first few PCs (between 2 and 14)
leads to a decrease in CC without significantly increasing
the MP. KPCA, on the other hand, performs better with
higher values of D̂, which increases the MP but decreases
the average dependence level. Finally, AE1 and AE2 perform
better than PCA and KPCA in terms of both CC and MP.
Furthermore, AE2 outperforms AE1 in terms of residual-CC,
∆, and MP for both localized and centralized training methods
and achieves higher conditional min-entropy and less leakage
compared to PCA. This result indicates that AE2 provides
better randomness and secrecy of the generated key.

Also, the success rate and average p-value of the NIST tests
are quite high, indicating that the generated keys are of high
quality and meet the necessary security standards. Finally, AE2
significantly outperforms the original representation and PCA
pre-processing in terms of BER and information reconciliation
coding rate. Specifically, AE2 achieves a significantly lower
BER with a higher information reconciliation coding rate,
leading to a higher key generation rate. This suggests that
AEs can provide better performance than PCA or KPCA.

In terms of computational complexity, that of PCA can be
broken down into three main steps: computing the covariance
matrix, computing the eigendecomposition of the covariance
matrix, and projecting the data onto the eigenvectors. However,
the computational complexity of PCA is dominated by the
eigendecomposition step, which has a complexity of O(M3),
assuming a standard algorithm such as the QR algorithm or
power iteration.

The computational complexity of an AE can be estimated
by the number of operations required to perform a forward
pass through the network. This can be estimated by counting
the number of operations required to compute the matrix
multiplications and activations in each layer. The total number
of operations required for a forward pass through AE1 is
approximately 31590 + 21D̂. For AE2, the only difference
is the dimensions of the input and output layers, which are
both 400 instead of 200. Therefore, the number of operations
required for a forward pass through AE2 is approximately
67570 + 21D̂. In order to decrease the complexity and the
corresponding hardware requirements, iterative pruning and

quantization techniques can be investigated. For example, after
initial training, one can use the Tensorflow API called Tensor-
flow Model Optimization that eliminates the smallest weights
at the end of every training step following a polynomial decay
schedule [48].

VII. DISCUSSION AND CONCLUSIONS

In this paper, we focused on dimensionality reduction
techniques as pre-possessing for PLS. To demonstrate the
effectiveness of our approach, we built and evaluated pre-
processing approaches using PCA and AE for disentangling
predictable from unpredictable components of observed CSI
vectors. This allowed for the simultaneous use of CSI for
authentication and key distillation. We also discussed the
trade-off between correlations and dependencies at different
locations, that can be extended to include time, frequency,
and antenna domains, and the importance of reciprocity for
the unpredictable components used in SKG.

We proposed the use of TVD as a separability measure of
empirical fingerprints and used four different metrics for sta-
tistical dependence to systematize pre-processing criteria for
SKG. Our evaluation showed that PCA was a straightforward
approach for disentangling large from small scale fading terms
in observed CSI, while KPCA and AE were shown to increase
performance by capturing nonlinear structures, at the cost of
explainability.

Some potential areas for future exploration in incorporating
PLS in 6G security protocols could include:

• Further investigation of time, frequency, and antenna
domain dependencies, potentially utilizing time domain
separation techniques (preliminary results using Kalman
filters have provided promising performance).

• Extensive evaluation and comparison with a range of
ML-based power-domain decomposition techniques, such
as independent component analysis (ICA), support vec-
tor machines (SVD), and convolutional neural networks
(CNNs).

• Integration of more sophisticated AE implementations,
such as those incorporating dHSIC or both dHSIC and
MP into the loss function.

• Development of precise thresholds for the selection of
appropriate CSI decomposition, considering both CC and
MP values.

• Study of key mismatch due to various imperfections in
the communication system, non-reciprocity between Tx
and Rx using different size antenna arrays, phase and am-
plitude offsets, noise, interference, and other impairments
that will impact reciprocity.

In conclusion, our proposed approach demonstrates the
effectiveness of incorporating PLS technologies in 6G security
protocols while providing strong security guarantees. The
future explorations will provide more insight into the potential
applications and performance of the proposed approach to
enhance 6G security protocols.
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