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Summary

The orexins, also known as hypocretins, are two neuropeptides (orexin A and B or

hypocretin 1 and 2) produced by a few thousand neurons located in the lateral hypo-

thalamus that were independently discovered by two research groups in 1998. Those

two peptides bind two receptors (orexin/hypocretin receptor 1 and receptor 2) that

are widely distributed in the brain and involved in the central physiological regulation

of sleep and wakefulness, orexin receptor 2 having the major role in the maintenance

of arousal. They are also implicated in a multiplicity of other functions, such as reward

seeking, energy balance, autonomic regulation and emotional behaviours. The

destruction of orexin neurons is responsible for the sleep disorder narcolepsy with

cataplexy (type 1) in humans, and a defect of orexin signalling also causes a narcolep-

tic phenotype in several animal species. Orexin discovery is unprecedented in the his-

tory of sleep research, and pharmacological manipulations of orexin may have

multiple therapeutic applications. Several orexin receptor antagonists were recently

developed as new drugs for insomnia, and orexin agonists may be the next-

generation drugs for narcolepsy. Given the broad range of functions of the orexin

system, these drugs might also be beneficial for treating various conditions other than

sleep disorders in the near future.

K E YWORD S

insomnia, narcolepsy, orexin/hypocretin, sleep disturbances

1 | INTRODUCTION

Orexin (ORX)-A and ORX-B (or hypocretin; Hcrt-1 and -2) are neuro-

transmitters, cleaved from a single precursor peptide (prepro-ORX or

prepro-Hcrt), which were discovered simultaneously by two research

groups in 1998 (de Lecea et al., 1998; Sakurai et al., 1998). One group

was searching for specific hypothalamic neurotransmitters, and named

these peptides Hcrts given the specific expression in neurons located in

the dorso-lateral hypothalamus together with amino-acid similarities

with the gut hormone secretin (de Lecea et al., 1998). Hcrt-producing

neurons showed widespread projections within the hypothalamus, as

well as to the thalamus and brainstem, and one peptide had an excit-

atory effect on cultured hypothalamic neurons (de Lecea et al., 1998).

The other group disclosed that these neuropeptides stimulated food

consumption and were upregulated during fasting, thus being a central

feedback mechanism for the regulation of feeding behaviour (Sakurai

et al., 1998). For their role in promoting feeding, the authors named the

neurotransmitters ORXs (Sakurai et al., 1998).
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ORX-A binds selectively to ORX-1 receptor (ORX1R), whereas both

ORX-A and ORX-B bind to ORX-2 receptor (ORX2R), non-selectively.

ORX1R and ORX2R are two G-protein-coupled receptors. ORXs are

exclusively produced by a group of neurons localized in the lateral and

dorsomedial hypothalamus (Peyron et al., 2000). In humans the number

of Hcrt-producing neurons is estimated to be between 15–20 000 and

50–80 000 depending on the techniques used (in situ hybridization for

prepro-ORX versus immunocytochemistry with anti ORX-A antibody;

Fronczek et al., 2005; Peyron et al., 2000), and in the lateral hypothalamus

they are intermingled with melanin-concentrating hormone-producing

neurons (Aziz et al., 2008). Orexinergic projections are widespread

throughout the central nervous system (Peyron et al., 1998), and thus are

now known to be involved in a variety of functions and disorders

(Jacobson et al., 2022). Across species, especially in mice and dogs, a

disrupted ORX signalling leads to a narcoleptic phenotype with sleepiness,

sleep instability and fragmentation, and cataplexy, unravelling a key role

of ORXs in the regulation of sleep–wakefulness states (Saper

et al., 2005). Despite ORX-A injection inducing feeding, it does not

increase overall food consumption and body weight (Yamanaka

et al., 1999), but conversely it plays a key role in reward mechanisms and

motivational behaviour (Harris et al., 2005). Indeed, ORX-A secretion

increases not only in relation to the wakefulness–sleep state, but maxi-

mally during positive emotion, social interaction and anger, thus modulat-

ing to complex human behaviours (Blouin et al., 2013; Sakurai, 2014). The

ORX system is also involved in the hypothalamic regulation of several

basic functions, such as autonomic control (Grimaldi et al., 2014), thermo-

regulation (Kuwaki, 2015) and energy homeostasis (Sakurai &

Mieda, 2011), thus playing an important role in several human functions

and disorders not limited to those affecting the central nervous system. In

this review we will summarize the role of the ORX system in sleep and

sleep disorders.

2 | SLEEP AND SLEEP DISTURBANCES

2.1 | ORX and normal sleep

The discovery of the ORX system led to a revolution on the conceptu-

alization of sleep regulation. Indeed, the two-process model of sleep

physiology included the integration of a homeostatic process (Process

S) controlled by a circadian pacemaker (Process C) able to explain neu-

rophysiological experimental data obtained in humans up to predict

the time course of the sleep–wake rhythms and behavioural perfor-

mances (Borbély et al., 2016). From the brain circuitry standpoint the

regulation of sleep stands on the interaction between an ascending

arousal system promoting wakefulness with different neuronal com-

ponents located from the pons to the hypothalamus and thalamus and

secreting several aminergic neurotransmitters and acetylcholine, and

the opposite role of γ-aminobutyric acid (GABA)ergic modulation from

the ventrolateral preoptic nucleus able to inhibit different targets

(such as the locus coeruleus, dorsal raphe nucleus and

tuberomammillary nucleus) of the arousal system. The discovery of

orexinergic neurotransmission added a key point in sleep regulation as

long as ORXs conceptualized from basic experimental evidence as

neurotransmitters able to promote wakefulness, but also to stabilize

the “sleep” or “wake” state as long as the condition is established

resulting in a “flip-flop” switch model (Saper et al., 2005). ORX neu-

rons have strong projections to the wake–active brain areas, such as

the locus coeruleus, dorsal raphe nucleus and tuberomammillary

nucleus and others, and form the external stabilizer for this switch.

Accordingly, the complete loss of ORX neurotransmission (as in narco-

lepsy type 1) results in state boundary dyscontrol (Broughton

et al., 1986), with an inability to maintain wakefulness during daytime

(Broughton et al., 1988) and to stabilize sleep during nighttime

(Barateau et al., 2020; Maski et al., 2022), with the peculiar feature of

increased sleep–wake transitions during nighttime in patients of all

ages (Maski et al., 2020; Pizza et al., 2015). Moreover, sleep duration

and continuity change across the life span, with frequent awakening

during nocturnal sleep in the healthy elderly (Dijk et al., 2000) that is

associated with a decline in sleep quality and quantity (Ohayon

et al., 2004). Despite cerebrospinal fluid (CSF) levels of ORX not

showing significant changes across ages (Kanbayashi et al., 2002a,

2002b), a reduction of the number of ORX neurons in the tuberal

hypothalamic area was disclosed when comparing older subjects with

infants and young adults (Hunt et al., 2015), thus indirectly suggesting

that a decrease in ORX neurotransmission might play a role in sleep

problems in the elderly. Recent experimental data showed that in

aged mice ORX neurons are hyperexcitable and show more frequent

activity leading to increased wake bouts, a finding possibly paving the

way to therapeutic options (Li et al., 2022).

2.2 | ORX and sleep disturbances: Central
disorders of hypersomnolence

After the discovery of the ORX system, its key role in the pathogene-

sis of primary sleep disorders was demonstrated, with narcolepsy

being newly defined into narcolepsy type 1 (NT1, former narcolepsy

with cataplexy) and narcolepsy type 2 (NT2, former narcolepsy with-

out cataplexy) on the basis of having evidence of disrupted ORX sys-

tem (American Academy of Sleep Medicine, 2014). The ORX system

was therefore immediately a key pathophysiological and diagnostic

element to dissect the spectrum of central disorders of hyper-

somnolence, and accordingly several studies reported the evidence

obtained from CSF analyses in the different primary hypersomnolence

disorders. As a result, we now look at central disorders of hyper-

somnolence dissecting them in orexinergic (i.e. NT1) and non-

orexinergic (NT2, Kleine-Levin syndrome, idiopathic hypersomnia)

ones, and a scientific debate is ongoing on how to better classify

these disease entities (Fronczek et al., 2020; Lammers et al., 2020).

2.2.1 | NT1 and NT2

Narcolepsy is a rare sleep disorder, now split into two disease entities

that are lumped by the neurophysiological evidence of rapid
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occurrence of rapid eye movement (REM) sleep at sleep onset

(SOREMP; Dement et al., 1966), a disease fingerprint well docu-

mented by the Multiple Sleep Latency Test (MSLT; Arand &

Bonnet, 2019; Krahn et al., 2021).

Narcolepsy type 1 is clinically marked by a pentad of symptoms:

excessive daytime sleepiness (EDS), sleep paralysis, hypnagogic/

hypnopompic hallucinations, disturbed night sleep and cataplexy. Cat-

aplexy is the pathognomonic symptom of NT1, and is characterized

by a sudden occurrence of muscle weakness triggered by strong, most

commonly positive, emotions (Kornum et al., 2017). While cataplexy

phenotype is wide, with also subcontinuous weakness at disease

onset in children possibly making its recognition challenging (Pillen

et al., 2017), in NT2 it should be absent by definition (American Acad-

emy of Sleep Medicine, 2014). After the discovery of the ORXs, sev-

eral scientific evidence discoveries connected their role to the

pathophysiology of narcolepsy: first, a mutation in the gene coding for

ORX2R was found as the cause of canine narcolepsy (Lin et al., 1999);

second, in humans, ORX-producing neurons were found to be almost

absent in the hypothalamus of deceased narcolepsy with cataplexy

patients (Peyron et al., 2000; Thannickal et al., 2000). These data were

associated with the possibility to document in vivo the deficiency of

ORX-A in the CSF (defined as a level below 110 pg ml–1) by means

of a dedicated radioimmunoassay in narcolepsy with cataplexy

(Nishino et al., 2000; Ripley et al., 2001), thus making this biological

marker an exclusive diagnostic tool for narcolepsy with cataplexy. The

evidence that ORX deficiency may forerun cataplexy occurrence

(Andlauer et al., 2012) further contributed to the current definition of

NT1 where cataplexy and ORX deficiency are considered equivalent

(American Academy of Sleep Medicine, 2014). Conversely, ORX-A

should be present in the CSF of NT2, together with the absent evi-

dence of cataplexy (Bassetti et al., 2003; Dauvilliers et al., 2003; Heier

et al., 2007), two key points that are shared by NT2 and the other

central disorders of hypersomnolence (Baumann et al., 2014;

Fronczek et al., 2020; Lammers et al., 2020). However, patients with

NT2 may show a partly reduced number of ORX-producing neurons

in the hypothalamus (Thannickal et al., 2009), despite CSF ORX levels

comparable to those of healthy controls (Dauvilliers et al., 2003;

Mignot et al., 2002). Recent data also showed that NT1 may be pre-

ceded by several years by EDS with SOREMPs before the occurrence

of cataplexy (Pizza et al., 2014), and that CSF levels of ORX may

decrease over time in a subset of narcolepsy patients with genetic

predisposition (HLA DQB1*06:02) initially presenting with clinical fea-

tures of NT2 (Lopez et al., 2017a; Pizza et al., 2014). Therefore, the

exact role of ORX in determining NT2 is currently under debate, as

well as the most appropriate cut-off (i.e. 110 versus 200 pg ml–1) to

identify ORX deficiency (Andlauer et al., 2012; Postiglione

et al., 2022; van der Hoeven et al., 2022). At the same time, caution

should be taken when diagnosing NT2 given the frequent occurrence

of SOREMPs in patients with other sleep disorders (e.g. insufficient

sleep syndrome, circadian rhythm sleep disorders) or under medica-

tions (Arand & Bonnet, 2019; Goldbart et al., 2014), thus making the

role of careful clinical assessment and differential diagnosis crucial

(Baumann et al., 2014).

While NT1 and NT2 are definite sleep–wake disorders occurring

in otherwise healthy subjects, several neurological, genetic and par-

aneoplastic disorders may cause secondary narcolepsy (Kanbayashi

et al., 2011; Nishino & Kanbayashi, 2005). Secondary narcolepsy may

be related to inflammatory (e.g. multiple sclerosis) or tumoural lesions

of the hypothalamus associated with EDS, and can have a favourable

course along with resolution of the primary brain damage, as well as

with antibody-mediated disorders such as neuromyelitis optica with

anti-aquaporin-4 antibodies or limbic encephalitis of undetermined

origin responsive to immunological approaches (Kanbayashi et al.,

2011; Nishino & Kanbayashi, 2005). Otherwise, secondary narcolepsy

can be paraneoplastic and tell-tale the presence of a tumour located

outside of the central nervous system (Dauvilliers et al., 2013;

Landolfi & Nadkarni, 2003; Overeem et al., 2004; Vitiello et al., 2018),

with the link between the primary neoplasm (e.g. testicular, pulmonal)

and the onset of narcolepsy being the presence of specific antibodies

such as anti-Ma2 or anti-Hu (Dauvilliers et al., 2013; Landolfi &

Nadkarni, 2003; Overeem et al., 2004; Vitiello et al., 2018) or

unknown (Rossi et al., 2021). In most of these paraneoplastic cases

narcolepsy occurs in patients not carrying the genetic predisposition

(HLA-DQB1*06:02), may have variable levels of CSF ORX-A up to

clear deficiency, and the evolution of the disease is frequently variable

and linked to that of the primary disorder. Other causes of secondary

narcolepsy may be genetically determined disorders occurring at dif-

ferent ages of life. In young children, and more rarely adults, Niemann

Pick type C disease should be clinically suspected when sleepiness or

cataplexy are associated with hepatosplenomegaly, vertical supra-

nuclear saccadic palsy, ataxia, dystonia and dementia (Imanishi

et al., 2020; Kandt et al., 1982). The evidence of cataplexy, as well as

of mildly reduced CSF levels of ORX-A, in patients with other neuro-

logical signs and symptoms may therefore lead to prompt diagnosis of

the autosomal recessive storage disorder, thus paving the way to

treatment able to modify disease evolution (including the progression

of ORX deficiency; Imanishi et al., 2020). Finally, there are autosomal-

dominant familial pedigrees where narcolepsy with cataplexy progres-

sively occurs (about 30–40 years of age) within a widespread

neurological involvement including cerebellar ataxia and deafness

(Autosomal-Dominant Cerebellar Ataxia, Deafness and Narcolepsy;

ADCA-DN) leading to premature death (Melberg et al., 1995), a neu-

rodegenerative condition that includes evidence of ORX-A deficiency

in the CSF (Melberg et al., 2001). Mutations in DNMT1 gene encoding

for a DNA methyltransferase involved in the epigenetic modulation of

gene expression in different tissues have been recently linked to

ADCA-DN (Winkelmann et al., 2012), as well as with another

autosomal-dominant disorder characterized by peripheral neuropathy,

hearing loss, premature dementia and in some cases narcolepsy with-

out cataplexy (Hereditary Sensory and Autonomic Neuropathy with

Dementia and Hearing loss type IE; HSAN IE; Moghadam et al., 2014).

While optic atrophy and daytime sleepiness with SOREMPs may lump

these two neurodegenerative conditions, cataplexy is typical of

ADCA-DN and associated with evidence of reduced levels of ORX-A

in the CSF confirming the role of the orexinergic system in the patho-

physiology of cataplexy across different diseases (Moghadam
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et al., 2014). Unfortunately, even if pathophysiological research is

ongoing on disease mechanisms leading to neurodegeneration in

DNMT1-related disorders (Maresca et al., 2020), no curative approach

is available to date. As a whole, secondary narcolepsy should be

suspected when the disease occurs in familial cluster, in association

with other neurological symptoms/signs, and in the absence of typical

biological fingerprints (genetic predisposition, intermediate CSF levels

of ORX-A).

2.2.2 | Idiopathic hypersomnia

Idiopathic hypersomnia is a central hypersomnolence disorder charac-

terized by EDS, long non-refreshing naps, sleep inertia at awakening

(Roth, 1981) and prolonged nocturnal sleep, as well elevated time

spent asleep across the 24 hr (Evangelista et al., 2018; Vernet &

Arnulf, 2009). Idiopathic hypersomnia is formally differentiated from

narcolepsy for the occurrence of SOREMPs at the MSLT (Arand &

Bonnet, 2019; Krahn et al., 2021), an unstable neurophysiological fin-

gerprint given the low test–retest reliability of the test itself in non-

cataplectic hypersomnolence disorders (Lopez et al., 2017b; Ruoff

et al., 2018; Trotti et al., 2013). Accordingly, the diagnostic criteria

have changed over time leading to heterogeneous case series publi-

shed in the literature, and currently a prolonged (conventionally

established above 11 hr) 24-hr sleep time is accepted as objective

neurophysiological confirmation (American Academy of Sleep

Medicine, 2014), despite different protocols used worldwide to quan-

tify sleep needs across the 24 hr (Fronczek et al., 2020; Lammers

et al., 2020). Few data addressed CSF levels of ORX-A in idiopathic

hypersomnia, and there is no evidence to date pointing to a reduction

of the neurotransmitter in these patients compared with otherwise

healthy, or subjectively sleepy, controls (Dauvilliers et al., 2003;

Kanbayashi et al., 2002a, 2002b; Mignot et al., 2002; Pizza

et al., 2015). Therefore, if any, the role of the orexinergic system in

idiopathic hypersomnia seems limited, and warrants further research.

2.2.3 | Kleine-Levin syndrome

Kleine-Levin syndrome is a peculiar central disorder of hyper-

somnolence characterized by recurrent episodes of hypersomnolence

with long sleep duration for days associated with behavioural, cogni-

tive, perceptual and eating disturbances, and separated by periods

with normal alertness, cognition, mood and behaviour (American

Academy of Sleep Medicine, 2014). The disorder generally arises in

adolescence, and most frequently resolves spontaneously over time

with acute attacks becoming progressively shorter as well as less

intense, and intermixed by normal alertness for more prolonged

periods up to spontaneous resolution (Arnulf et al., 2012; Lavault

et al., 2015). CSF ORX-A levels were reported within the normal range

in between hypersomnia episodes, but when retested in the same

patients during the episodes a significant decrease was reported in

several case series (Dauvilliers et al., 2003; Lopez et al., 2015; Podestá

et al., 2006; Usuda et al., 2018; Wang et al., 2016). CSF ORX-A level

fluctuations appeared within values considered above the diagnostic

cut-off for NT1 in most patients (Podestá et al., 2006; Usuda

et al., 2018), but in some cases also a reduction up to below 110 pg

ml–1 was reported (Lopez et al., 2015; Wang et al., 2016). It is there-

fore unclear the relation between hypersomnia episodes and CSF

ORX levels, whereas a recent study disclosed that polymorphisms of

the TRANK1 gene (already associated with bipolar disorder and

schizophrenia) constitute a genetic predisposition to the disorder

(Ambati et al., 2021).

2.2.4 | ORX-based therapies

Current treatments of narcolepsy are symptomatic, but often not suf-

ficient and even with treatment patients have reduced quality of life.

In this context and because of the specific pathophysiology of NT1,

ORX-based therapies are the most promising treatment for NT1, and

possibly also for other patients with EDS. Accordingly, since the dis-

covery of ORX deficiency in narcolepsy, several approaches have

been considered: intranasal administration of ORX peptides, develop-

ment of ORX-receptor agonists, ORX neuronal transplantation, trans-

forming stem cells into ORX neurons and ORX gene therapy (Table 1).

The activation of ORX2R was particularly expected to promote wake-

fulness, as narcolepsy-like phenotypes (with wakefulness fragmenta-

tion) are observed in ORX2R knockout mice, but not in ORX1R

knockout mice.

Orexin replacement therapy has remained complicated so far, as

both peptides poorly cross the blood–brain barrier (Fujiki et al., 2003).

ORX administration (per os and intravenous) in animal models of NT1

was almost unsuccessful because of this impermeability. Nevertheless,

the direct administration of ORX intraventricularly suppressed narco-

leptic symptoms in a mouse model (ORX/ataxin-3 neuron-ablated;

Mieda et al., 2004). Furthermore, slow infusion of ORX delivered via a

chronically implanted intrathecal catheter in another mouse model

(ORX knockout mice) decreased cataplexy and SOREMPs (Kaushik

et al., 2018). A few preclinical and clinical studies showed the promis-

ing effect of a non-invasive method via intranasal administration of

ORX, targeting drugs almost “directly” to the brain along the olfactory

and trigeminal neural pathways (Deadwyler et al., 2007; Weinhold

et al., 2014). Non-peptide ORXR agonists, currently under develop-

ment, are very promising to treat narcolepsy. A first study showed

that systemic administration of a selective ORX2R agonist improved

symptoms in mice models of narcolepsy, with the suppression of cata-

plexy and the promotion of wakefulness, providing a proof of concept

for a mechanistic therapy of NT1 by ORX2R agonists (Irukayama-

Tomobe et al., 2017). However, this compound had a limited in vivo

efficacy, and was finally not suitable for clinical development. Then

another ORX2R-selective agonist (TAK-925) showed a major wake-

promoting effect in wild-type mice and non-human primates when

injected intravenously, and increased wakefulness and suppressed

cataplexy in ORX/ataxin-3 transgenic mice (Suzuki et al., 2018;

Yukitake et al., 2019). It also attenuated the body weight gain, without
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changing the daily food intake (Kimura et al., 2019). Of interest, the

persistence of the effect after a 14-day period of chronic administra-

tion suggested an absence of ORX2R desensitization. Other new

promising non-peptide ORXR agonists (TAK-994 and TAK-861) with

per os administration are also currently under development (Ishikawa

et al., 2019; Ishikawa et al., 2020). The development of ORX2R ago-

nists could also be of interest in patients with sleepiness and normal

CSF ORX-A levels: NT2, idiopathic hypersomnia or even hyper-

somnolence in other conditions such as sleep apnea (ClinicalTrials.

gov identifiers: NCT04091425, NCT04091438). Other ORX-based

therapies were tested with success in rodents, such as cell replace-

ment technique using ORX neurons derived from pluripotent stem

cells (Arias-Carri�on & Murillo-Rodríguez, 2014), and could eventually

be an option for very severe or pharmaco-resistant patients

(Barateau & Dauvilliers, 2019). At last, ORX gene therapy improved

symptoms in narcoleptic mice, but those findings remain preliminary

(Blanco-Centurion et al., 2013; Kantor et al., 2013; Liu et al., 2008; Liu

et al., 2011, 2016).

3 | INSOMNIA AND ORXR ANTAGONISTS

The discovery of the Hcrt system opened a new era of development

of new drugs in the field of sleep medicine. Indeed, besides the

research of ORXR agonists and in general orexinergic agents for the

treatment of NT1, and hopefully for its natural borderland, impressive

research focused on the development of Hcrt-R1/Hcrt-R2 antagonists

(Brisbare-Roch et al., 2007). These drugs aim at competitively binding

TABLE 1 Overview of ORX/Hcrt-based therapies tested (and published) in animal models of narcolepsy and in human narcolepsy (adapted
from Barateau & Dauvilliers, 2019)

ORX-based therapy Administration, methods Animal/human subjects Impact on symptoms References

ORX-A replacement IV (very high doses) and

intrathecal ORX-A

ORX-ligand- deficient

narcoleptic dog

IV administration: transient

reduction of cataplexy, no effect

on sleep; intrathecal: no effect

Fujiki et al. (2003)

Intracerebroventricular ORX-

A

ORX-neuron-ablated

mice

Reduction of cataplexy and

sleepiness

Mieda et al. (2004)

Intranasal ORX-A Sleep-deprived rhesus

monkeys

Reduction of the effectsof sleep

deprivation on cognitive

performances

Deadwyler et al. (2007)

Intranasal ORX-A n = 8 patients with NT1 No effect on cataplexy Reduction of

REM sleep quantity,

stabilizationof REM sleep

(reduced direct wake-to-REM

transitions)

Baier et al. (2011)

Intranasal ORX-A n = 14 patients with NT1 No effect on cataplexy Reduction of

REM sleep duration, stabilization

of REM sleep (less wake–REM
sleep transitions)

Weinhold et al. (2014)

Non-peptide

selective ORX2R

agonist

Intracerebroventricular and

intraperitoneal (YNT- 185)

Models of narcoleptic

mice

Reduction of sleepiness and

cataplexy (also promotes

wakefulness in wild-type mice, IV

administered)

Irukayama-Tomobe

et al. (2017)

Subcutaneous administration

of TAK-925 (full agonist)

Wild-type mice, models

of narcoleptic mice

Promotion of wakefulness in wild-

type mice, but not in ORX2R-KO

mice

Yukitake et al. (2019)

ORX cell transplantation Implantation of ORX neurons

in the lateral hypothalamus

Neurotoxin-ablated ORX

neuron rats

Reduction of sleepiness Arias-Carri�on and

Murillo-Rodríguez

(2014)

ORX gene therapy Overexpression of prepro-

ORX transgene

Models of narcoleptic

mice

Reduction of cataplexy, stabilization

of REM sleep, slight effect on

sleepiness

Blanco-Centurion et al.

(2013) ; Kantor et al.

(2013)

Transient expressionof ligand

in the lateral hypothalamus

with herpes simplex vector

ORX–KO mice Reduction of cataplexy, increased

REM sleep

Liu et al. (2008)

Delivery of the ORX gene

into brain areas using

recombinant adeno-

associated viral vectors

Models of narcoleptic

mice

Reduction of cataplexy Liu et al. (2011, 2016)

Notes: IV, intravenous; KO, knockout; NT1, narcolepsy type 1; ORX, orexin/hypocretin; REM, rapid eye movement.
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ORXRs to blunt the orexinergic-mediated maintenance of wakeful-

ness. To date, five drugs targeting both orexinergic receptors (namely

dual ORX receptor antagonists; DORAs) have been used in clinical tri-

als: suvorexant (Herring et al., 2012; Herring et al., 2016; Herring

et al., 2020; Michelson et al., 2014); almorexant (Black et al., 2017;

Hoever et al., 2012; Roth et al., 2017), filorexant (Connor et al., 2016);

lemborexant (Kärppä et al., 2020; Murphy et al., 2017; Rosenberg

et al., 2019); and daridorexant (Dauvilliers et al., 2020; Mignot

et al., 2022; Zammit et al., 2020). These drugs proved efficacious

against placebo on several objective sleep parameters, including sleep

efficiency, total sleep time and wakefulness after sleep onset (Xue

et al., 2022). Almorexant reached clinical trials phase 3, but was later

discontinued due to liver enzyme increase, while suvorexant and

lemborexant have been approved by FDA for the treatment of insom-

nia in 2014 and 2019, respectively, and daridorexant completed the

phase 3 trials obtaining the FDA approval and is currently under eval-

uation by EMA. DORAs did not show main side-effects on memory

and cognition, and the most commonly reported side-effects are som-

nolence, abnormal dreams, fatigue and dry mouth (Xue et al., 2022).

More recently, selective ORX receptor-2 antagonists (2-SORAs)

have been developed and applied in clinical samples (Brooks

et al., 2019; De Boer et al., 2018), opening new avenues in our com-

prehension of the role of ORX signalling manipulation (and role) in

patients with insomnia (Clark et al., 2020). Indeed, when comparing

the effect of DORAs and 2-SORAs on sleep architecture, both

approaches increased total sleep time, but acted differently on sleep

architecture in healthy subjects and in patients with insomnia. DORAs

increased total sleep time mostly by increasing REM sleep, an effect

more evident in patients with insomnia compared with healthy sub-

jects given the potential near-ceiling levels of total sleep time and

REM sleep time in healthy sleepers (Clark et al., 2020). Conversely,

2-SORAs increased total sleep time by means of increasing both non-

REM and REM sleep, a finding that needs further research also in

experimental models and healthy sleepers (Gotter et al., 2016). This

evidence paves the way to better phenotyping insomnia patients, also

taking into account psychiatric comorbidity, and to obtain key infor-

mation on the role of the orexinergic system dysfunction in the deter-

mination of insomnia itself.

4 | CONCLUSIONS

The ORX system discovery is new in the field of sleep medicine. Its

role is crucial in the regulation of sleep and wakefulness, as well as in

modulating several behaviours and function in humans. While a com-

plete defect of the ORX system is causal of narcolepsy, other central

disorders of hypersomnolence may be influenced directly (lesion) or

indirectly (immune-mediated) by processes affecting altering

orexinergic neurotransmission. Accordingly, new drugs replacing

ORX function are highly promising for the treatment of central disor-

ders of hypersomnolence. On the other side, recent evidence in

patients with insomnia showed different impacts in sleep architecture

of drugs blocking ORX2R or ORX2R/ORX1R, possibly leading to a

better comprehension of the orexinergic role in sleep maintenance.

Overall, the manipulation of the orexinergic system will unravel com-

plex relations between sleep and sleep disorders in healthy subjects,

in patients with sleep disorders and other conditions affecting the

central nervous system from a neurological and psychiatric

standpoint.
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