
HAL Id: hal-04493946
https://hal.science/hal-04493946

Preprint submitted on 11 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Zero-Sum Stochastic Games with Vanishing Stage
Duration and Public Signals

Ivan Novikov

To cite this version:
Ivan Novikov. Zero-Sum Stochastic Games with Vanishing Stage Duration and Public Signals. 2024.
�hal-04493946�

https://hal.science/hal-04493946
https://hal.archives-ouvertes.fr


Zero-Sum Stochastic Games with

Vanishing Stage Duration and Public Signals

Ivan Novikov, Université Paris Dauphine (CEREMADE)

Abstract

We consider the behaviour of λ-discounted zero-sum games as the discount factor λ
tends to 0 (that is, the players are more and more patient), in the context of games with
stage duration. In stochastic games with stage duration h, players act at times 0, h, 2h, . . .,
and the payoff and leaving probabilities are proportional to h. When h tends to 0, such
games approximate games in continuous time. The asymptotic behavior of the values
(when both λ and h tend to 0) was already studied in the case of stochastic games with
perfect observation of the state and in the state-blind case.

We consider the same question for the case of stochastic games with imperfect obser-
vation of the state. In such games, players are given at each stage a public signal that
depends only on the current state. Our main result states that there exists a stochastic
game with public signals, with no limit value (as the discount factor λ goes to 0) if stage
duration is 1, but with a limit value when stage duration h and discount factor λ both tend
to 0. Informally speaking, it means that the limit value in discrete time does not exist,
but the limit value in continuous time (i.e., when h tends to 0) exists. Such a situation is
impossible in the case of stochastic games with perfect observation of the state.

Keywords: Stochastic games, Zero-sum stochastic games, Stochastic games

with public signals, Shapley operator, Varying stage duration, Viscosity solu-

tion, Continuous-time Markov games, Limit value
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Notation:

• N
∗ is the set of all positive integers; N0 := N

∗ ∪ {0};
• R+ := {x : x ∈ R and x ≥ 0};
• If C is a finite set, then ∆(C) is the set of probability measures on C;
• If X is a finite set, and f, g : X → R are two functions, then 〈f(·), g(·)〉 :=

∑
x∈X f(x)g(x);

If x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X , then 〈x1, x2〉 :=
∑n

i=1 xiyi;
• If X is a finite set, ζ ∈ ∆(X), and µ is a |X| × |X| matrix, then for any x ∈ X

(ζ ∗ µ) (x) :=
∑

x′∈X

ζ(x′) · µx′x;

• If I, J are sets and g : I × J → R is a function, then

ValI×J [g(i, j)] := sup
x∈∆(I)

inf
y∈∆(J)

(∫

I×J

g(i, j) dx(i)⊗ dy(j)

)
= inf

y∈∆(J)
sup

x∈∆(I)

(∫

I×J

g(i, j) dx(i)⊗ dy(j)

)
.

I.e. ValI×J [g(i, j)] is the value of a one-shot zero-sum game with action spaces I, J and with payoff
function g. Note that we assume that the sets I, J, g are such that the value exists.
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1 Introduction
Zero-sum stochastic games with perfect observation of the state were first defined in [Sha53].

Such a game is played in discrete time as follows. At each stage, player 1 and player 2 perfectly
observe the current state and previous players’ actions, and choose their mixed actions. Depending
on players’ actions and the current state, player 1 receives some payoff, player 2 receives the opposite
of this payoff, and the next state is chosen according to a probability law. For a fixed discount factor
λ ∈ (0, 1] and a given starting state ω, player 1 wants to maximize the λ-discounted total payoff

E

(
λ

∞∑
i=1

(1− λ)i−1gi

)
, where gi is i-th stage payoff; player 2 wants to minimize it. Under some weak

conditions maxmin and minmax coincide, and the resulting quantity is called the λ-discounted value
denoted by vλ(ω).

A similar model of stochastic games, in which players cannot perfectly observe the current state, is
called stochastic games with public signals ([MSZ15, §IV.1]). In such games, the players can observe
only the initial probability distribution p on the states, the previous actions, and a public signal given
to players at the start of each stage. One can define the value vλ(p) in the same way as above. A
particular case of such games are state-blind stochastic games, in which there is a unique signal.

An interesting question is what happens if the players are more and more patient, i.e., what happens
with vλ when λ tends to 0. In many frameworks vλ(·) converges uniformly when λ tends to 0. This was
proved for different types of stochastic games in [Eve58], [MZ71], [Koh74], [BK76], [AMS95], [Ros00],
[RS01], [BGV15], [Zil23]. However, vλ may diverge when λ tends to 0, even in simple frameworks.
[Zil16b] shows an example of a finite state-blind stochastic game without the limit value. [RZ20]
develops the previous paper, considering another example of a game without a limit value, similar
to the one in [Zil16b]. See [Vig13] for an example of a game with perfect observation of the state
and without a limit value, but with compact action spaces, finite state space, continuous payoff and
transition functions. See also [SV15] for a paper about a general idea to construct counterexamples in
different frameworks.

Zero-sum stochastic games with perfect observation of the state and with stage dura-

tion were introduced in [Ney13]. Given a stochastic game Γ (with perfect observation of the state)
with stage duration 1, Neyman considers a family Γh of stochastic games in which players act at
time 0, h, 2h, . . . , and the payoffs and leaving probabilities are normalized at each stage, i.e. they
are proportional to h. This gives the value vh,λ depending both on the discount factor λ and the
stage duration h. It is interesting to consider small h, since in this case game with stage duration h
approximates a game played in continuous time with λ-discounted payoff

∫ +∞

0
λe−λtgtdt, see [Ney13,

§3], [SV16, §8], [Nov24, §6] for more details.
Neyman considered in [Ney13] the asymptotics of vh,λ when either h or λ tends to 0. Among other

things, he proved that when h is vanishing (i.e., h tends to 0), the value of a finite game with stage
duration h converges. A corollary of this result states that the limit value (when the discount factor
λ tends to 0) of the game with stage duration 1 should coincide with the limit value of the game
with vanishing stage duration (i.e., limλ→0 limh→0 vh,λ), and one exists if and only if another exists.
Afterwards, the article [SV16] obtained new results; it considers a more general case in which the state
and action spaces may be compact, and stage durations hn may depend on the stage number n. In
our paper, we also assume that stage duration may depend on the stage number.

The study of zero-sum stochastic games with stage duration and public signals is the main
goal of this article. It is not evident how to generalize the definition of games with stage duration
to the case of public signals. So, we first consider a particular class of stochastic games with public
signals, and for this class we give a natural definition of games with stage duration. This particular
case is going to be sufficient for all of our main results. Afterwards, we give a definition of games with
stage duration for a general framework of stochastic games with public signals.
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A particular case of games with stage duration are state-blind stochastic games with stage duration,
which were introduced and studied in [Nov24]. An example of a finite state-blind stochastic game from
[Nov24] shows in particular that the limit value (when the discount factor λ tends to 0) of the game
with stage duration 1 does not coincide with the limit value of the game with vanishing stage duration
(i.e., limλ→0 limh→0 vh,λ).

The above example alludes that there may exist finite games with public signals, in which the
limit value of the game with vanishing stage duration exists, but the limit value of the game with
stage duration 1 does not. Our main result, Theorem 1 from §4.4 gives an example of such a game.
Informally speaking, it means that the limit value of the game played in discrete time does not exist,
but the limit value of the game played in continuous time (i.e., when sup hi tends to 0) exists. Such a
situation is impossible in the case of stochastic games with perfect observation of the state.

The game from Theorem 1 is similar to the ones considered in [Zil16b] and [RZ20], which implies
that there is no limit value in the case when stage duration is 1. The existence of the limit value of
the game with vanishing stage duration is proved mainly by using a result from [Nov24] relating the
values of λ-discounted state-blind games with vanishing stage duration and viscosity solutions of a
differential equation, as well as techniques from [SV15].

2 Organization of the paper
In §3, we introduce a particular case of stochastic games with public signals that is enough to

construct an example from Theorem 1.
In §4, we introduce stochastic games with stage duration. In §4.1, we introduce and give some

known results about stochastic games with stage duration in the case of perfect observation of the
state. In §4.2, we do the same in the state-blind case. In §4.3, we give a new definition of stochastic
games with stage duration and with public signals. In §4.4, we give our main result about such games
(Theorem 1). In §5, we give a detailed proof of this result.

In §6, we give some final comments. In §6.1, we give a definition of stochastic games with stage
duration and with public signals for a general model of stochastic games with public signals. In §6.2,
we give an alternative definition, which is not very natural but makes games with stage duration
much easier to study. In §6.3, we briefly discuss why our main result also applies to the model from
[Sor17], in which players act in a continuous-time game, but are allowed to take actions only at times
t1, t2, t3, . . . In §6.4, we discuss some open questions and conjectures.

3 The model of zero-sum stochastic games with

public signals, in which the signal depends only

on the current state
A zero-sum stochastic games with public signals, in which the signal depends only on the current

state is a 7-tuple (A,Ω, f, {Iα}α∈A, {Jα}α∈A, {gm}m∈N∗ , {Pm}m∈N∗), where:

• A is a finite non-empty set of signals;
• Ω is a finite non-empty set of states;
• f : Ω → A is a partition of Ω;
• Iα (with α ∈ A) is a finite non-empty set of actions of player 1, if the current state is in f−1(α);
• Jα (with α ∈ A) is a finite non-empty set of actions of player 2, if the current state is in f−1(α);
• gm :

⋃
ω∈Ω(If(ω) × Jf(ω) × ω) → R is the m-th stage payoff function of player 1;

• Pm :
⋃

α∈A(Iα × Jα) → {row-stochastic matrices |Ω| × |Ω|} is the transition probability function at
the m-th stage.

Recall that a matrix A = (aij) is called row-stochastic if aij ≥ 0 for all i, j, and
∑

j aij = 1 for any
fixed i.
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We denote by Pm(i, j)(ωa, ωb) the (ωa, ωb)-th element of the matrix Pm(i, j).
The game (A,Ω, f, {Iα}α∈A, {Jα}α∈A, {gm}m∈N∗ , {Pm}m∈N∗) proceeds in stages as follows. Before

the first stage, an initial state ω1 ∈ Ω is chosen according to some probability law p0, and players
receive the signal α1 = f(ω1). At each stage n ∈ N

∗:

1. The current state is ωn ∈ Ω. Players do not observe it, but they observe the signal αn ∈ A and
the actions of each other at previous stage;

2. Players choose their mixed actions. Player 1 chooses xn ∈ ∆(Iαn) and player 2 chooses yn ∈
∆(Jαn);

3. An action in ∈ Iαn of player 1 (respectively jn ∈ Jαn of player 2) is chosen according to the
probability measure xn ∈ ∆(Iαn) (respectively yn ∈ ∆(Jαn));

4. Player 1 obtains a payoff gn = gn(in, jn, ωn), while player 2 obtains payoff −gn. The new state
ωn+1 is chosen according to the probability law P (in, jn)(ωn, ·). The new signal is αn+1 = f(ωn+1).

The above description of the game is known to the players.
A state ω is called absorbing if for any i, j we have P (i, j)(ω, ω) = 1

Remark 1 (Special cases of the above construction). We fix a stochastic game
G = (A,Ω, f, {Iα}α∈A, {Jα}α∈A, {gm}m∈N∗ , {Pm}m∈N∗).

1. If A is a singleton, then G is called a state-blind stochastic game;
2. If αn = ωn for all n ∈ N

∗, then the game is called a stochastic game with perfect observation of
the state. Such games are widely studied in the literature.

Remark 2 (Games with infinite state space). In the construction above, we assumed that the state
space Ω is finite. However, this is not always the case in this paper. If Ω is not finite, then instead
of transition probability functions Pk : I × J → {row-stochastic matrices |Ω| × |Ω|} we are going to

consider P̃k : I × J → Ω× Ω such that:

1. For each i ∈ I, j ∈ J, ω1, ω2 ∈ Ω we have P̃k(i, j)(ω1, ω2) ≥ 0;

2. For each fixed i, j, ω1 there is only finite number of ω2 such that P̃k(i, j)(ω1, ω2) > 0;

3. For each fixed i, j, ω1 we have
∑

ω2∈Ω
P̃k(i, j)(ω1, ω2) = 1.

P̃k(i, j)(ω1, ω2) is still the probability to change the state from ω1 to ω2, if at the current stage the

players’ action profile is (i, j). So, we will still call P̃k(i, j) the transition probability functions. Note
that if the state at the current stage is ω1, there is only finite number of possible states at the next
stage. In the general model of stochastic games, this is not always the case, but we will need only this
particular case.

Remark 3. In the original construction given by Lloyd Shapley, the payoff functions gm and the tran-
sition probability functions Pm do not depend on the stage number. However, we need the dependency
on the stage number.

Remark 4. Usually Iα = I and Jα = J for all α ∈ A. It is easy to see that such a model is equivalent
to the model presented here. (Indeed, one can add some ”duplicate” actions to the sets Iβ with
|Iβ| < maxα∈A |Iα|).

By Remark 4, in the remaining of this section we assume (without loss of generality) that Iα = I
and Jα = J for all α ∈ A. So, we are going to talk about the stochastic game
(A,Ω, f, I, J, {gm}m∈N∗ , {Pm}m∈N∗).

A history of length t ∈ N for the stochastic game (A,Ω, f, I, J, {gm}m∈N∗ , {Pm}m∈N∗) is
(α1, i1, j1, α2, i2, j2, . . . , αt−1, it−1, jt−1, αt). The set of all histories of length t is Ht := A × (I × J ×
A)t−1. A (behavior) strategy of player 1 (respectively player 2) is a function σ :

⋃
t≥1Ht → ∆(I)

(respectively τ :
⋃

t≥1Ht → ∆(J)). Players’ strategies induce probability distribution on the set
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A × (I × J × A)N
∗

. (Indeed, strategies induce a probability distribution on the set H1, then on the
set H2, etc. By Kolmogorov extension theorem, this probability can be extended in a unique way to
the set A× (I × J ×A)N

∗

). In particular, given an initial probability distribution p ∈ ∆(Ω), strategies
σ :

⋃
t≥1Ht → ∆(I), τ :

⋃
t≥1Ht → ∆(J), and induced by them probability distribution P p

σ,τ on

A× (I × J × A)N
∗

, we can consider an expectation Ep
σ,τ of a random variable on

⋃
t≥1Ht.

Now, we need to choose how to compute a total payoff function.

Definition 1 (Stochastic game Γ({bm}m∈N∗) with payoff
∑∞

m=1 bmgm). Fix a sequence {bm}m∈N∗ with
bm ≥ 0 (m ∈ N

∗) and with 0 <
∑∞

m=1 bm <∞. Fix also a stochastic game
Γ = (A,Ω, f, I, J, {gm}m∈N∗ , {Pm}m∈N∗). The (normalized) total payoff of stochastic game Γ({bm}m∈N∗)
with payoff

∑∞

m=1 bmgm depends on a strategy profile (σ, τ) and initial distribution p ∈ ∆(Ω), and is
equal to

Ep
σ,τ




1
∞∑

m=1

bm

∞∑

i=1

bigi


 .

Remark 5 (λ-discounted game Γλ). The λ-discounted game Γλ is obtained if we set in the above
definition bm = (1− λ)m−1 for all m ∈ N

∗.

Analogously to single-shot zero-sum games, we may define the value and the (ε-)optimal strategies
of stochastic games.

Definition 2. Fix a stochastic game Γ = (A,Ω, f, I, J, {gm}m∈N∗ , {Pm}m∈N∗). The stochastic game
Γ({bm}m∈N∗) with payoff

∑∞

m=1 bmgm is said to have a (normalized) value v : ∆(Ω) → R if for all
p ∈ ∆(Ω) we have

v(ω) = sup
σ

inf
τ
Eω

σ,τ




1
∞∑

m=1

bm

∞∑

i=1

bigi


 = inf

τ
sup
σ
Eω

σ,τ




1
∞∑

m=1

bm

∞∑

i=1

bigi


 .

Sometimes instead of the transition probability function P , we consider the kernel
q : I × J → {matrices |Ω| × |Ω|} defined by the expression

q(i, j)(ω, ω′) =

{
P (i, j)(ω, ω′) if ω 6= ω′;

P (i, j)(ω, ω)− 1 if ω = ω′.

In particular, we are sometimes going to define a stochastic game by using kernels instead of transition
probability functions. Note that for any ω ∈ Ω we have

∑
ω′∈Ω q(i, j)(ω, ω

′) = 0.
Now, let us discuss the above construction.
Figure 1 gives an example of a game with the same number of states, but with a different signalling

structure on the states.
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w1

w2

w3

w4

w5

w6

α1

α2

α3

α4

α5

α6

(a) The perfect observation of
the state, i.e. there are 6 signals
α1, . . . , α6; and f(wi) := αi.

w1

w2

w3

w4

w5

w6

α

(b) The state-blind case. There
is only one signal α, and
f(wi) := α.

w1

w2

w3

w4

w5

w6

α

β

γ

(c) Neither the perfect observa-
tion of the state nor the state-
blind case. There are 3 signals,
and
f(w1) = f(w2) = f(w3) = α,
f(w4) = f(w5) = β,
f(w6) = γ.

Figure 1: An example of different partition functions in a game with 6 states w1, . . . , w6.

Remark 6 (Difference with the standard definition of stochastic games with public signals). Note
that the above definition is not standard. Usually, there is no partition function f , and instead of
function P : I × J → {matrices Ω × Ω} there is a function P ′ : I × J × Ω → ∆(Ω × A), and the
next state and signal is chosen according to P ′. (The first state and signal are chosen according to
p′0 ∈ ∆(Ω×A)). Note that our definition is a particular case of the standard definition. To show this,
consider a 0-players game with two states, S1 and S2, where S1 is the initial state. The probability to
go from the state S1 to S2 is 1 and the probability to go from the state S2 to S1 is 1. In our definition,
we need to specify a partition of the set of the states (See Figure 2a). In the standard definition, we
need to specify a signal for each transition, and also an initial signal (See Figure 2b). If α2 = α3, then
two definitions are equivalent (Take β1 = α1 and β2 = α2). The case α2 6= α3 cannot be reproduced
with our definition.

Signal β1

S1

Initial state

Signal β2

S2

(a) Our definition

S1

Initial state

Given signal: α1

S2

signal α3 signal α2

(b) The standard definition

Figure 2: Difference between the definition given by us and the standard definition.
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4 Discounted zero-sum stochastic games with stage

duration and public signals
The goal of this section is to define and state some results about games with stage duration and

with public signals. We first recall two particular cases: the case of perfect observation of the state in
§4.1 and state-blind case in §4.2.

In §4.3, we generalize the above notions for the setting of stochastic games with public signals, and
in §4.4, we state our main result about such games.

Thus §4.1 and §4.2 consider already known notions and results, while §4.3 and §4.4 consider new
notions and results.

Let us fix the notation that will be used during the entire section. Let T∞ be a partition of R+;
in other words, T∞ is a strictly increasing sequence {tn}n∈N∗ such that t1 = 0 and tn

n→∞
−−−→ +∞. For

each given partition T∞, denote hn = tn+1 − tn for each n ∈ N
∗.

Throughout this entire subsection, we fix a stochastic game (A,Ω, f, I, J, g, q), where q is the kernel
of the game. (Note that payoff function g and kernel q do not depend on the stage number).

4.1 Zero-sum stochastic games with stage duration in the

case of perfect observation of the state
This subsection is based on [SV16, Ney13], and the text is mostly taken from [Nov24].
In a stochastic game with n-th stage duration hn, state space Ω and strategy spaces I and J of

player 1 and player 2 are independent of the partition T∞. Payoff function and kernel depend on T∞.
For n ∈ N

∗, the n-th stage payoff function is gn = hng, and the n-th stage kernel function is qn = hnq.
The following definition summarizes this.

Definition 3. Given a stochastic game (A,Ω, f, I, J, g, q) with perfect observation of the state and
a partition T∞ of R+, the stochastic game with perfect observation of the state and with n-th stage
duration hn is the stochastic game (A,Ω, f, I, J, {hng}n∈N∗, {hnq}n∈N∗) with perfect observation of the
state.

In the rest of this subsection, we assume that all stochastic games are with perfect observation of
the state, and we are going to omit the phrase “with perfect observation of the state”.

We are interested in behavior of games when the duration of each stage is vanishing, i.e., we want
to know what happens when supi∈N∗ hi → 0.

Definition 4 (λ-discounted stochastic game with stage duration). Let αh be an admissible family of
discount factors with asymptotic discount rate λ.
λ-discounted stochastic game with n-th stage duration hn is a stochastic game with payoff

λ

∞∑

i=1

(
i−1∏

j=1

(1− λhi)

)
higi.

Denote by vT∞,λ the normalized value of such a game.

Remark 7 (Why such a definition of discounted stochastic games with stage duration?). We have
chosen the total payoff in such a way that when all hi are small, the value of the λ-discounted stochastic
game with stage duration is close to the value of the analogous λ-discounted continuous-time game.
See [Nov24, §3.3.3 and §6] for more details.

Now, we give some new results. We denote by v1,λ the value of the λ-discounted stochastic game
in which each stage has duration 1. The following two propositions are about discounted games. The
following proposition is [SV16, Proposition 7.4], it is a partial generalization of [Ney13, Theorem 1].
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Proposition 1. For a fixed stochastic game (A,Ω, f, I, J, g, q), there is K > 0 such that for any
λ ∈ (0,+∞) and partition T∞ of R+, we have

∥∥∥vT∞,λ − v1, λ
1+λ

∥∥∥ ≤ K sup
i∈N∗

hi.

The following proposition is [SV16, Proposition 7.6].

Proposition 2. For a fixed stochastic game (A,Ω, f, I, J, g, q) there is K > 0 such that for any
partition T∞ = {tn}n∈N∗ of R+ we have

‖vT∞,λ − v1,λ‖ ≤ Kλ.

Recall that ifX is a finite set, and f, g : X → R are two functions, then 〈f(·) , g(·)〉 :=
∑

x∈X f(x)g(x).

Corollary 1. Fix a stochastic game (A,Ω, f, I, J, g, q). We have

1. The uniform limit lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ exists and is equal to v1, λ
1+λ

;

2. The uniform limit lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ exists and is a unique solution of the equation (in v(ω))

λv(ω) = ValI×J [λg(i, j, ω) + 〈q(i, j)(ω, ·) , v(·)〉] ; (1)

3. For any partition T∞ of R+, the uniform limits limλ→0 vT∞,λ and limλ→0 v1,λ both exist or do
not exist simultaneously. In the case of existence, for any two partitions T 1

∞, T
2
∞ of R+ we have

limλ→0 vT 1
∞,λ = limλ→0 vT 2

∞,λ;
4. If the uniform limit limλ→0 v1,λ exists, then

lim
supi∈N∗ hi→0
h1+h2+...=+∞

(
lim
λ→0

vT∞,λ

)
= lim

λ→0


 lim

supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ


 = lim

λ→0
v1,λ.

In particular, all the above limits exist. If the uniform limit limλ→0 v1,λ does not exist, then no of
the above uniform limits exist.

Proof of Corollary 1. Assertions 1, 3, 4 follow directly from Propositions 1 and 2. Assertion 2 follows
from assertion 1 by Proposition 4 below.

Afterwards, we are going to see that many of statements of the above corollary do not hold if there
is no perfect observation of the state.

Remark 8. When defining stochastic games, we assumed that action sets I, J and a set of states Ω
are finite. In this case it is proven in [BK76] that the limit value limλ→0 v1,λ always exists. However,
we can also consider games in which I, J, or Ω are not finite. In this case, the existence of even the
pointwise limit is not guaranteed. See [Zil16b] or [RZ20] for an example of a game with finite action
spaces and compact state space without such a limit, and see [Vig13] or [Zil16b, §4.3] for an example
of a game with compact action spaces and finite state space without such a limit. See also [SV15] for
a construction which can build games without a limit value.

The above remark combined with Corollary 1(4) provides us with examples of games in which the
pointwise limit lim

λ→0
lim

supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ does not exist.
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4.2 Zero-sum state-blind stochastic games with stage dura-

tion
In this subsection, we recall recent results from [Nov24].

Definition 5. Fix a zero-sum state-blind stochastic game (A,Ω, f, I, J, g, q), where q is the kernel.
The state-blind stochastic game with n-th stage duration hn is the state-blind stochastic game

(A,Ω, f, I, J, {hmg}m∈N∗ , {hmq}m∈N∗).

We can define λ-discounted total payoff as in §4.1.
Recall that if X is a finite set, ζ ∈ ∆(X), and µ is a |X| × |X| matrix, then for any x ∈ X

(ζ ∗ µ) (x) :=
∑

x′∈X

ζ(x′) · µx′x.

Definition 6. A function u : ∆(Ω) → R is called a viscosity solution of the partial differential equation

λv(p) = valI×J [λg(i, j, p) + 〈p ∗ q(i, j),∇v(p)〉]

if:

1. for any C1 function ψ : ∆(Ω) → R with u − ψ having a strict local maximum at ω ∈ Ω we have
λψ(p) ≤ valI×J [λg(i, j, p) + 〈p ∗ q(i, j),∇ψ(p)〉];

2. for any C1 function ψ : ∆(Ω) → R with u − ψ having a strict local minimum at ω ∈ Ω we have
λψ(p) ≥ valI×J [λg(i, j, p) + 〈p ∗ q(i, j),∇ψ(p)〉].

The following proposition is [Nov24, Corollary 3], it is going to have an important role in the proof
of the main result.

Proposition 3. If (A,Ω, f, I, J, g, q) is a state-blind stochastic game, then lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p) exists

and is a unique viscosity solution of a partial differential equation (in v(p))

λv(p) = valI×J [λg(i, j, p) + 〈p ∗ q(i, j),∇v(p)〉].

Remark 9. The state-blind case is more difficult than the case of perfect observation of the states.
If we denote by Th the Shapley operator (see §5.1.3) of the game in which each stage has duration h,
then in the case of perfect observation of the state we have Th = hT1+(1−h)Id. This makes studying
of such games relatively easy. In the case of state-blind stochastic games, such an equality is not true
anymore, and because of that many properties from Corollary 1 about stochastic games with perfect
observation of the state do not hold anymore.

For instance, in [Nov24, Example 2] we have lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p) 6= v1, λ
1+λ

(p), so that Corollary 1(1)

does not hold. Moreover, lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p) 6= v1,λ′(p) for any λ′ ∈ (0, 1). Analogously, we have

lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p) 6= lim
λ→0

v1,λ(p), so that Corollary 1(4) does not hold.
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4.3 Zero-sum stochastic games with stage duration and pub-

lic signals
Definition 7. Fix a zero-sum stochastic game (A,Ω, f, I, J, g, q), in which the signal depends only
on the current state, where q is the kernel. The stochastic game with n-th stage duration hn is the
stochastic game

(A,Ω, f, I, J, {hmg}m∈N∗ , {hmq}m∈N∗).

We can define λ-discounted total payoff as in §4.1.

Remark 10. In §6.1 later, we generalize this definition for a more general model of stochastic games
with public signals.

4.4 Main result: an example of a game in which the point-

wise limit limλ→0 v1,λ does not exist, but the uniform limit

limλ→0 limsupi∈N∗ hi→0 vT∞,λ exists
Remark 9 above alludes that there may be a stochastic game in which the limit value lim

λ→0
v1,λ

does not exist, but the limit value of the game with vanishing stage duration (limλ→0 lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ)

exists. This is indeed the case, and we give an example of such a game here.

Example 1. Consider the following two-players zero-sum stochastic game G1 with two public signals.
The game has the states +,++,+∗,−,−−,−∗. The states +∗ and −∗ are absorbing. The states
+∗,+,++ have payoff 1, and the states −∗,−−,− have payoff −1, for any actions of the players.
There are two public signals PLUS and MINUS, and we have f(++) = f(+) = f(+∗) = PLUS and
f(−−) = f(−) = f(−∗) = MINUS. Assume that the initial probability is p = (p1, p2, p3, p4, p5, p6),
where

pi =





Probability that the starting state is +, if i = 1;

Probability that the starting state is + +, if i = 2;

Probability that the starting state is +∗, if i = 3;

Probability that the starting state is −, if i = 4;

Probability that the starting state is −−, if i = 5;

Probability that the starting state is −∗, if i = 6.

See Figure 3.
In states −−,−, and −∗, the actions of player 1 are T , B, Q, and the actions of player 2 are L, R.

In states ++,+, and +∗, the actions of player 1 are T,M,B, and the actions of player 2 are L,M,R,Q.
The transition matrices for non-absorbing states are given by Tables 1–4:

L R
T 1

2
{−−} + 1

2
{−} −−

B −− 1
2
{−−}+ 1

2
{−}

Q −∗ −∗

Table 1: State −−

L R
T − −−
B −− −
Q ++ ++

Table 2: State −
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L M R Q
T 1

3
{++}+ 2

3
{+} ++ ++ +∗

M ++ 1
3
{++}+ 2

3
{+} ++ +∗

B ++ ++ 1
3
{++}+ 2

3
{+} +∗

Table 3: State ++

L M R Q
T + ++ ++ −−
M ++ + ++ −−
B ++ ++ + −−

Table 4: State +

−p4

−−p5

−∗p6

+ p1

++ p2

+∗ p3

Signal MINUS

Payoff −1

Player 1’s actions: T,B,Q

Player 2’s actions: L,R

signal PLUS

Payoff +1

Player 1’s actions: T,M,B

Player 2’s actions: L,M,R,Q

Figure 3: Signalling structure on the states. The letter next to a state is the probability that this is
the initial state.

We denote by Gλ
1 the game G1 with λ-disconted payoff.

Theorem 1. For the game Gλ
1 from Example 1:

1. The pointwise limit lim
λ→0

v1,λ(p) does not exist;

2. The uniform limit lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p) exists, and we have

lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p) =





7
11
p1 +

7
11
p2 + p3 −

5
11
p4 −

5
11
p5 − p6 , if p2

p1+p2
≥ 3

4
or p1 = p2 = 0, and

p5
p4+p5

≥ 2
3
or p4 = p5 = 0;

− 5
11
p1 + p2 + p3 −

5
11
p4 −

5
11
p5 − p6 , if p2

p1+p2
< 3

4
or p1 = p2 = 0, and

p5
p4+p5

≥ 2
3
or p4 = p5 = 0;

7
11
p1 +

7
11
p2 + p3 −

7
11
p4 + p5 − p6 , if p2

p1+p2
≥ 3

4
or p1 = p2 = 0, and

p5
p4+p5

< 2
3
or p4 = p5 = 0;

− 5
11
p1 + p2 + p3 −

7
11
p4 + p5 − p6 , if p2

p1+p2
< 3

4
or p1 = p2 = 0, and

p5
p4+p5

< 2
3
or p4 = p5 = 0.

5 The proof of Theorem 1
In this section, we present the proof of Theorem 1. In §5.1, we give some preliminaires. In §5.2, we

show that the game from Example 1 has the same dynamics as a game from [RZ20, §3.4], for which

12



it is proven in [RZ20] that the pointwise limit lim
λ→0

v1,λ does not exist. In §5.3, we use Corollary 1 to

prove that the uniform limit lim
λ→0

lim
supi∈N∗

hi→0
h1+h2+...=+∞

vT∞,λ exists and to find it.

5.1 Preliminaires

5.1.1 General model of stochastic games with public signals

A zero-sum stochastic game with public signals is a 6-tuple (A,Ω, I, J, {gm}m∈N∗ , {P 1
m}m∈N∗), where:

• A is a finite non-empty set of signals;
• Ω is a finite non-empty set of states;
• I is a finite non-empty set of actions of player 1;
• J is a finite non-empty set of actions of player 2;
• gm : I × J × Ω → R is the m-th stage payoff function of player 1;
• P 1

m : I × J × Ω → ∆(Ω×A) is the transition probability function in the m-th stage.

The game (A,Ω, I, J, {gm}m∈N∗ , {P 1
m}m∈N∗) proceeds in stages as follows. Before the first stage, an

initial state ω1 ∈ Ω and an initial signal α1 is chosen according to some probability law p0 ∈ ∆(Ω×A).
At each stage n ∈ N

∗:

1. The current state is ωn ∈ Ω. Players do not observe it, but they observe the signal αn ∈ A and
the actions of each other at the previous stage;

2. Players choose their mixed actions. Player 1 chooses xn ∈ ∆(Iαn) and player 2 chooses yn ∈
∆(Jαn);

3. An action in ∈ Iαn of player 1 (respectively jn ∈ Jαn of player 2) is chosen according to the
probability measure xn ∈ ∆(Iαn) (respectively yn ∈ ∆(Jαn));

4. Player 1 obtains a payoff gn = gn(in, jn, ωn), while player 2 obtains payoff −gn. The new state
ωn+1 and new signal is chosen according to the probability law P 1

n(in, jn, ωn).

The above description of the game is known to the players.
We can define strategies, λ-discounted and repeated finitely times games, total payoffs, values, in

the same way as in §3.
We say that a state ω ∈ Ω is controlled by player 1 if for any i ∈ I, j1, j2 ∈ J, n ∈ N

∗ we have
gn(i, j1, ω) = gn(i, j2, ω) and Pn(i, j1, ω) = Pn(i, j2, ω). Analogously, a state ω is controlled by player 2
if for any i1, i2 ∈ I, j ∈ J, n ∈ N

∗ we have gn(i1, j, ω) = gn(i2, j, ω) and Pn(i1, j, ω) = Pn(i2, j, ω).

5.1.2 Any stochastic game with public signals is equivalent to a stochastic

game with perfect observation of the state

Let (A,Ω, I, J, g, P ) be a finite stochastic game with public signals (we use the general definition
from §5.1.1).

The function gγ : I × J ×∆(Ω) → R is defined by gγ(i, j, p) =
∑

ω∈Ω p(ω)g(i, j, ω).
Now we define P γ : I × J × Ω → ∆(A× Ω). For each ω ∈ Ω, p ∈ ∆(Ω), i ∈ I, j ∈ J denote

P (i, j, p)(ω, α) =
∑

ω′∈Ω

p(ω′) · P (i, j, ω′)(ω, α).

If players have belief p ∈ ∆(Ω) about the current state, then after playing (i, j) ∈ I×J , the probability
to receive the signal α is

P α(i, j, p) =
∑

ω∈Ω

P (i, j, p)(ω, α).

If players have belief p ∈ ∆(Ω) about the current state, then after playing (i, j) ∈ I × J and
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receiving signal α ∈ A their posterior belief that the current state is ω is equal to

P (i, j, α)(p, ω) :=

{
P (i,j,p)(ω,α)
Pα(i,j,p)

, if P α(i, j, p) 6= 0;

0 , otherwise.

The function P γ : I × J → ∆(Ω)×∆(Ω) is defined by

P γ(i, j)(p, p′) =

{
P α(i, j, p) , if p′(ω) = Pn(i, j, α)(p, ω) for all ω ∈ Ω;

0 , otherwise.

5.1.3 Shapley operator

Proposition 4 (Shapley operator for stochastic games with public signals with λ-discounted total
payoff λ

∑∞

i=1(1 − λ)i−1gi). Consider the stochastic game (A,Ω, I, J, g, P ) with public signals, where
P is the probability distribution function. The value v(p) of such a game exists and is a unique fixed
point of the operator

T : {Continuous functions on ∆(Ω)} → {Continuous functions on ∆(Ω)},

v(p) 7→ ValI×J



λgγ(i, j, p) + (1− λ)
∑

p′∈∆(Ω)

P γ(i, j)(p, p′) · v(p′)



 .

Remark 11. By §5.1.2 the sum in the proposition is finite, so the operator T is well-defined.

This proposition follows from §5.1.2 and from [MSZ15, Theorem IV.3.2].

5.2 The pointwise limit limλ→0 v1,λ does not exist
When considering stochastic games with signals in this and in the next subsection, we use the

general definition of stochastic games with public signals from §5.1.1.
We consider a two-signals game G̃1 from [RZ20], which does not have a value and whose dynamics

is analogous to the dynamics of the game which is considered in Theorem 1.
The game G̃1 has the states +,++,+∗,−,−−,−∗. The states +,++,+∗ have payoff +1, and the

states −,−−,−∗ have payoff −1, for any actions of the players. The states +∗ and −∗ are absorbing.
The signal set is {α, β}, and the action set for both players is {C,Q}. Before the first stage, the players
receive the signal α (respectively β) if the current state is +,++, or +∗ (respectively −,−−, or −∗).
The states −,−− are controlled by player 1, and the states +,++ are controlled by player 2. The
transition probabilities are described by Figure 4.

The arrow from state s1 to the state s2 with label (X, p, γ) tells that if player that controls state
s1 chooses action X , then with probability p he goes to state s2 and receives signal γ.

14



−−− +++

−−−−−− ++++++

−∗−∗−∗
Player 1

Payoff −1−1−1
+∗+∗+∗

Player 2

Payoff +1+1+1

(C, 1/2, β)(C, 1/2, β)(C, 1/2, β)

(C, 1/2, α)(C, 1/2, α)(C, 1/2, α)

(C, 1/4, α)(C, 1/4, α)(C, 1/4, α)

(Q, 1, β)(Q, 1, β)(Q, 1, β)

(C, 1/4, α)(C, 1/4, α)(C, 1/4, α)

(C, 1/2, β)(C, 1/2, β)(C, 1/2, β)

(C, 2/9, α)(C, 2/9, α)(C, 2/9, α)

(C, 1/3, α)(C, 1/3, α)(C, 1/3, α)

(C, 2/3, β)(C, 2/3, β)(C, 2/3, β)

(Q, 1, β)(Q, 1, β)(Q, 1, β)

(C, 2/3, β)(C, 2/3, β)(C, 2/3, β)

(C, 1/9, α)(C, 1/9, α)(C, 1/9, α)

(Q, 1, α)(Q, 1, α)(Q, 1, α) (Q, 1, α)(Q, 1, α)(Q, 1, α)

Figure 4: Transitions in the game G̃1.

Note that in this game, players know if they are in the left or in the right side of the game. If the
current state is − or −−, and player 1 plays C, then players obtain public signal α with probability
1/2 and public signal β with probability 1/2. If the current state is + or ++, and player 2 plays C,
then players obtain public signal α with probability 1/3 and public signal β with probability 2/3.

Denote by ṽλ the value of λ-discounted game G̃λ
1 with starting state −−.

Proposition 5. For each fixed λ ∈ (0, 1], the value ṽλ of the described above game G̃λ
1 coincides with

the value v1,λ of the game Gλ
1 from Theorem 1 with starting state −−.

Proof. Assume that the initial probability distribution is p = (p1, p2, p3, p4, p5, p6), where

pi =





Probability that the starting state is + +, if i = 1;

Probability that the starting state is +, if i = 2;

Probability that the starting state is +∗, if i = 3;

Probability that the starting state is −−, if i = 4;

Probability that the starting state is −, if i = 5;

Probability that the starting state is −∗, if i = 6.

Note that before the first stage, the players know if the current state belongs to the set {+,++,+∗}
or not. So, it is sufficient to consider two cases:
Case 1: initial probability is p = (0, 0, 0, p4, p5, 0) with p4 + p5 = 1;
Case 2: initial probability is p = (p1, p2, 0, 0, 0, 0) with p1 + p2 = 1.
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Case 1: initial probability is p = (0, 0, 0, p4, p5, 0).

By Proposition 4 the value ṽλ of the game G̃λ
1 is a unique solution of the equation

ṽλ(p) = −λ + (1− λ)max

{
1

2
ṽλ(p

′)
︸ ︷︷ ︸

Player 1 plays C,
the signal is α

+
1

2
ṽλ(p

′′)
︸ ︷︷ ︸

Player 1 plays C,
the signal is β

, p5ṽλ(p
′′′)︸ ︷︷ ︸

Player 1 plays Q,
the signal is α

+ p4(−1)︸ ︷︷ ︸
Player 1 plays Q,
the signal is β

}
,

where
p′ =

(
0, 0, 0,

p4
2
, p5 +

p4
2
, 0
)
; p′′ = (0, 0, 0, 1, 0, 0) ; p′′′ = (1, 0, 0, 0, 0, 0) .

Now, we consider the game Gλ
1 from Theorem 1. Suppose that in the one-shot game from Proposi-

tion 4, player 2’s optimal strategy is a mixed action 1
2
L+ 1

2
R. In this case by Proposition 4 the value

v1,λ(p) is a unique solution of the equation

v1,λ(p) = −λ + (1− λ)max

{
1

2
v1,λ(p

′)
︸ ︷︷ ︸

Player 1 plays T,
Player 2 plays L

OR
Player 1 plays B,
Player 2 plays R

+
1

2
v1,λ(p

′′)
︸ ︷︷ ︸

Player 1 plays T,
Player 2 plays R

OR
Player 1 plays B,
Player 2 plays L

, p5v1,λ(p
′′′) + p4(−1)︸ ︷︷ ︸

Player 1 plays Q

}
. (2)

Thus if in the one-shot game from Proposition 4 player 2 plays the mixed action 1
2
L+ 1

2
R, then we

proved that ṽλ = v1,λ. So, it remains to prove that 1
2
L+ 1

2
R is an optimal strategy of player 2 in this

one-shot game.
Note that if p = (0, 0, 0, p4, p5, 0) and if p5 > p5, then from the structure of the game it follows

that v1,λ(p) ≥ v1,λ(p). Now, suppose that a player 2’s optimal strategy in the above one shot game is
kL+ (1− k)R, where k ∈ [0, 1], k 6= 1/2. Without the loss of generality assume that k > 1/2. In that
case by playing a pure action T or a pure action Q, player 1 can obtain at least the same quantity as
in (2).

Case 2: initial probability is p = (p1, p2, 0, 0, 0, 0).

By Proposition 4 the value ṽλ of the game G̃λ
1 is a unique solution of the equation

ṽλ(p) = λ+ (1− λ)min

{
1

3
ṽλ(p

′)
︸ ︷︷ ︸

Player 2 plays C,
the signal is α

+
2

3
ṽλ(p

′′)
︸ ︷︷ ︸

Player 2 plays C,
the signal is β

, p2ṽλ(p
′′′)︸ ︷︷ ︸

Player 2 plays Q,
the signal is α

+ p1(+1)︸ ︷︷ ︸
Player 2 plays Q,
the signal is β

}
,

where

p′ =

(
p1
3
, p2 +

2p1
3
, 0, 0, 0, 0

)
; p′′ = (1, 0, 0, 0, 0, 0) ; p′′′ = (0, 0, 0, 1, 0, 0) .

Now, we consider the game Gλ
1 from Theorem 1. Suppose that in the one-shot game from Propo-

sition 4, player 1’s optimal strategy is a mixed action 1
3
T + 1

3
M + 1

3
B. In this case by Proposition 4

the value v1,λ(p) is a unique solution of the equation

v1,λ(p) = λ+ (1− λ)min

{
1

3
v1,λ(p

′)
︸ ︷︷ ︸

Players’ action profile is
(T,L) OR (M,M) OR (B,R)

+
2

3
v1,λ(p

′′)
︸ ︷︷ ︸

Players’ action profile is not

(T,L) OR (M,M) OR (B,R)

, p2v1,λ(p
′′′) + p1(+1)︸ ︷︷ ︸

Player 2 plays Q

}
.

Thus if in the one-shot game from Proposition 4 player 1 plays the mixed action 1
3
T + 1

3
M + 1

3
B,

then we proved that ṽλ = v1,λ. One can prove that 1
3
T + 1

3
M + 1

3
B is an optimal strategy of player 1

in this one-shot game in the same way as in case 1.
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The following known result proves the first part of Theorem 1.

Proposition 6. [RZ20, §3.4]. limλ→0 ṽλ does not exist.

Remark 12. Considered by us game G̃1 from [RZ20, §3.4] is very similar to a game from the paper
[Zil16b, §2], which is the first counterexample of a finite stochastic game with public signals for which
the limit value (when the discount fact λ tends to 0) does not exist.

5.3 The uniform limit limλ→0 limsupi∈N∗ hi→0 vT∞,λ exists
The proof of this part is quite long, so we are going to cut it into 5 parts:

• In §5.3.1, we consider a dissection of the game into two state-blind “half-games”, each of which we
are going to study.

• In §5.3.2, we consider a heuristic calculation of the value of each “half-game” with vanishing stage
duration.

• In §5.3.3, we consider a formal calculation of the value of each “half-game” with vanishing stage
duration, by checking that each heuristically obtained value from §5.3.2 is a classical solution of
the partial differential equation from Proposition 3.

• In §5.3.4, we finish the proof by calculating the value of the initial game with vanishing stage
duration through the values of two “half-games” with vanishing stage duration.

• In §5.3.5, we give some comments about the proof.

5.3.1 Start of the proof: Dissection of the game into two “half-games”

Here, we consider the game from Theorem 1 with n-th stage duration hn, denoted by GT∞
. The

transition matrices at stage n for non-absorbing states are given by Tables 5–8:

L R

T
(
1− 1

2
hn
)
{−−}+ hn

2
{−} −−

B −−
(
1− 1

2
hn
)
{−−} + hn

2
{−}

Q (1− hn){−−} + hn{−
∗} (1− hn){−−} + hn{−

∗}

Table 5: State −−

L R
T − (1− hn){−}+ hn{−−}
B (1− hn){−}+ hn{−−} −
Q (1− hn){−}+ hn{++} (1− hn){−}+ hn{++}

Table 6: State −

L M R Q

T
(
1− 2hn

3

)
{++}+ 2hn

3
{+} ++ ++ (1 − hn){++}+ hn{+

∗}

M ++
(
1− 2hn

3

)
{++}+ 2hn

3
{+} ++ (1 − hn){++}+ hn{+

∗}

B ++ ++
(
1− 2hn

3

)
{++}+ 2hn

3
{+} (1 − hn){++}+ hn{+

∗}

Table 7: State ++
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L M R Q

T + (1− hn){+}+ hn{++} (1− hn){+}+ hn{++} (1− hn){+}+ hn{−−}

M (1− hn){+}+ hn{++} + (1− hn){+}+ hn{++} (1− hn){+}+ hn{−−}

B (1− hn){+}+ hn{++} (1− hn){+}+ hn{++} + (1− hn){+}+ hn{−−}

Table 8: State +

Now, for each partition of T∞, we are going to consider two families of auxiliary two-players state-
blind games, G−

T∞
(k−) and G

+
T∞

(k+).

Definition 8. The game G−
T∞

(k−) (where k− ∈ [−1,+1]) is a game with states −,−−,−∗, k∗−. The
states −,−−,−∗ have n-th stage payoff −hn, while the state k∗− has n-th stage payoff k−hn, for any
actions of the players. The states −∗ and k∗− are absorbing. In states −−,−, the actions of player 1
are T , B, Q, and the actions of player 2 are L, R. The transition matrices for non-absorbing states
are given by Tables 5–6, but in Table 6 one needs to replace ++ by k∗−.

Definition 9. The game G+
T∞

(k+) (where k+ ∈ [−1,+1]) is a game with states +,++,+∗, k∗+. The
states +,++,+∗ have n-th stage payoff +hn, while the state k∗+ has n-th stage payoff k+hn, for any
actions of the players. The states −∗ and k∗+ are absorbing. The actions of player 1 are T,M,B, and
the actions of player 2 are L,M,R,Q. The transition matrices for non-absorbing states are given by
Tables 7–8, but in Table 8 one needs to replace −− by k∗+.

Informally speaking, GT∞
is a combination of two ”half-games” G−

T∞
(k−) and G

+
T∞

(k+), see Figure 5.
We denote by GT∞,λ the game GT∞

with a λ-discounted payoff. We denote by v−T∞
(k, p) (respec-

tively, v+T∞
(k, p)) the value of the game G−

T∞,λ(k) (respectively, G
+
T∞,λ(k)) with a λ-discounted payoff,

if starting state is −− (respectively, ++) with probability p ∈ [0, 1] and − (respectively, +) with
probability 1− p.

Lemma 1. For any p ∈ [0, 1] and any k−, k+ ∈ [−1, 1], we have v−T∞,λ(k−, p) = (k−+1)v−T∞,λ(0, p)+k−
and v+T∞,λ(k+, p) = (1− k+)v

+
T∞,λ(0, p) + k+.

Proof. Note that the structure of the game G−
T∞,λ(0) and the fact that k− ≥ −1 implies that any

optimal in the game G−
T∞,λ(0) strategy is also optimal in the game G−

T∞,λ(k−). Thus there exists

α ∈ [0, 1] such that for any k− ∈ [−1, 1] we have v−T∞,λ(k−, p) = αk− + (−1)(1−α). By taking k− = 0,
we obtain

v−T∞,λ(0, p) = −1 + α ⇐⇒ α = v−T∞,λ(0, p) + 1.

Analogously, any optimal in the game G+
T∞,λ(0) strategy is also optimal in the game G+

T∞,λ(k+) as

long as k+ ≤ 1. Thus there exists β ∈ [0, 1] such that for any k+ ∈ [−1, 1] we have v+T∞,λ(k+, p) =
βk+ + 1(1− β). By taking k+ = 0, we obtain

v+T∞,λ(0, p) = 1− β ⇐⇒ β = 1− v+T∞,λ(0, p).

From this we easily obtain the assertion of the proposition.

Thus if we want to find uniform limits lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

v−T∞,λ(k−, p) and lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

v+T∞,λ(k+, p)

with k−, k+ ∈ [0, 1], it is sufficient to find lim
λ→0

lim
supi∈N∗

hi→0
h1+h2+...=+∞

v−T∞,λ(0, p) and lim
λ→0

lim
supi∈N∗

hi→0
h1+h2+...=+∞

v+T∞,λ(0, p). In

the next lemma, we are going to find these two functions.
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−

−−

−∗

+

++

+∗

Signal MINUS

Payoff −1

signal PLUS

Payoff +1

Game GT∞ with two public signals

k∗−

−Prob. 1− p−

−−Prob. p−

−∗

(a) State-blind “half-game” G−
T∞

(k−).

+ Prob. 1− p+

++ Prob. p+

+∗

k∗+

(b) State-blind “half-game” G+
T∞

(k+).

Figure 5: Game GT∞ with two public signals, and received out of it state-blind “half-games” G−
T∞

(k−)
and G+

T∞
(k+).

Lemma 2. We have

1) lim
supi∈N∗ hi→0
h1+h2+...=+∞

v−T∞,λ(0, p) = w−
λ (p) :=

{
−p+λ

1+λ
, if p < 4λ+2

4λ+3
;

−1 + (4λ)4λ/3

(1+λ)(3+4λ)1+(4λ/3) (3p− 2)−4λ/3 , if p ≥ 4λ+2
4λ+3

.

2) lim
supi∈N∗ hi→0
h1+h2+...=+∞

v+T∞,λ(0, p) = w+
λ (p) :=

{
p+λ
1+λ

, if p < 9λ+6
9λ+8

;

1− 2(18λ)9λ/8

(1+λ)(8+9λ)1+(9λ/8) (8p− 6)−9λ/8 , if p ≥ 9λ+6
9λ+8

.

Both limits are uniform.

This lemma is very important in the proof of Theorem 1. We will give a formal proof later, because
this proof only verifies that w−

λ (p) and w+
λ (p) satisfy some partial differential equations, but does it

not show how one can come up with these functions. So, first we are going to give an informal proof.
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5.3.2 Heuristic calculation of the value of each “half-game” with vanish-

ing stage duration

With the help of games similar to the game G̃1 from the previous subsection, we will derive w−
λ (p)

and w+
λ (p).

Heuristic (not a strict) proof of Lemma 2.

We consider two families (each parametrized by h ∈ (0, 1]) of three-signals games, G̃−
h and G̃+

h respec-
tively, whose dynamics is analogous to the dynamics of games G−

T∞(0) and G+
T∞(0) respectively.

The game G̃−
h (respectively G̃+

h ) has action space {C,Q}, state space {−,−−,−∗, 0∗} (respectively
{+,++,+∗, 0∗}), and the signal set is {α, β, δ}. The states −,−−,−∗ have payoff −h, the states
+,++,+∗ have payoff +h, and the state 0∗ has payoff 0, for any actions of the players. The states
−∗,+∗, 0∗ are absorbing. The states −,−− are controlled by player 1, and the states +,++ are
controlled by player 2. The transition probabilities are described by Figure 6.

The arrow from state s1 to the state s2 with label (X, p, γ) tells that if player that controls state
s1 plays action X , then with probability p he goes to state s2 and receives signal γ.

−−−

−−−−−−

0∗0∗0∗

−∗−∗−∗

Prob. ppp

Prob. 1− p1− p1− p

Player 1

(C, h/2, β)(C, h/2, β)(C, h/2, β)

(C, 1/2, α)(C, 1/2, α)(C, 1/2, α)

(C, (1− h)/2, β)(C, (1− h)/2, β)(C, (1− h)/2, β)

(C, h/4, α)(C, h/4, α)(C, h/4, α)

(Q, h, β)(Q, h, β)(Q, h, β)
(Q, 1− h, δ)(Q, 1− h, δ)(Q, 1− h, δ)

(C, (2− h)/4, α)(C, (2− h)/4, α)(C, (2− h)/4, α) (C, 1/2, β)(C, 1/2, β)(C, 1/2, β)

(Q, h, α)(Q, h, α)(Q, h, α)

(Q, 1− h, δ)(Q, 1− h, δ)(Q, 1− h, δ)

(a) Transitions in the game G̃−
h .

+++0∗0∗0∗

++++++

+∗+∗+∗

Prob. ppp

Prob. 1− p1− p1− p

Player 2

(C, 2h/9, α)(C, 2h/9, α)(C, 2h/9, α)

(C, 1/3, α)(C, 1/3, α)(C, 1/3, α)

(C, 2h/3, β)(C, 2h/3, β)(C, 2h/3, β)

(C, 2(1− h)/3, β)(C, 2(1− h)/3, β)(C, 2(1− h)/3, β)

(Q, h, β)(Q, h, β)(Q, h, β)
(Q, 1− h, δ)(Q, 1− h, δ)(Q, 1− h, δ)

(C, 2/3, β)(C, 2/3, β)(C, 2/3, β) (C, (3− 2h)/9, α)(C, (3− 2h)/9, α)(C, (3− 2h)/9, α)

(Q, h, α)(Q, h, α)(Q, h, α)

(Q, 1− h, δ)(Q, 1− h, δ)(Q, 1− h, δ)

(b) Transitions in the game G̃+
h .

Figure 6: Transitions in games G̃−
h and G̃+

h .

Informally speaking, the game G̃−
1 is the left half of the game G̃1 (considered in §5.2), while G̃+

1 is

the right half of the game G̃1.
We denote by G̃−

h,λ (respectively G̃+
h,λ) the game G̃−

h (respectively G̃+
h ) with a λ-discounted payoff,

and denote by ṽh,λ− (p) (respectively ṽh,λ+ (p)) the value of the game G̃−
h,λ (respectively G̃+

h,λ).

Proposition 7. For each fixed λ ∈ (0, 1] and h ∈ [0, 1], the value ṽh,λ− of the game G̃−
h,λ coincides with

the value v−h,λ of the game G−
T∞,λ(0), in which each stage has duration h.

Proposition 8. For each fixed λ ∈ (0, 1] and h ∈ [0, 1], the value ṽh,λ+ of the game G̃+
h,λ coincides with

the value v+h,λ of the game G+
T∞,λ(0), in which each stage has duration h.
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The proof of these propositions are very similar to the proof of Proposition 5.

Remark 13. Note that the game G̃−
h (respectively G̃+

h ) is not a game G̃−
1 (respectively G̃+

1 ), in which
the duration of each stage is h. See Figure 7.

Game G−
1

Game G−
T∞

with
stage duration h

Game G̃−
1 Game G̃−

h

Game G̃−
T∞

with
stage duration h

Stage duration

Equivalent game Equivalent game

Stage duration No connection

Figure 7: Connection between the game G−
T∞

and the game G̃−
1 . The analogous is true for games G+

T∞

and G̃+
1 .

Note that in the game G̃−
h , if player 1 takes action C, then both players obtain public signal α with

probability 1/2 and public signal β with probability 1/2, while in the game G̃+
h , if player 2 takes action

C, then both players obtain public signal α with probability 1/3 and public signal β with probability
2/3.

The value ṽh,λ−̃v
h,λ
−̃v
h,λ
− of the λλλ-discounted game G̃−

h,λG̃−
h,λG̃−
h,λ. We assume that the starting state is −− with

probability p ∈ [0, 1] and − with probability 1− p.
By Proposition 4 we have

ṽh,λ− (p) = −λh+(1−λh)max

{
−hp︸︷︷︸

Player 1 plays Q,
the signal is α or β

+ (1− h)ṽh,λ− (p)︸ ︷︷ ︸
Player 1 plays Q,
the signal is δ

;
1

2
ṽh,λ−

(
p−

hp

2

)

︸ ︷︷ ︸
Player 1 plays C,
the signal is α

+
1

2
ṽh,λ− (p+ h− hp)
︸ ︷︷ ︸

Player 1 plays C,
the signal is β

}
.

(3)
We assume that there exists p∗ ∈ [0, 1] such that for p ≤ p∗ player 1 prefers to play Q, and for

p > p∗ player 1 prefers to play C. In that case, we have for p ≤ p∗

−λh+ (1− λh)
(
−hp + (1− h)ṽh,λ− (p)

)
= ṽh,λ− (p) ⇐⇒ ṽh,λ− (p) =

(hλ− 1)p− λ

1 + (1− h)λ
.
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p∗ is an approximate solution of the equation

− λh+ (1− λh)

(
−hp + (1− h)

(hλ− 1)p− λ

1 + (1− h)λ

)
=

− λh + (1− λh)

(
(hλ− 1)

(
p− hp

2

)
− λ

2(1 + (1− h)λ)
+

(hλ− 1)(p+ h− hp)− λ

2(1 + (1− h)λ)

)
,

from which it is easy to find p∗ and see that

p∗ =
4λ+ 2− 2λh

4λ+ 3− 7λh

h→0
−−→

4λ+ 2

4λ+ 3
.

So we take p∗ = 4λ+2
4λ+3

. For p ≥ p∗, ṽh,λ− (p) is a solution of the equation (in f(p))

f(p) = −λh+ (1− λh)

(
1

2
f

(
p−

hp

2

)
+

1

2
f(p+ h− hp)

)
.

Assuming that ṽh,λ− (p) is differentiable if p > p∗, we have

ṽh,λ− (p) = −λh+(1−λh)

(
1

2

(
ṽh,λ− (p)−

1

2
hp
(
ṽh,λ−

)′
(p)

)
+

1

2

(
ṽh,λ− (p) + (h− hp)

(
ṽh,λ−

)′
(p)

))
+o(h).

Thus we have for small h



λṽh,λ− (p) ≈ −λ− 1

4
p
(
ṽh,λ−

)′
(p) + 1

2
(1− p)

(
ṽh,λ−

)′
(p), if p ∈ (p∗, 1);

ṽh,λ− (p∗) = −p∗−λ
1+λ

.

By solving the differential equation, we obtain for small h

ṽh,λ− (p) = −1 + C(3p− 2)−4λ/3,

where C ∈ R. Taking into account the border condition, we obtain for small h

ṽh,λ− (p) = −1 +
(4λ)4λ/3

(1 + λ)(3 + 4λ)1+(4λ/3)
(3p− 2)−4λ/3 .

Thus we have for small h

ṽh,λ− (p) ≈

{
−p+λ

1+λ
, if p < 4λ+2

4λ+3
;

−1 + (4λ)4λ/3

(1+λ)(3+4λ)1+(4λ/3) (3p− 2)−4λ/3 , if p ≥ 4λ+2
4λ+3

.
(4)

The value ṽh,λ+ of the λλλ-discounted game G̃+
h,λG̃+
h,λG̃+
h,λ. We assume that the starting state is ++ with

probability p ∈ [0, 1] and + with probability 1− p.
By Proposition 4 we have

ṽh,λ+ (p) = −λh+(1−λh)min

{
hp︸︷︷︸

Player 2 plays Q,
the signal is α or β

+ (1− h)ṽh,λ+ (p)︸ ︷︷ ︸
Player 2 plays Q,
the signal is δ

;
1

3
ṽh,λ+

(
p−

2hp

3

)

︸ ︷︷ ︸
Player 2 plays C,
the signal is α

+
2

3
ṽh,λ+ (p+ h− hp)
︸ ︷︷ ︸

Player 2 plays C,
the signal is β

}
.

(5)
Now, by doing calculations anologous to the ones given above, we obtain that

ṽh,λ+ (p) ≈

{
p+λ
1+λ

, if p < 9λ+6
9λ+8

;

1− 2(18λ)9λ/8

(1+λ)(9λ+8)1+(9λ/8) (8p− 6)−9λ/8 , if p ≥ 9λ+6
9λ+8

.
(6)
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5.3.3 Strict calculation of the value of each “half-game” with vanishing

stage duration

Now, we give a formal proof.

Proof of Lemma 2. We prove assertion 1). First, note that w−
λ (p) is continuously differentiable. If

p 6= 4λ+2
4λ+3

, then it is clear. To prove the differentiability at p = 4λ+2
4λ+3

, one may verify that

(
−
p+ λ

1 + λ

)′(
4λ+ 2

4λ+ 3

)
=

(
−1 +

(4λ)4λ/3

(1 + λ)(3 + 4λ)1+(4λ/3)
(3p− 2)−4λ/3

)′(
4λ+ 2

4λ+ 3

)
= −

1

1 + λ
.

Denote I = {T,B,Q}, J = {L,R}. Denote also by p = (p1, p2, p3, p4) a probability distribution on
the states of the game G−

T∞,λ(0). Here

pi =





Probability that the starting state is −, if i = 1;

Probability that the starting state is −−, if i = 2;

Probability that the starting state is −∗, if i = 3;

Probability that the starting state is 0∗, if i = 4.

Denote by vT∞,λ(p) the value of the λ-discounted game G−
T∞,λ(0) with initial probability distribution

p. It is clear that

vT∞,λ(p) = (p1 + p2)v
−
T∞,λ

(
0,

p2
p1 + p2

)
− p3. (7)

Since G−
T∞,λ(0) is a state-blind game, by Corollary 3 we know that lim

λ→0
lim

supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p) is a

unique viscosity solution of a partial differential equation

λv(p) = −λ(p1 + p2 + p3) + valI×J [〈p ∗ q(i, j),∇v(p)〉] ; (8)

We are going to check that

wλ(p) := (p1 + p2)w
−
λ

(
0,

p2
p1 + p2

)
− p3

is a classical solution of (8). First, we need to compute the kernel q for the game G−
T∞,λ(0). By using

Tables 5–6 (with hn = 1 and with replacing state ++ by state 0∗), we obtain

q(i, j)(−−,−−) =





0 , if (i, j) = (T,R) or (B,L);

−1
2

, if (i, j) = (T, L) or (B,R);

−1 , if (i, j) = (Q,L) or (Q,R).

q(i, j)(−−,−) =

{
1
2

, if (i, j) = (T, L) or (B,R);

0 , otherwise.

q(i, j)(−−,−∗) =

{
1 , if (i, j) = (Q,L) or (Q,R);

0 , otherwise.
q(i, j)(−−, 0∗) = 0 ∀ (i, j);

q(i, j)(−,−) =

{
0 , if (i, j) = (T, L) or (B,R);

−1 , otherwise.
q(i, j)(−,−−) =

{
1 , if (i, j) = (T,R) or (B,L);

0 , otherwise.

q(i, j)(−,−∗) = 0 ∀ (i, j); q(i, j)(−, 0∗) =

{
1 , if (i, j) = (Q,L) or (Q,R);

0 , otherwise.

q(i, j)(−∗, s) = 0 ∀ (i, j), s; q(i, j)(0∗, s) = 0 ∀ (i, j), s.
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Hence

p ∗ q(i, j) =





(1
2
p2,−

1
2
p2, 0, 0) , if (i, j) = (T, L) or (B,R);

(−p1, p1, 0, 0) , if (i, j) = (T,R) or (B,L);

(−p1,−p2, p2, p1) , if (i, j) = (Q,L) or (Q,R).

Now, we need to find the value of the following one-shot matrix game

L R

T p2
2

(
∂ wλ

∂p1
− ∂ wλ

∂p2

)
−p1

(
∂ wλ

∂p1
− ∂ wλ

∂p2

)

B −p1

(
∂ wλ

∂p1
− ∂ wλ

∂p2

)
p2
2

(
∂ wλ

∂p1
− ∂ wλ

∂p2

)

Q −p1
∂ wλ

∂p1
− p2

∂ wλ

∂p2
− p2 −p1

∂ wλ

∂p1
− p2

∂ wλ

∂p2
− p2

(9)

Note that either Q or 1
2
T + 1

2
B is an optimal strategy of player 1 in this game. Indeed, if

p2
2

(
∂ wλ

∂p1
−
∂ wλ

∂p2

)
= −p1

(
∂ wλ

∂p1
−
∂ wλ

∂p2

)
,

then it is clear. Otherwise, if in an optimal strategy player 1 plays Q with a probability pQ ∈ [0, 1],
then player 1 plays T with the same probability as he plays B. Since the payoff depends on pQ linearly,
its maximum is achieved either at pQ = 0 or pQ = 1 (or both).

Now, we consider two cases:
Case 1: p2

p1+p2
< 4λ+2

4λ+3
;

Case 2: p2
p1+p2

≥ 4λ+2
4λ+3

.

Case 1: p2
p1+p2

< 4λ+2
4λ+3

. By (7) we have

∂ wλ

∂p1
= −

λ

1 + λ
;

∂ wλ

∂p2
= −1;

∂ wλ

∂p3
= −1;

∂ wλ

∂p4
= 0.

Hence the game (9) may be rewritten as follows.

L R
T p2

2(1+λ)
−p1
1+λ

B −p1
1+λ

p2
2(1+λ)

Q λp1
1+λ

λp1
1+λ

We have
(
1

2
·

p2
2(1 + λ)

+
1

2
·
−p1
1 + λ

)
−

λp1
1 + λ

=
p2 − (4λ+ 2)p1

4(1 + λ)
=

(4λ+ 3)p2 − (4λ+ 2)(p1 + p2)

4(1 + λ)

=
(4λ+ 3)(p1 + p2)

(
p2

p1+p2
− 4λ+2

4λ+3

)

4(1 + λ)
≤ 0.

Hence Q is an optimal strategy of player 1. Now, it remains to verify that partial differential
equation (8) holds. We have

λwλ(p) + λ(p1 + p2 + p3)− valI×J [〈p ∗ q(i, j),∇wλ(p)〉]

=

(
−λ(p1 + p2)

(
p2

p1+p2
+ λ

1 + λ

)
− λp3

)
+ λ(p1 + p2 + p3)−

λp1
1 + λ

=
−λp2 − λ2(p1 + p2)

1 + λ
+
λ(p1 + p2)(1 + λ)

1 + λ
−

λp1
1 + λ

= 0.
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Case 2: p2
p1+p2

≥ 4λ+2
4λ+3

. In this case we have

∂ wλ

∂p1
= −1 +

1

(4λ+ 3)(λ+ 1)

(
4λ(p1 + p2)

(4λ+ 3)(p2 − 2p1)

)4λ/3

+
p2(p1 + p2)

4λ/3

λ+ 1

(
4λ

(4λ+ 3)(p2 − 2p1)

)1+(4λ/3)

;

∂ wλ

∂p1
= −1 +

1

(4λ+ 3)(λ+ 1)

(
4λ(p1 + p2)

(4λ+ 3)(p2 − 2p1)

)4λ/3

−
p1(p1 + p2)

4λ/3

λ+ 1

(
4λ

(4λ+ 3)(p2 − 2p1)

)1+(4λ/3)

.

Hence

∂ wλ

∂p1
−
∂ wλ

∂p2
=

1

1 + λ

(
4λ(p1 + p2)

(4λ+ 3)(p2 − 2p1)

)1+(4λ/3)

;

− p1
∂ wλ

∂p1
− p2

∂ wλ

∂p2
− p2 = p1 −

p1 + p2
(1 + λ)(3 + 4λ)

(
4λ(p1 + p2)

(4λ+ 3)(p2 − 2p1)

)4λ/3

.

A direct calculation shows that
(
1

2
·
p2
2

(
∂ wλ

∂p1
−
∂ wλ

∂p2

)
+

1

2
· (−p1)

(
∂ wλ

∂p1
−
∂ wλ

∂p2

))
+

(
p1
∂ wλ

∂p1
+ p2

∂ wλ

∂p2
+ p2

)

= (p1 + p2)


−

p1
p1 + p2

+
1

4λ+ 3


 4λ

(4λ+ 3)
(
1− 3p1

p1+p2

)




4λ/3

 .

Since p2
p1+p2

≥ 4λ+2
4λ+3

, it follows that p1
p1+p2

≤ 1
4λ+3

< 1
3
. Consider a function f : [0, 1/3) → R, defined

by

fλ(p) = −p+
1

4λ+ 3

(
4λ

(4λ+ 3) (1− 3p)

)4λ/3

.

We have

f ′
λ(p) = −1 +

(
4λ

(4λ+ 3) (1− 3p)

)1+(4λ/3)

, and f ′
λ(p) = 0 ⇐⇒ p =

1

4λ+ 3
.

Note that f ′
λ(p) is a strictly increasing function, with f ′

λ(0) < 0 and f ′
λ(p) → +∞ as p→ 1/3. Thus

for any p ∈ [0, 1/3) we have

fλ(p) ≥ fλ

(
1

4λ+ 3

)
= 0.

Hence 1
2
T + 1

2
B is an optimal strategy of player 1. Now, it remains to verify that partial differential

equation (8) holds. We have

λwλ(p) + λ(p1 + p2 + p3)− valI×J [〈p ∗ q(i, j),∇wλ(p)〉]

=

(
−λ(p1 + p2)

(
−1 +

(4λ)4λ/3

(1 + λ)(3 + 4λ)1+(4λ/3)

(
3p2

p1 + p2
− 2

)−4λ/3
)

− λp3

)
+ λ(p1 + p2 + p3)

−
(p2
4

−
p1
2

) 1

1 + λ

(
4λ(p1 + p2)

(4λ+ 3)(p2 − 2p1)

)1+(4λ/3)

= 0.

This is the end of the proof of assertion 1.
The proof of assertion 2 is analogous. So, we are only going to give a general plan.
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Denote I = {T,M,B}, J = {L,M,R,Q}. Denote also by p = (p1, p2, p3, p4) a probability distribu-
tion on the states of the game G+

T∞,λ(0). Here

pi =





Probability that the starting state is +, if i = 1;

Probability that the starting state is + +, if i = 2;

Probability that the starting state is +∗, if i = 3;

Probability that the starting state is 0∗, if i = 4.

Consider the equation (in v(p))

λv(p) = −λ(p1 + p2 + p3) + valI×J [A] , (10)

where A is the one-shot matrix game

L M R Q

T 2p2
3

(
∂v
∂p1

− ∂v
∂p2

)
−p1

(
∂v
∂p1

− ∂v
∂p2

)
−p1

(
∂v
∂p1

− ∂v
∂p2

)
−p1

∂v
∂p1

− p2
∂v
∂p2

+ p2

M −p1

(
∂v
∂p1

− ∂v
∂p2

)
2p2
3

(
∂v
∂p1

− ∂v
∂p2

)
−p1

(
∂v
∂p1

− ∂v
∂p2

)
−p1

∂v
∂p1

− p2
∂v
∂p2

+ p2

B −p1

(
∂v
∂p1

− ∂v
∂p2

)
−p1

(
∂v
∂p1

− ∂v
∂p2

)
2p2
3

(
∂v
∂p1

− ∂v
∂p2

)
−p1

∂v
∂p1

− p2
∂v
∂p2

+ p2

Now, it remains to consider two cases ( p2
p1+p2

< 9λ+6
9λ+8

and p2
p1+p2

≥ 9λ+6
9λ+8

) to check that

wλ(p) := (p1 + p2)w
+
λ

(
0,

p2
p1 + p2

)
+ p3

is a classical solution of (10).

Finally, we are ready to prove Theorem 1.

5.3.4 The end of the proof: combining two “half-games” into a single one

Proof of Theorem 1. Recall that we denote p = (p1, p2, p3, p4, p5, p6), where

pi =





Probability that the starting state is +, if i = 1;

Probability that the starting state is + +, if i = 2;

Probability that the starting state is +∗, if i = 3;

Probability that the starting state is −, if i = 4;

Probability that the starting state is −−, if i = 5;

Probability that the starting state is −∗, if i = 6.

Denote also p+ = (0, 1, 0, 0, 0, 0) and p− = (0, 0, 0, 0, 1, 0).
By Lemma 1 we have

{
vT∞,λ(p+) = v+T∞,λ(vT∞,λ(p−), 1) = (1− vT∞,λ(p−))v

+
T∞,λ(0, 1) + vT∞,λ(p−);

vT∞,λ(p−) = v−T∞,λ(vT∞,λ(p+), 1) = (1 + vT∞,λ(p+))v
−
T∞,λ(0, 1) + vT∞,λ(p+).

By solving this system (with variables vT∞,λ(p+), vT∞,λ(p−)), we obtain





vT∞,λ(p+) = −
v−T∞,λ(0,1)+v+T∞,λ(0,1)−v−T∞ ,λ(0,1)v

+
T∞,λ(0,1)

v−T∞,λ(0,1)−v+T∞,λ(0,1)−v−T∞ ,λ(0,1)v
+
T∞,λ(0,1)

;

vT∞,λ(p−) = −
v−T∞,λ(0,1)+v+T∞,λ(0,1)+v−T∞ ,λ(0,1)v

+
T∞,λ(0,1)

v−T∞,λ(0,1)−v+T∞,λ(0,1)−v−T∞ ,λ(0,1)v
+
T∞,λ(0,1)

.
(11)
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By Lemma 2 we have

lim
supi∈N∗ hi→0
h1+h2+...=+∞

(
v−T∞,λ(0, 1)

)
= −1 +

(4λ)4λ/3

(1 + λ)(3 + 4λ)1+(4λ/3)
(3 · 1− 2)−4λ/3 ;

lim
supi∈N∗ hi→0
h1+h2+...=+∞

(
v−T∞,λ(0, 1)

)
= 1−

2(18λ)9λ/8

(1 + λ)(8 + 9λ)1+(9λ/8)
(8 · 1− 6)−9λ/8 .

Hence

lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

(
v−T∞,λ(0, 1)

)
= −1 + lim

λ→0

(4λ)4λ/3

(1 + λ)(3 + 4λ)1+(4λ/3)
= −

2

3
;

lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

(
v+T∞,λ(0, 1)

)
= 1− lim

λ→0

2(18λ)9λ/8 · 2−9λ/8

(1 + λ)(8 + 9λ)1+(9λ/8)
=

3

4
.

(12)

By combining (11) and (12), we obtain

lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p+) = 7/11 and lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p−) = −5/11.

If p ∈ [0, 1] and starting state is p(+) = (1− p, p, 0, 0, 0, 0), then by Lemmas 1 and 2 we have

lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p(+)) = lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

v+T∞,λ

(
−

5

11
, p

)
=

16

11
lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

v+T∞,λ(0, p)−
5

11

=

{
16
11

· 3
4
− 5

11
= 7

11
, if p ≥ 3/4;

16
11
p− 5

11
, if p < 3/4.

If p ∈ [0, 1] and the starting state is p(−) = (0, 0, 0, 1− p, p, 0), then by Lemmas 1 and 2 we have

lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p(−)) = lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

v−T∞,λ

(
7

11
, p

)
=

18

11
lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

v−T∞,λ(0, p) +
7

11

=

{
−18

11
· 2
3
+ 7

11
= − 5

11
, if p ≥ 2/3;

−18
11
p+ 7

11
, if p < 2/3.

Finally, we consider the most general starting probability distribution on the states
p = (p1, p2, p3, p4, p5, p6). Assuming that p1 + p2 > 0 and p4 + p5 > 0, denote

p(+) =

(
p1

p1 + p2
,

p2
p1 + p2

, 0, 0, 0, 0

)
and p(−) =

(
0, 0, 0,

p4
p4 + p5

,
p5

p4 + p5
, 0

)
.
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We have

lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p)

=p3 − p6 + (p1 + p2) lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p(+)) + (p4 + p5) lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p(−))

=






p3 − p6 +
7
11
(p1 + p2)−

5
11
(p4 + p5) , if p2

p1+p2
≥ 3

4
and p5

p4+p5
≥ 2

3
;

p3 − p6 + (p1 + p2)
(

16
11

· p2
p1+p2

− 5
11

)
− 5

11
(p4 + p5) , if p2

p1+p2
< 3

4
and p5

p4+p5
≥ 2

3
;

p3 − p6 +
7
11
(p1 + p2)− (p4 + p5)

(
−18

11
· p5
p5+p6

+ 7
11

)
, if p2

p1+p2
≥ 3

4
and p5

p4+p5
< 2

3
;

p3 − p6 + (p1 + p2)
(

16
11

· p2
p1+p2

− 5
11

)
− (p4 + p5)

(
−18

11
· p5
p5+p6

+ 7
11

)
, if p2

p1+p2
< 3

4
and p5

p4+p5
< 2

3
.

Thus we obtained the expressions from Theorem 1. Doing the same for the cases when p1 = p2 = 0
or/and p4 = p5 = 0, one can see that the expressions from Theorem 1 also hold for these cases.

5.3.5 A discussion of the proof

Here, we give several remarks discussing the above proof.

Remark 14 (The main idea of the proof). In order to prove that the limit value (when first sup hi → 0
and later λ → 0) exists, we considered a “decomposition” of the game G1 from Theorem 1 into two
“half-games”, G−

T∞
(0) and G+

T∞
(0). Afterwards, in Lemma 2 we found the limit value for each of these

two “half-games”. Afterwards, in the above proof of Theorem 1 we found the limit value of the game
G1 by combining two “half-games”. The same idea was used in [SV15]. (However, there it was used
to prove the inexistence of the limit value).

Remark 15. In this (somewhat informal) remark, we try to understand for what reason the game Gλ
1

from Theorem 1 has no limit value in discrete time (if each stage duration is h = 1), but has a limit
value in continuous time (if stage durations hi all tend to 0).

First, we consider the discrete case (each stage duration is h = 1). Consider the game G̃λ
1 from

§5.2 with starting state −−. (Recall that games Gλ
1 and G̃λ

1 are equivalent, see Proposition 5). It is
easy to see that by playing only C, after some time player 1’s belief that the current state is − may
be 1 − (1/2)n, where n ∈ N0. Of course, the larger is n, the larger is the average time that player 1
needs to wait to achieve the belief 1 − (1/2)n. However, the closer is the discount factor λ to 0, the
longer player 1 may afford himself to wait. Thus, if λ is close to 0, then he can with very high chance
go to the state ++, and do it in such a way that his payoff before going to the state ++ is almost 0.
See Figure 8. Now, consider the game G̃λ

1 with starting state ++. By playing only C, after some time
player 2’s belief that the current state is + may be 1 − (2/3)n, where n ∈ N0. And as before, if λ is
close to 0, then player 2 can with very high chance go to the state −−, and do it in such a way that
his payoff before going to the state −− is almost 0. Thus, both player 1 and player 2 can (if discount
factor λ is small) move the state from unfavorable position to favorable position, obtaining almost no
payoff while being in the unfavorable position. (In particular, the value when starting in the state −−
is equal to the value when starting in the state ++). Because of this quick change from one player to
another one, there is an oscillation when λ tends to 0. See [Zil16b] and [RZ20] for more details. See
also [SV15].

Now, we consider the continuous case (sup hi → 0). Consider the game GT∞,λ, where starting state
is −− with probability p and − with probability 1 − p. The goal of player 1 is to quickly make his
belief p̃ that the current state is −− smaller, and afterwards start playing Q. Looking at (3) from
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§5.3.2, we see that after player 1 plays C, player 1’s a posteriori belief p̃ is going to be either p− hp
2
, if

the public signal is α, or p+h−hp, if the public signal is β. Since the probability to obtain the signal
α and the probability to obtain the signal β are both equal to 1/2, the expectation of the a posteriori
belief p̃ equals

1

2
(h− hp) +

1

2
·
−hp

2
=
h

4
(2− 3p).

See Figure 9. Thus if p ≤ 2/3, then player 1 immediately starts playing Q until he gets to the state
++. If p > 2/3, then player 1 may play C for some time in order to make p̃ smaller. As λ becomes
smaller, he can wait longer and longer, thus allowing p̃ to get closer to 2/3. See Figure 10.

Analogously, if in the game GT∞,λ the starting state is ++ with probability p and + with probability
1 − p, then by looking at (5) from §5.3.2, we see that after player 2 plays C, player 2’s a posteriori
belief p̃ is going to be either p − 2hp

3
, if the public signal is α, or p + h − hp, if the public signal is

β. Since the probability to obtain the signal α equals 1/3 and the probability to obtain the signal β
equals 2/3, the expectation of the a posteriori belief p̃ equals

2

3
(h− hp) +

1

3
·
−2hp

3
=
h

9
(6− 8p).

See Figure 11. Thus if p ≤ 3/4, then player 1 immediately starts playing Q until he gets to the state
−−. If p > 3/4, then player 1 may play C for some time in order to make p̃ smaller. As λ becomes
smaller, he can wait longer and longer, thus allowing p̃ get closer to 3/4.

Thus, neither player 1 nor player 2 can (if discount factor λ is small) move the state from unfavorable
position to favorable position for sure, because with high probability they are going to go to an
absorbing state, −∗ for player 1 and +∗ for player 2. (In particular, the value when starting in the
state −− is not equal to the value when starting in the state ++). Thus, there is no oscillation when
λ tends to 0.

0x
1/2x

3/4x
7/8x

15/16x xxx
1

Possible beliefs that the current state is −
Figure 8: Discrete case: Possible beliefs that the current state is −. As λ becomes smaller, player 1
can wait longer and longer to achieve higher probabilities.

0 2/3 1

p

Player 1 immediately starts playing Q

Player 1 plays C until it gets

sufficiently close to p = 2/3.

Figure 10: Continuous case with small λ: With probability p < 2/3 that the current state is −−,
player 1 should immediately start playing Q. Otherwise, his belief p̃ will start to increase until it
becomes p̃ = 2/3, which is bad for player 1. With probability p ≥ 2/3 that the current state is −−,
player 1 can very quickly decrease his belief p̃ until it becomes p̃ ≈ 2/3, which is good for him.
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p p+ h− hpp− hp

2

Prob.1
2

hp

2
Prob.1

2

h− hp

(a) p > 2/3 and player 1 plays C. In this case
p̃ = 1

2(h − hp) + 1
2 · −hp

2 = h
4 (2 − 3p) < 0, thus if

λ is small, then player 1 prefers to play C until p̃
is close to 2/3.

p p+ h− hpp− hp

2

Prob.1
2

hp

2

Prob.1
2

h− hp

(b) p < 2/3 and player 1 plays C. In this case
p̃ = 1

2 (h − hp) + 1
2 · −hp

2 = h
4 (2 − 3p) > 0, thus

player 1 prefers to play Q until the state changes.

Figure 9: Continuous case with player 1 playing C: What happens with the probability p that the
current state is −−.

p p+ h− hpp− 2hp

3

Prob.1
3

2hp

3
Prob.2

3

h− hp

(a) p > 3/4 and player 2 plays C. In this case
p̃ = 2

3(h− hp) + 1
3 ·

−2hp
3 = h

9 (6− 8p) < 0, thus if
λ is small, then player 2 prefers to play C until p̃
is close to 3/4.

p p+ h− hpp− 2hp

3

Prob.1
3

2hp

3

Prob.2
3

h− hp

(b) p < 3/4 and player 2 plays C. In this case
p̃ = 2

3(h − hp) + 1
3 · −2hp

3 = h
9 (6 − 8p) < 0, thus

player 2 prefers to play Q until the state changes.

Figure 11: Continuous case with player 1 playing C: What happens with the probability p that the
current state is ++.

6 Final comments

6.1 Definition of games with stage duration for a general

model of games with public signals
First, we need to give another general construction of games with public signals, which is equivalent

to the one given in §5.1.1.
A zero-sum stochastic game with public signals is a 7-tuple (A,Ω, {fm}m∈N∗ , I, J, {gm}m∈N∗ , {P 2

m}m∈N∗),
where:

• A is a finite non-empty set of signals;
• Ω is a finite non-empty set of states;
• I is a finite non-empty set of actions of player 1;
• J is a finite non-empty set of actions of player 2;
• gm : I × J × Ω → R is the m-th stage payoff function of player 1;
• P 2

m : I × J × Ω → ∆(Ω) is the transition probability function at the m-th stage;
• fm : I × J × Ω× Ω → ∆(A) is the signalling function at the m-th stage.

The game (A,Ω, {fm}m∈N∗ , I, J, {gm}m∈N∗ , {P 2
m}m∈N∗) proceeds in stages as follows. Before the

first stage, an initial state ω1 ∈ Ω and an initial signal α1 is chosen according to some probability law
p0 ∈ ∆(Ω×A). At each stage n ∈ N

∗:

1. The current state is ωn ∈ Ω. Players do not observe it, but they observe the signal αn ∈ A and
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the actions of each other at the previous stage;
2. Players choose their mixed actions. Player 1 chooses xn ∈ ∆(Iαn) and player 2 chooses yn ∈

∆(Jαn);
3. An action in ∈ Iαn of player 1 (respectively jn ∈ Jαn of player 2) is chosen according to the

probability measure xn ∈ ∆(Iαn) (respectively yn ∈ ∆(Jαn));
4. Player 1 obtains a payoff gn = gn(in, jn, ωn), while player 2 obtains payoff −gn. The new state
ωn+1 is chosen according to the probability law P 2

n(in, jn, ωn). The new signal is chosen according
to the probability law fn(in, jn, ωn, ωn+1).

Remark 16. P 2
n(in, jn, ωn)(ωn+1) = 0 means that after playing (in, jn) at n-th stage, the probabil-

ity to change the state from ωn to ωn+1 is 0. Despite this, we still need to specify a distribution
fn(in, jn, ωn, ωn+1) ∈ ∆(A). So, the construction of games with public signals presented here has more
information about the game compared to the construction from §5.1.1, but this new information is
useless.

Proposition 9 (Equivalence of the constructions). For each transition probability function P 1 from
construction given in §5.1.1, there is a transition probability function P 2 and a signalling function fm
from construction presented here, such that the expected total payoff of both players coincide for any
pair of strategies. And vice versa, for any transition probability function P 2 and a signalling function
fm from construction presented here, there is a transition probability function P 1 from construction
given in §5.1.1 such that the expected total payoff of both players coincide for any pair of strategies.

Proof. Given P 1
n from construction in §5.1.1, define for each n ∈ N

∗, in ∈ I, jn ∈ J, α ∈ A, ωn, ωn+1 ∈ Ω

P 2
n(in, jn, ωn)(ωn+1) =

∑

α′∈A

P 1
n(in, jn, ωn)(ωn+1, α

′);

fn(in, jn, ωn, ωn+1)(α) =

{
P 1
n(in, jn, ωn)(ωn+1, α) / P

2
n(in, jn, ωn)(ωn+1) , if P 2

n(in, jn, ωn)(ωn+1) 6= 0;

0, otherwise.

Vice versa, given P 2
n and fn from construction given here, define for each n ∈ N

∗, in ∈ I, jn ∈ J, α ∈
A, ωn, ωn+1 ∈ Ω

P 1
n(in, jn, ωn)(ωn+1, α) = P 2

n(in, jn, ωn)(ωn+1) · fn(in, jn, ωn, ωn+1)(α).

In §4.3, we gave the definition of games with stage duration and public signals. However, this
definition was for a very specific class of games with public signals, in which given signal is determined
and does not depend on the previous state. Now, we give a general definition.

Definition 10. Fix a zero-sum stochastic game (A,Ω, {fn}n∈N∗ , I, J, g, q) with public signals, where q
is a kernel. The stochastic game with n-th stage duration hn is the stochastic game

(A,Ω, {fm}m∈N∗ , I, J, {hmg}m∈N∗, {hmq}m∈N∗)

with public signals.

Remark 17. Even if P 2
n(in, jn, ωn)(ωn) = 0 in a game with stage duration 1, we have

P 2
n(in, jn, ωn)(ωn) > 0 in a game with stage duration h < 1. So, even if the knowledge of
fn(in, jn, ωn, ωn) ∈ ∆(A) may be useless when stage duration is 1, it is never useless and is always
required when stage duration is h < 1.
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6.2 Alternative definition of stochastic games with stage du-

ration with public signals
In this section, we give a definition of stochastic games with stage duration, which is different from

the definition which we gave in §6.1 (and different from the one given in §4.3).
Fix a zero-sum stochastic game (A,Ω, I, J, g, {Pn}n∈N∗) with public signals, where Pn are transition

probability functions. (This time we use construction of stochastic games from §5.1.1).
We assume that A = {α1, α2, . . . , αn}.

Definition 11. The stochastic game with n-th stage duration hn is the stochastic game

(Ã,Ω, I, J, {hmg}m∈N∗ , {P̃m}m∈N∗),

where Ã = A ∪ {αn+1} and for each n ∈ N
∗, in ∈ I, jn ∈ J, α ∈ Ã, ωn, ωn+1 ∈ Ω we have

P̃n(i, j, ωn)(ωn+1, α) =

{
hhPn(i, j, ωn)(ωn+1, α), if α 6= αn+1;

1− hn, if ωn = ωn+1 and α = αn+1.

Remark 18. Informally speaking, in n-th stage, with probability hn the next state is drawn according
to the transition probability pn, and players obtain the signal α 6= αn+1, and with probability 1 − hn
the state stays the same, and the players obtain the signal αn+1. In this case the players know for sure
that the state has not changed.

Although this new definition does not seem to be very natural, it makes the stochastic games with
stage duration with public signals equivalent to the stochastic games with perfect observation of the
state and with stage duration.

Proposition 10. For any stochastic game G = (A,Ω, I, J, g, {Pn}n∈N∗) there is a stochastic game

G̃ such that for any partition T∞ of [0, T ) (with tn+1 − tn = hn), the stochastic game G(T∞) with
n-th stage duration hn (considered as a stochastic game with state space ∆(Ω)) coincides with the

stochastic game G̃(T∞) with n-th stage duration hn.

Proof. In §5.1.2 we showed that given a stochastic game G with public signals, we may consider an
equivalent stochastic game Γ(G) with perfect observation of the state. Given a stochastic game Γ(G)
with perfect observation of the state, we may consider the stochastic game (Γ(G))(T∞) with perfect
observation of the state and with n-th stage duration hn. Analogously, given a stochastic game G
with public signals, we may consider a stochastic game G(T∞) with public signals and with n-th stage
duration hn. Given a stochastic game G(T∞) with public signals, we may consider an equivalent
stochastic game Γ(G(T∞)) with perfect observation of the state. Now note that the games Γ(G(T∞))
and (Γ(G))(T∞) coincide. See Figure 12.

Remark 19. Thus with this alternative definition, all the proposition from §4.1 are true. In particular,
in [Nov24, Example 2] and in the example from Theorem 1, we will not obtain any inconsistencies
with stochastic games with perfect observation of the state and with stage duration.
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Stochastic game G
with public signals

Stochastic game Γ(G)
with perfect observation of the state

Stochastic
game G(T∞)

with public signals and
with stage duration

Stochastic game
Γ(G(T∞)) = (Γ(G))(T∞)
with perfect observation

of the state and with stage duration

observation of the state

stage durationstage duration

observation of the state

Figure 12

6.3 Theorem 1 for the discretization of continuous-timeMarkov

game
Theorem 1 also holds in the model from [Sor17]. Let us introduce this model. As before, T∞ is

a partition of R+; in other words, T∞ a strictly increasing sequence {tn}n∈N∗ such that t1 = 0 and
tn

n→∞
−−−→ +∞. For each given partition T∞, denote hn = tn+1 − tn for each n ∈ N

∗.
Loosely speaking, we want to consider continuous-time Markov game, in which players only allowed

to act at times t1, t2, t3, . . . At time t ∈ [ti, ti+1) players should act according to their decision at time
ti. Let us give a formal definition.

Definition 12. Fix λ ∈ (0, 1) and a stochastic game (A,Ω, f, I, J, g, q) with public signals, where q is
a kernel. A discretization of a continuous-time Markov game with public signals, in which n-th action
is taken at time tn is the stochastic game (A,Ω, f, I, J, {gm}m∈N∗ , {Pm}m∈N∗) with public signals, where

gm(i, j, ω) :=

∫ tm+1

tm

λe−λtg(i, j, ω)dt and Pm(i, j)(ω, ω
′) := (exp{hmq(i, j)})(ω, ω

′)

is the m-th stage transition probability function.

The total payoff is

Gcont

T∞,λ(p) := Eω
σ,τ

(∫ +∞

0

λe−λtg(it, jt, ωt)dt

)
.

Denote by vcontT∞,λ(p) the value of a game with such a total payoff, and denote by vcont1,λ (p) the value of a
game with such a total payoff and in which tn = n− 1 for all n ∈ N

∗.
Such games were studied in [Sor17], in which the following result was proved.

Proposition 11. [Sor17, Proposition 5.3]. If (A,Ω, f, I, J, g, q) is a discretization of a continuous-time
state-blind Markov game, then the uniform limit lim

supi∈N∗ hi→0
h1+h2+...=+∞

vcontT∞,λ(p) exists and is a unique viscosity

solution of the partial differential equation (in v(p))

λv(p) = valI×J [λg(i, j, p) + 〈p ∗ q(i, j),∇v(p)〉].

It is straightforward to see that the differential equation in Proposition 11 coincides with the
differential equation in Proposition 3. The following theorem follows from Proposition 11 and the
structure of the proof of Theorem 1.

Theorem 2. For the game G1 from Example 1:
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1. The pointwise limit lim
λ→0

vcont1,λ (p) does not exist;

2. The uniform limit lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vcontT∞,λ(p) exists, and we have

lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vcontT∞,λ(p) =






7
11
p1 +

7
11
p2 + p3 −

5
11
p4 −

5
11
p5 − p6 , if p2

p1+p2
≥ 3

4
or p1 = p2 = 0, and

p5
p4+p5

≥ 2
3
or p4 = p5 = 0;

− 5
11
p1 + p2 + p3 −

5
11
p4 −

5
11
p5 − p6 , if p2

p1+p2
< 3

4
or p1 = p2 = 0, and

p5
p4+p5

≥ 2
3
or p4 = p5 = 0;

7
11
p1 +

7
11
p2 + p3 −

7
11
p4 + p5 − p6 , if p2

p1+p2
≥ 3

4
or p1 = p2 = 0, and

p5
p4+p5

< 2
3
or p4 = p5 = 0;

− 5
11
p1 + p2 + p3 −

7
11
p4 + p5 − p6 , if p2

p1+p2
< 3

4
or p1 = p2 = 0, and

p5
p4+p5

< 2
3
or p4 = p5 = 0.

6.4 Conjectures and questions for the future
In this section we discuss some open problems.
The next conjecture considers the game from Theorem 1. We showed that the uniform limit

lim
λ→0

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p) exists, while the pointwise limit lim
λ→0

v1,λ(p) does not exist. The next conjecture

is a stronger variation of these two results.

Conjecture 1. For the game from Theorem 1, we have

1. For any fixed partition T∞, the pointwise limit lim
λ→0

vT∞,λ(p) does not exist;

2. We have

∣∣∣∣lim sup
λ→0

vT∞,λ(p)− lim inf
λ→0

vT∞,λ(p)

∣∣∣∣→ 0 as sup hi tends to 0, uniformly in p.

Corollary 1(2) says that for any stochastic game with perfect observation of the state, the limit
lim

supi∈N∗ hi→0
h1+h2+...=T

vT∞,k(t, p) exists and is a unique solution of an equation. Proposition 3 says that for state-

blind games, the same limit exists and is a unique viscosity solution of a partial differential equation.
The natural question is to ask whether this is true for other signalling structures.

Question 1. Can we say that for any stochastic game with public signals (in the sense of definition
from §6.1 or at least in the sense of definition from §4.3), the uniform limit lim

supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p) exists

for any fixed λ ∈ (0, 1)? In the case of existence, can this uniform limit be found as a unique viscosity
solution of some partial differential equation?

The following question asks how important is the order in which λ and sup hi tend to 0.

Question 2 (Permutation of limits). Assume that the uniform limit lim
λ→0

vT∞,λ(p) exists for any fixed

partition T∞, and the uniform limit lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p) exists for any fixed λ. Can we say that double

limits

lim
λ→0


 lim

supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p)


 and lim

supi∈N∗ hi→0
h1+h2+...=+∞

(
lim
λ→0

vT∞,λ(p)
)

exist or do not exist simultaneously, and in the case of the existence they are equal to each other?
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Remark 20. Note that:

1. Theorem 1 gives an example of a game in which one of the above double limits exists, whereas
the other one does not. This is the reason why we require the existence of both lim

λ→0
vT∞,λ(p) and

lim
supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p);

2. In the case of stochastic games with perfect observation of the state and with stage duration this
conjecture is true, see Corollary 1(4).

For each fixed real positive number T and for each partition T∞ with tn
n→∞
−−−→ T , we may consider

the stochastic game with public signals and with total payoff

1

T

(
∞∑

i=n

higi

)
,

in which n-th stage kernel is still equal to hq. We denote by vT∞,T the value of the game with such a
total payoff. Such games with stage duration were first studies in [SV16].

The next question motivated by Tauberian theorems for games in discrete time [Zil16a] and in
continuous time [Khl16].

Question 3 (Tauberian theorem for games with vanishing stage duration). Can we say that the limits

lim
λ→0


 lim

supi∈N∗ hi→0
h1+h2+...=+∞

vT∞,λ(p)


 and lim

T→∞


 lim

supi∈N∗ hi→0
h1+h2+...=T

vT∞,T (p)




exist or do not exist simultaneously, and in the case of existence they are equal to each other?

7 Acknowledgements
The author is grateful to his research advisor Guillaume Vigeral for constant attention to this work.

The author is also grateful to Sylvain Sorin and Bruno Ziliotto for useful discussions.

8 References
[AMS95] Robert J. Aumann, Michael Maschler, and Richard Sterns. Repeated Games with Incomplete

Information. The MIT Press, 1995.
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