
HAL Id: hal-04493922
https://hal.science/hal-04493922v1

Submitted on 7 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Super-resolution Ultrasound imaging via Unpaired
Training with the Model-Informed CycleGAN Algorithm

Vassili Pustovalov, Duong-Hung Pham, Denis Kouamé

To cite this version:
Vassili Pustovalov, Duong-Hung Pham, Denis Kouamé. Super-resolution Ultrasound imaging via Un-
paired Training with the Model-Informed CycleGAN Algorithm. 21st IEEE International Symposium
on Biomedical Imaging (ISBI 2024), May 2024, Athènes, Greece. �hal-04493922�

https://hal.science/hal-04493922v1
https://hal.archives-ouvertes.fr


SUPER-RESOLUTION ULTRASOUND IMAGING VIA UNPAIRED TRAINING WITH THE
MODEL-INFORMED CYCLEGAN ALGORITHM

Vassili Pustovalov, Duong Hung Pham, Denis Kouamé

Université Toulouse III Paul Sabatier, IRIT, CNRS UMR 5505, Toulouse, France

ABSTRACT
In traditional ultrasound (US) imaging, there has long

been a trade-off between spatial resolution and imaging
frame rate. Super-resolution (SR) imaging techniques stand
out as extensively studied methods to overcome the spatial
resolution limitation. Recently, these techniques have gar-
nered significant attention in ultrafast US imaging research,
enabling enhanced visualization of microvasculature. How-
ever, current SR methods encounter challenges, including the
need to acquire a substantial number of image frames over
an extended acquisition time, coupled with intricate post-
processing steps. Convolutional neural networks (CNNs)
emerge as promising approaches, surpassing classical model-
based methods. Nevertheless, they face challenges arising
from the lack of in vivo data and the absence of ground
truth. In this work, we introduce a model-informed CNN
for computing SR images, addressing generalization issues
through an unpaired and unlabeled training approach. Our
results are compared with those obtained from state-of-the-art
techniques on both simulated and in vivo data.

Index Terms— Super Resolution, Ultrasound Imaging,
Microvasculature, CNN, Unpaired, Cyclic GAN

1. INTRODUCTION

Ultrafast US imaging has emerged as a prominent noninvasive
tool for visualizing and quantifying microvascular structures
with high precision [1]. It leverages advancements in US
imaging including SR, leading to the emergence of new tech-
niques such as functional US, or the enhancement of existing
methods, exemplified by the precise detection of tumoral
areas based on measurable microvascular properties [2]. No-
tably, the integration of this modality with intravascular mi-
crobubble (MB) contrast agents, serving as acoustic point
sources at sub-diffraction precision, has recently introduced
a novel SR imaging technique known as super-localization or
ultrasound localization microscopy (ULM). Remarkably, this
technique can achieve a revolutionary tenfold improvement
in resolution [2]. Despite these continuous improvements,
ULM still requires a prolonged data acquisition time and a
sophisticated post-processing procedure.

CNNs-based methods offer an efficient alternative, pro-
viding enhanced performances with faster computation times.

The advantage of these methods lies in their capacity to learn
parameters from the data, enabling precise and rapid SR
imaging. However, in the context of US imaging, CNN-
based methods frequently encounter a significant limitation
related to the insufficient availability of training data, espe-
cially the absence of ground truth (i.e. labeled by an expert or
confirmed with optical imaging) for in vivo data. This chal-
lenge is sometimes addressed by utilizing the outcomes of
optimization algorithms as ground truth after fine-tuning [3]
or those achieved with the highest-performing US system [4].
Furthermore, a portion of the training is usually carried out
on simulation data, with a trend towards using highly realistic
simulations based on optical images of microvasculature and
in vivo data [5]. Despite their potential, these approaches
struggle to bridge the domain gap between simulation and
in vivo data, thereby constraining the clinical applicability of
CNN-based algorithms.

In this work, we introduce a specific CNN-based approach
for achieving SR in US imaging, enabling rapid imaging of
large vascular regions. This addresses the constraints related
to the acquisition time, computation time, and data volume in-
herent in traditional ULM. Unlike existing CNN-based meth-
ods, our approach involves unpaired and unlabeled training,
facilitated by the deployment of a Cyclic Generative Adver-
sarial Network (CycleGAN) architecture. Notably, this archi-
tecture incorporates information on the explicit model of US
image formation, resulting in a model-informed CNN design
that enhances training efficiency and stability. The remainder
of the paper is organized as follows. We begin by introducing
the design of our CycleGAN architecture and its training on
unpaired datasets in Section 2. Then, we demonstrate its ca-
pability to generate super-resolved images using in vivo data
in Section 3. Finally, we conduct a comparative analysis be-
tween the performance of the proposed technique and state-
of-the-art algorithms: mSPCN [6] and ULM [7].

2. METHODS

2.1. Model-informed CycleGAN Architecture

To tackle inverse problems, CNN-based methods typically
learn the inverse mapping between input data and correspond-
ing labeled data. However, in medical imaging, acquiring a
sufficient quantity of matched label data for network train-



ing poses a significant challenge. Our strategy is to explore
a CycleGAN, capable of learning from unmatched datasets.
In this study, our objective is to perform SR from far fewer
frames than ULM, thereby offering an alternative to super-
localization-based techniques. Drawing inspiration from [5],
which proposes an end-to-end CNN for super-resolved veloc-
ity map estimation without super-localization, our CycleGAN
is trained to perform the SR task on temporal mean of tissue-
filtered B-mode frames.

Our CycleGAN architecture, depicted in Fig. 1, comprises
four independent neural networks that are trained simultane-
ously : a pair of two generators (G,SH) and two discrimina-
tors (DX , DY ). The generator G is a U-Net followed by two
upsampling blocks, implementing an efficient sub-pixel con-
volution to achieve a fourfold SR, thereby mitigating gridding
artifacts. This generator transforms low-resolution US im-
ages into high-resolution images. Meanwhile, the generator
SH follows the forward model formulation (1) to produces
low-resolution images from high-resolution ones. Both dis-
criminators utilize a PatchGAN structure.

Training the CycleGAN presents a significant challenge
due to the complexity of its architecture. To overcome this
limitation, we embed information from the forward model of
the inverse problem into the CycleGAN, leading to a model-
informed CNN architecture. Specifically, we consider the fol-
lowing forward equation of imaging formulation:

Y = SHx+N, (1)

where S represents the downsampling operator, H denotes
the PSF, and N stands for an additive noise. In this context,
the second generator replicates (1) with H being learned dur-
ing the training. Consequently, the knowledge of the forward
operator allows us to design a simple generator architecture
that accelerates and stabilizes the training.
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Fig. 1. CycleGAN architecture with two generators (G, SH)
and two discriminators (DY , DX ). The SH network imple-
ments the direct model described by equation (1). X repre-
sents the high-resolution domain and Y represents the low-
resolution domain. Datasets of domains X and Y are unpaired.
Note that both G and SH are depicted twice for illustration
purposes.

The stability of GAN training often depends on address-
ing the mode collapse problem. Mode collapse occurs when
the generator network of the GAN produces highly similar
outputs, indicating a failure to capture the entire distribution
of the data, which is intricately spread out. In such cases,
the generator generates only a small subset of the distribu-
tion. This issue arises when the discriminator network be-
comes excessively powerful compared to the generator, easily
discerning the generated samples. Consequently, the discrim-
inator provides feedback to generate samples very similar to
the previous ones. To prevent our second generator from be-
coming trapped in a limited set of samples, we incorporate a
random noise term into the input data. The intensity of this
noise is learned during training.

2.2. CycleGAN Loss Function

Recent CNNs utilizing CycleGAN [8] incorporate the Wasser-
stein distance, rooted in optimal transport theory, as a crucial
element in the loss function. This distance metric serves
as a robust measure between two probability distributions,
namely the training data distribution (ground truth distribu-
tion) and the distribution of generated SR images. Neverthe-
less, Wasserstein GANs necessitate regularization techniques
like weight clipping or gradient penalty to enforce the Lips-
chitz constraint on the discriminator networks [9]. While the
preferred method is gradient penalty, it is often computation-
ally expensive and tends to slow down the training process.
In this study, we opted for discriminator training using the
least squares loss (LS-GANs) as an equivalent alternative to
the Wasserstein loss [8]. The least squares loss enhances
training stability by reducing discriminator sensitivity to the
generator’s output. The cycle-consistency loss employs mean
absolute errors to quantify the distance between the initial
images and their reconstructions.

2.3. Training and Simulation Data

The CycleGAN was trained using a series of numerical sim-
ulations adapted from [10] (see Fig. 2), incorporating nine
types of vascular structures mimicking in vivo blood vessels.
To enhance the dataset’s variability and address overfitting,
new structures were meticulously designed. Specifically, we
respectively employed 180 and 120 distinct simulated vas-
cular structures to generate images from the high-resolution
domain and from the low-resolution domain. An additional 8
structures were set aside for the validation set. To augment the
dataset, we applied data augmentation techniques, including
translations and rotations, to the generated images. In total,
6480 low-resolution images and 4320 high-resolution images
were generated and used for training.

The CycleGAN was implemented using PyTorch and
underwent training for 100 epochs employing the Adam op-
timizer, with a learning rate of 3 × 10−5 for the generators
and 5 × 10−5 for the discriminators. The computational
experiments were conducted on a high-performance server
equipped with 32 GB RAM and 4 GTX-1080-TI GPUs.
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Fig. 2. Comparison of the super-resolved images obtained by mSPCN, and CycleGAN methods on numerical simulations: (a)
Sum of Bmode filtered frames. (b) Ground Truth. (c) mSPCN-ULM[6] output. (d) ULM [7] output. (e) CycleGAN output.

(a) SVD-filtered (b) mSPCN[6] (c) ULM [7] (d) CycleGAN (ours)

Fig. 3. Comparison of the super resolved images obtained by mSPCN with tracking, classic ULM with tracking [7] and
CycleGAN : (a) Sum of Bmode filtered frames. (b) mSPCN[6] output. (c) ULM output. (d) CycleGAN output.

3. RESULTS

3.1. Numerical Simulation Results

The simulation data used for comparison corresponds to the
validation set of training data described in Subsection 2.3. We
conducted a comparative analysis involving our CycleGAN
and other techniques. The SR estimation results are depicted
in Fig. 2. Fig. 2 (a) and (b) display the temporal mean of the
B-mode frames and the corresponding ground truth, respec-
tively. Fig. 2 (c) presents the SR estimation obtained with
mSPCN [6]. Fig. 2 (d) corresponds to the result of ULM,
while Fig. 2 (e) shows the SR estimation obtained with our
CycleGAN. We perform a quantitative comparison of the re-
sults presented in Table 1 employing metrics consistent with
those defined in [10], namely the MS-SSIM and the RSE. Ad-
ditionally, we compare the GPU inference time, using a dis-
tinct set of simulation data, among various CNN methods.
This includes a comparison with the method introduced in
[10], which we will refer to as ULM-GAN1

By design, from each input B-mode frame, the mSPCN
network and ULM produce a super-resolved image in which
MBs are detected and super-localized. For performance com-

1Although our method outperforms ULM-GAN across all metrics on sim-
ilar simulation data, we did not present the results, as it would not allow for
a fair comparison due to the unavailability of the code and data from [10].
However, we opted to use their results for the comparison of GPU computa-
tion time only, as our network runs on the same GPU.

parison, the results of mSPCN and ULM are considered as
the superimposition of all super-localized MBs across the B-
mode sequence (i.e. the temporal sum of all the localized
MBs). In contrast, the CycleGAN and ULM-GAN networks
take the temporal mean of the US B-mode sequence displayed
in Fig. 2 (a) as input which results in a single super-resolved
image.

Table 1. MS-SSIM, RSE and CPU inference time compari-
son for the estimations of Fig. 2. The best results are high-
lighted in boldface.

ULM-GAN [10] mSPCN [6] ULM [7] CycleGAN
MS-SSIM - 0.9211 0.9388 0.9805

RSE - 0.1844 0.4453 0.0946
CPU Time (s)† - 4.212 0.431 0.405
GPU Time (s)‡ 2.09 2.63 - 0.118

† Average time over 100 samples computed with an Intel Core i5-10500
CPU @ 3.10GHz with 16 GB RAM on the simulated validation set.

‡ Average time over 100 samples computed using a Nvidia Tesla V100 with
16 GB RAM on simulation data adapted to resemble the test data from [10].

3.2. In vivo Results
In the in vivo data comparison, we utilize the initial block
comprising 800 frames from the rat brain in the PALA dataset
[11]. The pre-processing phase involves the application of the
temporal and SVD filters to the US sequence to retain only



the MBs, thereby eliminating tissue and noise. Consistent fil-
tering parameters are employed across all methods, ensuring
parity in performance comparisons.

Similar to the approach applied to simulation data, both
ULM and mSPCN undertake the processing of the SVD-
filtered sequence, whereas CycleGAN takes the temporal
mean image as input, as illustrated in Fig. 3 (a). Addition-
ally, we exclude ULM-GAN from this in vivo comparison
due to the unavailability of the code. It is noteworthy that
in this in vivo experiment, we introduced the tracking step
for ULM and mSPCN. This was introduced based on our
observation that it contributed to the improvement of the final
super-resolved image.

Since all the methods do not use the same metrics, we did
not use the quantitative in vivo metrics used in ULM, such
as the gridding index or the saturation. As a result, our com-
parison is restricted to the evaluation of execution times, as
reported in Table 2, across various methods. Additionally, we
conduct a qualitative analysis of the results, as in Fig. 3.

Table 2. Computation time comparison on CPU / GPU for
the in vivo data. The best result is in boldface.

mSPCN[6] ULM [7] CycleGAN
Time (s) 37.9 / 1.48 1.59 / - 0.40 / 0.04

3.3. Discussion

The experimental results reveal that using a short sequence
as the input of super-localization techniques produces a SR
image containing a limited number of MBs. Notably, some
secondary blood vessels, visible on the temporal mean im-
age in Fig. 3 (a), are only partially reconstructed by super-
localization methods, resulting in an incomplete depiction of
the microvasculature. In contrast, CycleGAN demonstrates
the capability to directly generate a continuous super-resolved
image from a short sequence, both in simulation and in vivo
data. In quantitative assessments on simulation data, our
method outperforms state of the art methods, yielding supe-
rior metrics. Our neural network demonstrates superior speed
in both simulation and in vivo scenarios.

4. CONCLUSION

In this work we demonstrate the feasibility of obtaining SR-
images from a limited number of low-resolution US frames,
using the proposed model-informed CycleGAN training con-
figuration. In contrast to existing super-localization tech-
niques, our approach requires a lower acquisition time and
provides robustness against artifacts such as motion artifacts.
Moving forward, we aim to further refine this unpaired train-
ing method, focusing on re-implementing one of the ULM
steps as a CNN.
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