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Abstract 

Studying the chemical reactivity related to the solid electrolyte interphase (SEI) in lithium-ion 

batteries is challenging due to system heterogeneity (spatial and compositional). Semi-

empirical methods have the potential to reduce the computational cost compared to the 

computationally costly DFT computations. In this study, we have first assessed the performance 

of four semi-empirical methods (GFN-xtb, GFN2-xtb, PM6-D3 and PM7-D3) to model major 

reactions for SEI formation and growth. We have included the major decomposition reactions 

of the most used solvent (ethylene carbonate), most used salt (lithium hexafluorophosphate) 

and other electrolyte species like the co-solvent 1,3-dioxolane and the additive vinylene 

carbonate. We have found that PM7-D3 and GFN-xtb are the two best performing methods for 

the 32 tested reactions. Finally, we have performed PM7-D3 and GFN-xtb -based molecular 

dynamics for inorganic/organic interfaces. We have found that LiF is the most rigid salt, which 

barely reconstructs. In contrast, Li2O is subject to severe reconstruction at the GFN-xtb level of 

theory, but significantly less when using PM7-D3. Still, even at the PM7-D3 level of theory 

Li2O readily reacts with alkyl carbonates, leading to CO2 dissociation and thus the formation 

of surface carbonates. When in contact with ethylene carbonate, the organic molecules undergo 

partial dehydrogenation reactions and ring openings. This suggests that Li2O is overly reactive 

to be in direct contact with such organic molecules. Rather, it is surrounded by a passivating 

(mono-)layer of Li2CO3. Indeed, our simulations suggest that such a hybrid system (core of 

Li2O, shell of Li2CO3, solvated with ethylene carbonate) the organic solvent remains intact. 

Furthermore, for such a hybrid system GFN-xtb produces physically meaningful results, so that 

this method can be overall recommended. 
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1. Introduction 

The solid electrolyte interphase (SEI) is a thin passivating layer formed at the anode/electrolyte 

interface in lithium-ion batteries as a result of the decomposition of the electrolyte by electrons 

from the anode1–4. Experimental studies were able to identify a multi-layered structure with an 

inorganic inner layer near the electrode/SEI interface (Li2CO3, LiF, and Li2O), and an organic 

outer layer near the SEI/electrolyte interface consisting of alkyl carbonate, polymers, etc.1–5. 

However, due to the limitation of the experimental techniques, it is challenging to investigate 

other properties of the SEI like thermodynamics and kinetics of it its formation and growth1–

3,5,6. Computational models have emerged to better understand the SEI formation and growth. 

Previous theoretical studies (e.g., DFT) focused on the decomposition pathways of main 

electrolyte species i.e., the ethylene carbonate solvent and the supporting salt lithium 

hexafluorophosphate, LiPF6. However, due to computational cost, DFT is restricted to very 

short time scales and cannot model large, non-periodic systems. So, cheaper computational 

methods are essential to model reactions in amorphous systems like the SEI1,2.  

Reactive forcefield methods were used to study electrolyte decomposition reactions (e.g., 1,3-

dioxolane7) and extend the simulation time. However, these reactive force fields are plagued by 

a difficulty of transferability: they are usually built and optimized for a specific set of reactions 

(e.g., the decomposition of ethylene carbonate only) and need to be reparameterized for each 

new composition of the system8–10. The limitation of reactive force fields can be traced back to 

the major approximations at the heart of their functional form, i.e., the inherently classical 

description of the chemical bonds9,10. Semi-empirical methods constitute a potential alternative 

since they are about three orders of magnitude faster than DFT. In contrast to reactive force 
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fields, semi-empirical methods are based on quantum mechanics and are, therefore, more 

transferable, i.e., less system-specific11–14.  

Semi-empirical methods are based on approximations to first principles DFT or Hartree-Fock15–

19 formalisms. One of the most successful families of the semi-empirical methods is the neglect 

of diatomic differential overlap methods, first introduced by John Pople20. Several 

improvements were made to the original formalism and led to the development of various 

flavors of Hartree-Fock-like semi-empirical methods and in particular AM1 and PM#15–18, 

where popular values for # are 3, 6 and 7, referring to various generations. PM#-based methods 

are well established since they have regularly been updated and improved. For example, 

through the development of PM6, the core-core interactions were modified to use the Voityuk’s 

core-core diatomic interaction parameters and Thiel’s d-orbital approximation which led to a 

significant reduction in error for compounds of main-group elements and enabled its use for the 

whole block of the transition metals15. Further improvements and fixes were made to PM6 and 

led to the development of the most recent method among the PM# family (PM7)16. Unlike PM6, 

PM7 uses proxy functions to represent noncovalent interactions which led to improved results16.  

These semiempirical methods have been used in the literature to gain insights on systems where 

the use of DFT would have been computationally prohibitively expensive. For example, Rocha-

Santos et al. have used PM6 and PM7 methods to gain insights into the binding energies of 

various ligand/protein complexes6. In the context of lithium-ion batteries, a study performed by 

Kim et al. has compared the performance of various semiempirical methods based on the 

Hartree-Fock methods to investigate the electronic properties of various solvents used in 

lithium-ion batteries14. They found that PM#-based methods showed better agreement with 

DFT reference data. Gieseking et al.12 have also recently investigated the performance of 

various semi-empirical methods (PM7, PM6, PM3, AM1, MNDO) to compute formal 
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electrochemical redox potentials of various organic molecules. Again, PM7 was identified as 

the best candidate followed by PM6.  

Similar to the empirically parameterized Hartree-Fock methods, approximations to DFT have 

been formulated which are called density functional tight binding (DFTB),17,18,21 particularly 

developed in the work of Seifert, Elstner, and Frauenheim21–27. In contrast to PM7, which is 

applicable across the periodic table of the elements, in DFTB system-specific parameterizations 

(almost like for reactive force fields) dominate28-30. For example, Li et al. developed DFTB 

parameters for Li−Li, Li−H, Li−O, Li−C28. The developed parameters were used to model Li+ 

desolvation and diffusion in liquid ethylene carbonate using molecular dynamics. This 

approach was also able to capture the effect of SEI thickness in blocking electron transfer and 

preventing electrolyte reduction. However, parameters for fluorinated compounds (e.g., salt 

LiPF6) are still missing. In addition, their training set did not consider ethylene carbonate and 

vinyl-carbonate decomposition reaction energies, questioning their applicability to the 

formation of the major organic component of the SEI, i.e., alkyl carbonates. Another DFTB-

based method was developed by Grimme et al.17,18: GFN-xtb. GFN-xtb avoids the pair-specific 

potentials of DFTB and, instead, uses mainly global and element-specific parameters17. The 

reduction of the pair-specific potentials has led to the need for fewer parameters and, thus, to 

an easier parameterization compared to DFTB17, allowing GFN-xtb to be parameterized for all 

spd-block elements (Z = 1−86). Further improvements to GFN-xtb were made and led to the 

development of GFN2-xtb, strictly following a global and element-specific parameter 

strategy.18 GFN2-xtb also uses improved terms for the multipole-extended electrostatic and 

exchange- correlation energy compared to its first generation. In addition, it inherently includes 

a newly developed dispersion correction (D4)31,32 considering electronic structure effects that 

were neglected in the previously used dispersion correction (D3)33,34 of GFN-xtb18. More details 

about these semi-empirical methods can be found in the original publications15–18. 
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The assessment of the performance of semi-empirical methods to investigate various lithium-

ion battery chemistries (e.g., electrolyte decomposition reactions) is still missing in the 

literature. With such low-cost, sufficiently accurate methods in hand (in this case PM7-D3), 

one could perform extensive explorations of the reactivity in the SEI, determining rate constants 

that could be incorporated into multi-scale, multi-physics models to enhance our atomistic 

understanding of the SEI growth and battery aging mechanisms. Therefore, we here perform a 

benchmarking study of four semi-empirical methods (GFN-xtb17, GFN2-xtb18, PM6-D315,33,34 

and PM7-D316,33,34) against DFT (PBE-dDsC) as a reference. DFT-based methods (e.g., PBE) 

are the most used methods for studying the SEI and reactions at the solid/liquid interface in 

general, as DFT offers the best compromise between accuracy and computational cost for large 

(periodic) systems. We tested the performance of the semi-empirical methods for major 

decomposition reactions of the most common electrolyte species used in lithium-ion batteries 

i.e., the most used solvent, ethylene carbonate and most used salt LiPF6, together with popular 

additives, such as vinyl carbonate and 1,3-dioxolane1,2,5,35–41. The aim of the study is to 

investigate to which extent the semi-empirical methods can be reliable to study the reactivity in 

the SEI. In a second step we assess the performance of the two most accurate methods among 

their families (GFN-xtb and PM7-D3) for describing inorganic nanoparticles and lithium 

insertion into graphite. Finally, we demonstrate the capability of GFN-xtb and PM7-D3 to 

perform molecular dynamics (MD) calculations. The MD simulations evidence that GFN-xtb 

fails to describe one of the three inorganic components of the SEI (Li2O). However, Li2O is at 

the same time identified as being highly reactive at the PM7-D3 level of theory, suggesting that 

it is unlikely to be in direct contact with the organic solvent. Rather, it exists as a core-shell 

component, wrapped in a protective layer of Li2CO3.  

2. Methods and Computational Details 
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All molecules were optimized using the DFT Perdew−Burke−Ernzerhof functional (GGA-

PBE)42,43 to provide reference results, to which PM6-D3, PM7-D3, GFN-xtb and GFN2-xtb are 

compared. The Vienna Ab initio Simulation Package VASP 5.4.4.44–46 was exploited to run the 

DFT computations. Dispersion interactions were included using the density-dependent 

dispersion correction dDsC47,48. The core electrons were described using the projector 

augmented plane-wave (PAW) pseudopotentials. All structures were optimized using the 

conjugate gradient algorithm in the gas-phase. The k-point sampling of the first Brillouin zone 

was restricted to the Gamma point49. Convergence criteria were set to 10-6 eV and 0.03 eV/Å, 

for the electronic self-consistency iterations and ionic relaxation loop respectively. A Fermi 

smearing with a width of 0.03 eV was employed. Spin polarized calculations were performed 

for radical species. The cutoff energy for the plane-wave-basis was set to 600 eV.  The vacuum 

space to avoid spurious periodic interaction was about 10 Å in all directions. The semi-

empirical methods PM615 and PM750 Hamiltonians were exploited in combination with the 

Grimme dispersion correction D333,34 in Gaussian 16, revision C.0151. GFN-xtb computations 

used the standard setup in xtb version 6.4.117–19. The dispersion corrections D3 and D4 are, 

thus, included in GFN-xtb17 and GFN2-xtb18 respectively. All computations were performed in 

vacuum (single molecule) and all energies obtained are electronic energies based on non-

interacting species (without any thermodynamics corrections). 

Molecular dynamics simulation 

For the MD calculations, the structure of the systems was built using Packmol 20.11.052. We 

used the hydrogen isotope tritium that allows for a step size of 1 fs without causing numerical 

instabilities. The MD simulations were performed for at least 10 ps. We used the ORCA 

software53 to perform the GFN-xtb molecular dynamics. The temperature was set to 298 K 

using the Berendsen thermostat. The PM7-D3-MD simulations were performed using the atom 
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centered density matrix propagation molecular dynamics model (ADMP) using Gaussian1651. 

The temperature was set to 298 K relying on the built-in velocity-rescaling thermostat. The 

simulation time cost (system of around 550 atoms) for each 10 ps simulation (using 36 CPU 

cores) is around 0.5 day for GFN-xtb and 5 days for PM7-D3. We tested a similar MD system 

but using PBE/STO-3G using Gaussian software instead of PM7-D3. We found that it took 

around 5 days for only 0.17 ps. So, it would take around 290 days for 10 ps at the DFT level, 

highlighting the speedup obtained when using semi-empirical methods instead. Note that 10 ps 

are rather short, i.e., equilibration cannot be ensured. Nevertheless, trajectories of about 10 ps 

are found to be sufficient for qualitative insight in solid/liquid interfaces, especially when 

coupled with enhanced sampling54. The latter is, however, beyond the scope of this study. 

3. Results and Discussion 

3.1 Set of reactions 

We evaluate the accuracy of the four semi-empirical methods, i.e., PM6-D3, PM7-D3, GFN-

xtb and GFN2-xtb for 32 major (elementary) reactions that are discussed in the literature1,2,5,35–

39 of the SEI formation and growth, see Figure 1.  

In terms of reactants, one can highlight Li (e.g., reaction 1), the supporting salt LiPF6 (reaction 

8), the solvent ethylene carbonate (reaction 12), the additive vinyl carbonate (reaction 13) and 

the (co-)solvent 1,3-dioxalane (reaction 29). In terms of notable products one can mention the 

inorganic components of the SEI Li2O, LiF and Li2CO3 (reactions 1, 3 and 24, respectively) 

and the organic butylene and ethylene dicarbonate (reaction 25 and 27, respectively). The 

reaction list also includes the main decomposition reactions for the first steps in 

vinylene/ethylene carbonate cross polymerization reactions (e.g., reactions 18 and 22)40 and the 



9 
 

reactions between 1,3-dioxolane and LiPF6 (reactions 29 and 30) as reported in previous 

studies7.  

 

Figure 1 Reactions considered for assessing the accuracy of semi-empirical methods for 

reactions relevant in the context of lithium-ion batteries. Reaction energies in kJ/mol at the 

PBE-dDsC level of theory are indicated above the reaction arrow. 

3.2 PBE-dDsC vs. Semi-Empirical Methods 
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To start the analysis, we investigate the overall accuracy of semi-empirical methods compared 

to the reference PBE-dDsC computations in Figure 2. First of all, we notice that all four tested 

methods lead to acceptable results in the sense that all the data is located close to the bisector, 

i.e., no excessive outliers have been identified. This is further confirmed by the high Pearson-

correlation coefficients (R2>0.9) for all methods. In other words, trends in relative reaction 

energies are quite faithfully reproduced, so that semi-empirical methods can be exploited for 

pre-screening of large reaction networks encountered in the SEI formation14,55. When 

considering quantitative agreement with the reference level of theory, one notices that PM6-D3 

and PM7-D3 feature slopes that are closer to unity as compared to GFN-xtb and GFN2-xtb, 

suggesting that PM6-D3 and PM7-D3 show a smaller systematic error.  Similarly, the 

maximum errors range from 205 kJ/mol for PM7-D3 (reaction 1) to 395 kJ/mol for GFN2-xtb 

(reaction 27). From this global overview, one might recommend PM6-D3 on par with PM7-D3 

for use in SEI-related research. Given its high correlation coefficient, PM7-D3 is slightly 

preferable. This is also in line with the better performance of PM7 compared to PM6 previously 

reported in the literature15,50. For example, PM7 was found to predict more accurate geometries 

than PM6 for a set of 2194 solids and to feature a significant improvement in the prediction of 

heats of formation15,50. 
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Figure 2 Parity plot for the semi-empirical methods GFN-xtb, GFN2-xtb, PM6-D3 and PM7-

D3 against PBE-dDsC for all the reactions tested. The corresponding least-squares fit are given 

in the legend above the plot, the black diagonal line indicates the bisector. 

This encouraging overall performance of semi-empirical methods has, however, to be nuanced 

by the consideration of the quantitative errors: Figure 3 shows the mean absolute deviations 

(MADs) which range from 59 kJ/mol for PM7-D3 to even 106 kJ/mol for GFN2-xtb. Similarly, 

the percentage deviations are above 70 % in all cases. These performance indicators 

demonstrate that semi-empirical methods do not yet reach quantitative agreement with DFT but 

should only be used for “pre-screening” purposes and/or their results need to be re-evaluated at 

the DFT level to achieve quantitatively reliable results. 
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Figure 3 Top: The mean absolute deviation (MAD) and bottom the mean absolute percentage 

deviation for the four semi-empirical methods against PBE-dDsC. 

Finally, one needs to address the question of “across-the-board” accuracy given our 

classification of reactions into different groups in Figure 1. Are all groups treated on an equal 

footing by the semi-empirical methods? This is analyzed in Figure 4. To simplify the discussion, 

we only show data for two out of the four tested semi-empirical methods: GFN-xtb and PM7-

D3, which are the better performing variants of the two families (see SI for the corresponding 

graphs of the other two methods). When analyzing the MAD as a function of the reaction class, 

first, one notes that the two semi-empirical methods perform overall quite similarly, with two 

exceptions: GFN-xtb is significantly more accurate for the prediction of the reactions that 

generate radicals (Gen, reaction 12 and 13), while PM7-D3 is more accurate for the termination 

reactions (Term, reactions 24-28), suggesting that both methods are slightly imbalanced 
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regarding the creation/coupling of carbon-based radicals. Other than that, the oxidation of Li 

(LiOx, reactions 1 and 2) are badly described by both methods. One has to keep in mind, 

however, that these two reactions are somewhat artificial, in the sense that in the “real” SEI, the 

reacting Li atom is not surrounded by vacuum, but rather stabilized either as a solid (metal Li 

electrode) or as an intercalation compound. Furthermore, the produced LiOH and Li2O will 

form solids, with electronic structures quite far from their elementary building blocks in the 

gas-phase.  

When considering the percentage deviations, it is PM7-D3 that shows very large errors for four 

reactions: the two related to hydrolysis and the two related to the generation of radicals. The 

reason for the high relative errors is different for the two groups: The hydrolysis reactions are 

nearly athermic, so that even relatively small absolute errors (less than 20 kJ/mol) lead to high 

percentage errors, while the performance for the generation of radicals is simply bad, as already 

seen in the MADs. Still, GFN-xtb also shows mean percentage errors of around 100% for these 

reactions, so that one can conclude that these reactions are difficult to describe accurately with 

such low-cost methods. Table S1 and Table S2 show all reaction’s energies for each method, 

the individual absolute % deviations and the absolute deviations relative to PBE-dDsC. 

 

Figure 4 Left: The mean absolute deviation (MAD) and right the mean absolute percentage 

deviation for GFN-xtb and PM7-D3 against PBE-dDsC, reported in terms of the eight groups 

of reaction types defined in Figure 1. 
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To further check the fitness of PM7-D3 and GFN-xtb methods for computations of systems 

relevant to the SEI, we also need to study larger inorganic systems representing the negative 

electrode (in this case lithiated graphite (LiCx)) and various salts formed from the 

decomposition of the main solvent and main salt: Li2CO3, LiF and Li2O. 

3.3 Solid components of the SEI  

Lithiation of graphite 

The lithiated graphite (LiCx) is currently the most used negative electrode in lithium-ion 

batteries. The (de)intercalation process of Li0 between the graphene layers is important for the 

cycling of the battery. In our computations, we have used two layers of graphene to host various 

numbers of Li0 to mimic the battery at different degrees of lithiation, i.e., different states of 

charges56, see Figure 5. These structures are inspired from the experimental56
 structures of 

lithiated graphite, which have been the object of a DFT benchmarking study by Lenchuk and 

co-workers57. In the first row of Figure 5, we start with a very low lithium content (LiC108), 

where Li0 is placed in the center between the two graphene-like layers. Increasing the Li 

content, we move to LiC36, where three Li0 atoms are arranged in a diagonal-like structure, in 

order to maximize their distances while keeping their preferred intercalation sites. Then, adding 

two more Li0 atoms, one reaches again a symmetric structure.  In the second row of Figure 5, 

we report our model for the half-lithiated electrode, which has 9 Li0 atoms located between the 

graphite layers representing LiC12. Finally, the fully lithiated structure features additional 9 Li 

atoms “on top” of the graphene sheet, leading to LiC6.  

To study the lithiation of graphite, we have computed the intercalation energy of Li atoms 

(following Eq.1) for the five structures described at the PBE-dDsC level of theory. 
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Reaction Energy per 1 Li0 (
kJ

mol
) =

Elithiated graphite − Egraphite − n ELi0

n of Li0
 Eq. (1) 

where n is the number of Li atoms. 

Figure 5f reports the average lithiation energy as a function of the Li content.  One can notice 

that as the number of intercalated Li0 increases, the reaction energy per Li0 at the PBE-dDsC 

level becomes slightly more exothermic (10-20 kJ/mol) until around 5 Li0 atoms where any 

further addition makes the reaction energy less exothermic. The initial increase in exothermicity 

at low-Li contents is likely due to deformation energies: intercalating one Li0 atom or several 

drives the graphitic layers to a similar extent apart. The significant decrease (40 kJ/mol) in 

average Li-intercalation energy going from half lithiated to fully lithiated graphite (LiC12 to 

LiC6) has probably two origins: On one hand, in our model the “additional” layer of Li0 is no 

more stabilized from both sides by carbon atoms and, on the other hand, given at least their 

partially positive atomic charge, the Li0 atoms start to interact (repel) each other significantly.   

The reaction energies for the lithiated graphite per 1 Li0 atom using GFN-xtb and PM7-D3 

against PBE-dDsC are shown in Figure 5f. GFN-xtb reproduces the trends excellently in 

comparison to PBE-dDsC for the reaction energies at the initial lithiation process (low Li0 

content). However, GFN-xtb predicted a very highly exothermic reaction energy for the fully 

lithiated graphite LiC6. This high exothermicity is attributed to the fact that Li0 atoms on the 

upper layer of LiC6 aggregate to form a small cluster of Li0 atoms, see Figure S2, indicating a 

failure of GFN-xtb in modeling the fully lithiated graphite (highest Li0 content). In view of the 

somewhat artificial model at high Li content (no carbon layer on top), this failure of GFN-xtb 

is not too concerning for practical applications. Still, this qualitative failure has not been 

observed for PM7-D3. 
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Using PM7-D3, we notice that the most exothermic reaction is for Li0 intercalation where the 

number of Li0 atoms is 1 and located in the center (structure a), see Figure 5f. It should be noted 

that the off-set energy in Figure 5f between PM7-D3 and PBE-dDsC for the reaction energies 

for the lithiation of graphite is likely due to the use of the isolated Li0 atom as a reference. 

Indeed, the formal oxidation of Li0 was found to lead to significant errors according to Figure 

4. In contrast to GFN-xtb, PM7-D3 follows the overall PBE-dDsC trend for high Li0 content 

while the increasing exothermicity of the intercalation energy at low Li0 content is not captured. 

This suggests that the deformation energy of the carbon structure is likely to be overestimated 

by PM7-D3, while the electrostatic repulsion between Li0 atoms is well described.  

 

Figure 5 Representation of lithiated graphite models (a-e) and the reaction energies (kJ/mol) for 

the Li0 intercalation per 1 Li0 atom with respect to graphite and Li0 atom (f). 

SEI inorganic components: Li2CO3, LiF and Li2O 

The salts Li2CO3, LiF and Li2O that form from the electrolyte degradation grow (from a small 

nanoparticle to large) with the aging of the battery and form the dense inorganic layer inside 
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the SEI. To check whether PM7-D3 and GFN-xtb can capture the energy changes as the 

nanoparticle size increases, we have built series nanoparticles of increasing size, keeping the 

morphology similar, see Figure 6. To quantify the growth energy, we report the relative energy 

of the nanoparticles normalized by the number of elementary units with respect to the largest 

one in the series, see Eq 2:  

Relative Energy (
kJ

mol
) =

E

n
−

Elargest nanoparticle

nlargest nanoparticle
 Eq. (2) 

 

where E is the computed energy of the nanoparticle, and n is the number of molecular units.  

We notice that, on one hand, GFN-xtb overestimates the relative energies in comparison to 

PBE-dDsC in almost all the nanoparticles (especially LiF and Li2CO3). On the other hand, PM7-

D3 has the same trend and near quantitative agreement with PBE-dDsC and shows an overall 

better performance than GFN-xtb. Note that the difference in relative energies for PM7-D3 is 

in the order of 50 kJ/mol for the smallest nanoparticles of Li2CO3 and LiF (the error for Li2O is 

much lower). This order of magnitude is similar to the MAD for the molecular reactions studied 

above, see Figure 3, indicating an overall robust and similar performance of PM7-D3 for these 

growth energies compared to the reaction energies studied previously.  
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Figure 6 Left: atomic models (the smallest system included, corresponding to only one formula 

unit, is omitted), right graphs representing the energy for one unit of salt in a nanoparticle, 

relative to the corresponding energy in the largest nanoparticles as a function of the number of 

formula units in that particle. First row: Li2CO3, middle row: Li2O, bottom: LiF. Red is O, 

brown is C, green is Li and light-blue is F.  

3.4 Molecular Dynamics for model systems of the SEI 

Structure of the inorganic nanoparticles during the molecular dynamic simulations 

In this section, we will be investigating the ability of PM7-D3 and GFN-xtb to perform stable 

molecular dynamics simulations at 298 K. The examined systems are built based on similarly 

sized nanoparticles of Figure 6, representative of the inorganic components of the SEI: LiF (100 
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atoms representing 50 molecular unit), Li2CO3 (162 atoms representing 27 molecular unit) and 

Li2O (108 atoms representing 36 molecular unit).  

To investigate the evolution of the nanoparticles’ structure over time, we have monitored the 

root-mean squared deviation (RMSD) with respect to the (initial) optimized geometry. The 

RMSD is computed using Eq.3, where Natoms is the number of atoms,  and ri(t) is the position 

of the atom i at time t. 

RMSD (Å) = √
∑ (ri(t) − ri(0))

2Natoms
i=1

Natoms
  Eq. (3) 

The evolution of the RMSD over the MD trajectory for the isolated nanoparticles (Li2CO3, Li2O 

and LiF) using PM7-D3 are shown in Figure 7, and the corresponding data for GFN-XTB is 

shown in Figure S2. We notice that the RMSD for Li2CO3 and Li2O increase over time which 

indicates a reconstruction, especially for Li2CO3, where the RMSD reaches about 2 Å. For 

Li2CO3, the carbonates at the edges reorient it to form a semispherical structure while for Li2O 

the nanoparticle experienced a more random movement of atoms while maintaining the overall 

structure integrity. We remind the reader that the initial shape of these nanoparticles is built 

based on rough estimates on how to cleave the bulk to expose a majority of low-energy index 

surfaces, while keeping the bulk stoichiometry and a similar shape for different sizes. Hence, 

the larger mobility of Li2CO3 compared to Li2O might not only reflect a lower cohesive energy, 

but may also result from reconstructions to lower the surface (free) energies. In contrast, LiF, 

which is here represented as an ideal “cube”, i.e., with a shape in close agreement with an ideal 

Wulff construction shape, has the lowest RMSD (around 0.25 Å) indicating a rigid structure. 

These contrasting trends are also seen in the evolution of the potential energy as a function of 

the simulation time (Fig. S4): LiF shows only small fluctuations once it has been thermalized 

and Li2O shows a small stabilization during the first ps and then a very small drift over the 
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remaining 9 ps. For lithium carbonate, however, there is a very strong stabilization during the 

first 5 ps after which the nanoparticle seems to have reached an equilibrium. The formation of 

a rigid inorganic layer (i.e., LiF) in the SEI is crucial to stabilize the battery, prevent dendrite 

formation and reduces capacity loss. The here observed rigidity of LiF could rationalize the 

general use of fluorinated salts in the electrolyte to form a stable SEI. Still, the rigidity of LiF 

is a double-edged sword, as it could also prevent Li diffusion. 

 

Figure 7  The values of the root-mean squared deviation (RMSD) over time obtained from the 

molecular dynamics’ simulation using PM7-D3 for the isolated nanoparticles. 

Using GFN-xtb to perform the molecular dynamics of the isolated nanoparticles, LiF and 

Li2CO3 behave similarly to the PM7-D3 simulations, see Figure S3 for details. This indicates 

robust performance and chemically reasonable results for these inorganic compounds. 

However, GFN-xtb failed to maintain the crystalline structure of Li2O: the nanoparticle severely 

reconstructs. This reconstruction is also visible in the potential energy as a function of 

simulation time (see Fig. S4): Li2O simulated with GFN-xtb shows a clear drift towards lower 

energies as a function of time and would ultimately reach a structure that could be expected to 

reach a lower energy than the starting point. While less pronounced, the evolution of the 

potential energy for Li2CO3 also indicates a stabilizing reconstruction, in agreement with the 

observations at the PM7-D3 level of theory. Surprisingly, the nanoparticle does not even get 
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consistently more compact: since some “voids” are created during the MD, see Figure 8. Given 

the ionic nature of Li2O, such voids are deemed physically unsound and indicative of a miss-

balance between isotropic ionic interactions and directional orbital interactions. This strong 

geometric deformation during the MD using GFN-xtb was also reflected in a notably higher 

RMSD values over time in comparison to PM7-D3 (reaching 2.0 Å vs 1.3 Å), see Figure S2. 

Still, monitoring the average coordination number of Li, as obtained by the parameter-free 

anisotropically corrected solid-angle nearest neighbor algorithm,58 shows very small 

differences, both between PM7-D3 and GFN-xtb, but also between the three salts: The average 

coordination number hovers between 4 and 4.5 (see Figure S5), while the standard deviation of 

the coordination number for a given structure is around 1.5. This shows that the local structure 

around Li is not discriminating. Thus, and following our overall assessment up to this point, we 

recommend the rather robust PM7-D3 to investigate the chemistry of SEI. 

 

Figure 8 Final configuration of Li2O after 10 ps PM7-D3 (left) and GFN-xtb (right), 

corresponding to an RMSD of 1.3 Å and 2.0 Å, respectively.  

Inorganic/organic interfaces 

The detailed investigation of inorganic/organic interfaces is a major challenge not only 

experimentally but also, computationally when using DFT due to the system size. Hence, 

getting rapid access to the characterization and reactivity of these interfaces via semi-empirical 

methods leads to insights that are difficult to obtain otherwise. We have constructed nine 
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prototypical inorganic/organic interfaces via the combination of the three inorganic 

nanoparticles studied above (Li2O, Li2CO3 and LiF) and three organic phases: the solvent 

ethylene carbonate and the two main constituents of the organic SEI, butylene and ethylene 

dicarbonates. Figure 9 shows a screenshot of each of the 9 hybrid systems obtained after 10 ps 

of PM7-D3 simulation  at 298 K.  

 

Figure 9 Screenshots after 10 ps of PM7-D3 molecular dynamics of all the nanoparticles (LiF, 

Li2O and Li2CO3) surrounded by Li2EDC, Li2BDC and EC): white is H, red is O, brown is C, 

green is Li and light-blue is F. The atoms originating from the nanoparticles are represented in 

large spheres, while the organic component is represented in ball and sticks. In other words, the 

small green balls are Li+ stemming from the organic compound. 

LiF

Li2O

Li2CO3

EC Li2EDC Li2BDC
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For the inorganic/alkyl carbonate interfaces where the alkyl carbonates surround the 

nanoparticles (LiF and Li2CO3), we notice that the alkyl carbonates form a cation-connected 

network, with some of the carbonate functional groups being bound to the lithium ions of the 

inorganic phase, see Figure 9. These disordered structures on top of the inorganic components 

could explain the uncertainty in identifying the precise nature of the inorganic/organic interface 

in the SEI1,2,5. Ethylene carbonate adsorbs mainly through its carbonate functional group, in 

general nearly parallel to the surface, see Figure 9. It should be noted that after 10 ps of 

simulations (including thermalization, see computational details) we did not notice any 

reactions between the nanoparticles LiF and Li2CO3, and either ethylene carbonate or the alkyl 

carbonates (Li2EDC/Li2BDC).  

In contrast to LiF and Li2CO3, Li2O showed high reactivity with all the organic molecules. 

When surrounding Li2O by Li2EDC or Li2BDC, we noticed C-O dissociations of one of the 

carbonate groups in Li2EDC/Li2BDC which led to formation of CO2. Combined with a surface 

oxygen atom, it yields to carbonate adsorbed on the Li2O surface. Figure 10 shows the C-O 

bond distance of the carbonate fragments of some molecules of Li2EDC and Li2BDC. For 

example, for Li2EDC, the initial C-O bond length is around 1.4 Å and the first C-O scission 

occurs already after around 1.1 ps. This high reactivity of Li2O nanoparticle is attributed to the 

high reactivity of the oxygen atom over the surface. 
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 Figure 10 Reactive events observed during 10 ps of PM7-D3 molecular dynamics of a Li2O 

nanoparticle in contact with an organic layer. C-O bond length distance for Li2EDC (top) and 

Li2BDC (middle) and EC (bottom). Rn represents the chemical reaction: for Li2EDC and 

Li2BDC (CO2 dissociation reaction) while for EC we monitor the ring opening reaction. n 

represent the nth reactive molecule. 

For the system where the ethylene carbonate molecules surround Li2O, we noticed that some 

of the ethylene carbonate molecules undergo a ring opening reaction through the breaking of 

the C-O bond. Figure 10 shows the C-O bond length of three ethylene carbonate molecules over 

Li2O. The initial bond length is around 1.4 Å. The first ring opening (C-O scission) occurs 

already after 0.5 ps, with the carbonyl carbon atom reforming a carbonate with a surface oxygen 

atom. For this first ring opening, the ethylene carbonate was already in the vicinity (3.2 Å) of 
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the reactive oxygen in Li2O at the beginning of the molecular dynamic simulation. However, 

the second and third ring-opening reactions start only when the second and the third EC 

molecules get closer to the oxygen in Li2O (starting from around 2.2 and 2.8 ps respectively). 

This ring-opening reaction of EC over the Li2O nanoparticle provides an alternative path for 

the decomposition reaction in addition to the conventional path where EC reacts with Li0 

(reaction 14 in Figure 1). It should be noted that in addition to EC ring opening reaction, we 

also noticed a C-H scission for some EC (closed and opened) molecules leading to the formation 

of inorganic OH. The resulting radical either undergoes subsequent ring-opening or is in close 

contact (2.2 to 2.4 Å) with lithium ions. This hydrogen atom transfer reduces the  reactivity of 

the oxygen atoms on the surface of Li2O and parallels the experimental  reports of OH species 

in the inorganic component of SEI1,2,4. Furthermore, this observation of a C-H scission in EC 

suggests a possible path towards vinylene carbonate if a second dehydrogenation occurred, an 

event that has not been captured in our 10 ps MDs. The in situ formation of vinylene carbonate 

could rationalize the low amounts of vinylene carbonate that are specifically added to the 

electrolyte in commercial lithium batteries. 

To test the robustness of the PM7-D3 molecular dynamics and to assess whether reactions (e.g.,  

ring-opening of EC) occurs systematically, we have decreased the temperature of the MD to 

100 K. Again, we have observed ring opening events over the Li2O. It should be noted that the 

high reactivity of Li2O solid was previously mentioned in the literature:59 in an ab initio MD to 

investigate effect of the SEI on the reactivity of polysulfide over Li-metal anode, Bertolini et 

al. found that Li2O is the most reactive salt compared to LiF and Li3N which leads to the 

decomposition of lithium polysulfides found in the electrolyte of Li-S batteries59. To further 

investigate the reactivity of Li2O nanoparticle, we have also performed a GFN-xtb MD for the 

same system (EC molecules surrounding the Li2O nanoparticle). Even though the geometrical 

integrity of Li2O is lost with GFN-xtb, the observed chemical reactivity is very similar to PM7-
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D3, i.e., the ring-opening and the deprotonation of ethylene carbonate is reproduced. The fact 

that both of these methods capture this somewhat unexpected reactivity strongly indicates that 

the oxygen atoms at the Li2O surface are “overly” reactive. In other words, Li2O is unlikely to 

exist in direct contact with the ethylene carbonate solvent. Rather, we suggest that the formation 

of Li2O from Li2CO3 is incomplete, i.e., we would expect core (Li2O)/shell (Li2CO3) structures.  

 

 

Figure 11: Core Li2O surrounded by inorganic Li2CO3 and ethylene carbonate solvent 

molecules after 10 ps of MD at 298 K at the GFN-xtb level of theory.  

To ascertain the passivating nature of Li2CO3, we have built a system with a nanoparticle 

composed of a Li2O core, surrounded by an amorphous (mono-)layer (few Å thick, see Figure 

11) of Li2CO3. Then, we solvated this nanoparticle with ethylene carbonate to investigate the 

reactivity of this hybrid system, leading to a total system size of about 1100 atoms. For technical 

reasons related to their implementations, the PM7-D3 simulations turned out to be significantly 

slower than GFN-xtb for this system size (we estimated 40 days on 36 CPUs, vs 6 days on 8 

CPUs). Given that the reactivity observed with GFN-xtb was qualitatively the same to the one 

obtained with PM7-D3, we have used GFN-xtb to run this final simulation. In order to 

equilibrate the Li2CO3 shell around the Li2O core, the latter was kept frozen for the first 10 ps. 

After additional 10 ps of completely free MD, we still did not notice any reactions, indicating 

full system organic inorganic core



27 
 

that the reactivity of Li2O is well passivated by Li2CO3 and the final arrangement of the system 

is shown in Figure 11. It is noteworthy that, at least on the time-scale of the present simulations, 

the carbonate shell has also stabilized the structural integrity (RMSD of about 1 Å) of the Li2O 

core, even at the GFN-xtb level of theory, independently on the presence or not of the solvating 

ethylene carbonate, see Figure S6.  

4. Conclusion 

We have performed a benchmark study of the performance of the semi-empirical methods: 

GFN-xtb, GFN2-xtb, PM6-D3 and PM7-D3 against PBE-dDsC to model major solid electrolyte 

interphase (SEI) reaction in lithium-ion batteries. We have investigated a set of 32 reactions 

based on the literature including the decomposition of major electrolyte species of the main 

solvent ethylene carbonate, the most used salt lithium hexafluorophosphate, the additive 

vinylene carbonate and the (co-)solvent 1,3-dioxolane. We found that PM7-D3 is the most 

accurate low-cost model, with a mean absolute deviation 59 kJ/mol, even though this method 

fails to predict the generation of organic radicals quantitatively. In terms of percentage 

deviations and correlation coefficient, GFN-xtb is slightly more accurate than PM7-D3. For 

GFN-xtb, radical termination reactions are prone to the largest errors. We have then performed 

further computations to assess the performance of PM7-D3 and GFN-xtb to model larger (solid) 

systems: lithiated graphite (LiCx) and inorganic salt nanoparticles. We found that PM7-D3 is in 

qualitative agreement with PBE-dDsC for the lithiation, while GFN-xtb is in excellent 

agreement except at the highest Li content. Furthermore, GFN-xtb and PM7-D3 both capture 

qualitatively the effect of the size of the nanoparticles, with PM7-D3 reaching near quantitative 

agreement. Finally, we have performed 10 ps molecular dynamics at the PM7-D3 and GFN-xtb 

level of theory for the inorganic/organic interfaces typical for the SEI. We evidence CO2 

dissociation of alkyl carbonates and ring opening reactions along with dehydrogenation 
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reactions of ethylene carbonate in contact with Li2O. Hence, our study demonstrates a 

significantly higher reactivity of Li2O as compared to LiF and Li2CO3. Nevertheless, a very 

thin layer of Li2CO3 has been found to be sufficient to passivate Li2O. In other words, our 

simulations show that Li2O is unlikely to be in direct contact with the organic solvent, as the 

latter would immediately react, leading to decomposition products such as OH, carbonates and 

potentially vinylene carbonate, a common additive in Li-ion batteries.   
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