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Forward completeness implies bounded reachable sets for time-delay
systems on the state space of essentially bounded measurable functions

Lucas Brivadis, Antoine Chaillet, Andrii Mironchenko and Fabian Wirth

Abstract— We consider time-delay systems with a finite
number of delays in the state space L∞ × Rn. In this frame-
work, we show that forward completeness implies the bounded
reachability sets property, while this implication was recently
shown by J.L. Mancilla-Aguilar and H. Haimovich to fail in
the state space of continuous functions. As a consequence, we
show that global asymptotic stability is always uniform in the
state space L∞ × Rn.

Keywords— nonlinear control systems, time-delay systems,
infinite-dimensional systems, forward completeness, input-
to-state stability.

I. INTRODUCTION

A control system is called forward complete (FC) if for
any initial condition x0, and any input u, the corresponding
trajectory x(·;x0, u) is well-defined on the whole nonnega-
tive time axis R+. If additionally, for any magnitude r > 0
and any time T > 0,

sup
∥x0∥⩽r, ∥u∥⩽r, t∈[0,T ]

|x(t;x0, u)| < +∞,

then a control system is said to have bounded reachability
sets (BRS).

BRS establishing uniform bounds for solutions on finite
time intervals is a bridge between the pure well-posedness
theory (that studies existence and uniqueness but does not
care much about the bounds for solutions) and the stability
theory (which is interested in establishing certain bounds
for solutions for all nonnegative times, as well as their
convergence). BRS (and the closely related notion of robust
forward completeness [8]) proved to be useful in many
contexts, such as derivation of converse Lyapunov theorems
for global asymptotic stability [10], characterization of input-
to-state stability for nonlinear systems [15], non-coercive
Lyapunov methods [7], [15], [16], or criteria for global
asymptotic stability for retarded systems [9], to name a few.
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This motivated the development of criteria for the BRS
property. In [10], it was shown that FC and BRS are equiv-
alent properties for ordinary differential equations (ODEs)
with Lipschitz continuous right-hand side and Lebesgue
measurable essentially bounded inputs. If the inputs are a
priori uniformly bounded in magnitude, and the dynamics
are locally Lipschitz (jointly in the state and inputs), these
properties are also equivalent to the existence of a Lyapunov
function that increases at most exponentially along solutions
[1]. A Lyapunov criterion for robust forward completeness
of general infinite-dimensional systems has been shown in
[13].

Recent studies have revealed that for inifinite-dimensional
systems, the relation between FC and BRS is rather complex.
For linear infinite-dimensional systems, FC does imply BRS
[18, Proposition 2.5]. However, even in the absence of
inputs, this implication no longer holds when dealing with
nonlinear infinite-dimensional systems, as demonstrated in
[15, Example 2] for infinite ODE networks (aka ensembles).
In the specific context of time-delay systems, it was recently
proved in [12] that FC does not necessarily ensure BRS when
the considered state space is given by continuous functions.
Nevertheless, when considering more regular state spaces,
such as Sobolev and Hölder spaces, FC and BRS properties
turn out to be equivalent [9] for autonomous systems without
inputs (the question remains open for systems with inputs
and would require adapting the proof of [10] while using
the compactness arguments of [9]).

In this paper, we consider the evolution of time-delay
systems on a wider state space, namely L∞ × Rn. In this
setup, we show that FC is again equivalent to BRS. We
introduce time-delay systems on this new state space in
Section II and relate solutions of time-delay systems with
solutions of ODEs with well-chosen inputs. Our main result
is stated and proved in Section III. In Section IV, we prove
that global asymptotic stability is necessarily uniform in this
particular state space.

Notation: Let I be an interval of R and n be a positive
integer. For a given function f : I → Rn, we say that
f belongs to L∞(I,Rn) if it is Lebesgue measurable and
essentially bounded, and to C0(I,Rn) if it is continuous.
The restriction of f to J ⊂ I is denoted by f |J . We denote
by L∞(I,Rn) (resp. L∞

loc(I,Rn)) the space of Lebesgue
measurable essentially bounded (resp. essentially bounded on
any bounded subset of I) functions quotiented by the space
of almost always null functions. Moreover, let K be the set



of continuous functions from R+ to R+ that are increasing
and null at 0, and K∞ the set of unbounded functions in
K. We say that a continuous function β : R2

+ → R+ is of
class KL if β(·, s) is of class K for all s ∈ R+ and β(r, ·)
is decreasing and tends towards 0 at infinity for all r > 0.

II. TIME-DELAY SYSTEMS IN L∞ × Rn

Let n,m and p be positive integers. Consider a control
system with a finite number of delays

ẋ(t) = f(x(t), (x(t− θk))k∈{1,...,p}, u(t)), (TDS)

where x(t) ∈ Rn, u(t) ∈ Rm is the input, (θk)k∈{1,...,p} ∈
Rp

>0 are the delays, and f : Rn × (Rn)p × Rm → Rn

is continuous and locally Lipschitz with respect to its first
variable (in Rn × (Rn)p), uniformly with respect to the last
variables (in Rm). With no loss of generality, we may assume
that all the delays are distinct and that 0 < θ1 < · · · < θp.
We consider U = L∞

loc((0,+∞),Rm) to be the input space,
as commonly assumed in the robustness analysis literature
[3].

In this paper, we consider two different state spaces. The
first one is the usual space of continuous functions

X 0 := C0([−θp, 0],Rn).

The second one aims at allowing a wider class of
initial states, namely Lebesgue measurable essentially
bounded signals. However, one cannot simply consider
L∞((−θp, 0),Rn) as a state space because the value of the
initial condition at the initial time must be specified for
the Cauchy problem to make sense. For this reason, and
following [2], [5], we define X∞ as the space of measurable
essentially bounded functions quotiented by the space of
almost everywhere null functions that are moreover null at
0:

X∞ :=L∞([−θp, 0],Rn)/{
x0 ∈ L∞([−θp, 0],Rn)

∣∣∣{∥x0∥L∞ = 0,

x0(0) = 0

}
.

One can easily check that X∞ endowed with the norm
defined by ∥x0∥X∞ := max(∥x0∥L∞ , |x0(0)|) for all x0 ∈
X∞ is a Banach space, and that it is isometrically isomorphic
to L∞((−θp, 0),Rn) × Rn. Roughly speaking, an element
in X∞ is an element of x ∈ L∞((−θp, 0),Rn) as well as a
point x(0) ∈ Rn defining the value of the function x at 0.

Let us introduce the following notion of solution.

Definition II.1 (X -solutions). Let X be either X 0 or X∞.
Consider an initial condition x0 ∈ X . Let u ∈ U and
T ∈ R>0 ∪ {+∞}. We say that x ∈ C0([0, T ),Rn) is a X -
solution over [0, T ) to the Cauchy problem (TDS) initialized
at x0 if x(0) = x0(0), x is absolutely continuous on any
compact subinterval of [0, T ), and satisfies

ẋ(t) = f(x(t), ((x0 ⋄ x)(t− θk))k∈{1,...,p}, u(t))

for almost all t ∈ (0, T ). Here x0 ⋄ x : [−θp, T ) → Rn is
defined almost everywhere by

(x0 ⋄ x)(s) :=

{
x(s), for all s ∈ (0, T ),

x0(s), for almost all s ∈ [−θp, 0].

Remark II.2. Note that X 0-solutions are the usual con-
tinuous solutions of (TDS) (see [2, Part 2, Chapter 4.3]).
Moreover, both for X 0 and X∞-solutions, we have that
solutions are continuous functions of time from t = 0.

Although the results guaranteeing the existence and
uniqueness of solutions are known for initial conditions in
X 0 (see, e.g., [6, Chapter 2.2] or [2, Part II, Chapter 4.3.1]),
the case of X∞ received less attention. Nevertheless, we
show below that existing results can easily be adapted to
this state space in the case of a finite number of delays.

Theorem II.3 (Existence, uniqueness). Let X be either X 0

or X∞. Given any initial conditions x0 ∈ X and any u ∈ U ,
there exists the unique maximal X -solution x(·, x0, u) of the
Cauchy problem (TDS) initialized at x0 corresponding to an
input u. Denote xt(x0, u) : [−θp, 0] ∋ θ 7→ x(t+ θ;x0, u).

Furthermore, the system (TDS) is a control system in the
sense of [14], except that solutions may not be continuous
functions in the topology of X . We denote this system
(TDS,X ,U).

In other words, xt(x0, u) is the flow of the control system,
taking values in a functional state space, while x(t;x0, u)
gives the value of the solution at each time t, i.e., is the
evaluation of xt(x0, u)(0).

Proof. For X = X 0, see, e.g., [2, Part II, Chapter 4.3.1].
For X = X∞, the result follows [5] by remarking that [5,
Proposition 4.3] holds for p = ∞ for systems in the form of
(TDS) (i.e. with a finite number of delays). Alternatively, it
follows from Lemma II.11 (proved later in the paper), with
T = min(θ1,mink,j∈{1,...,p}

k ̸=j

|θk − θj |).

Remark II.4. For initial conditions x0 in X∞, note that
the flow map t 7→ xt(x0, u) is not necessarily continuous
(continuity of the flow is not required in Definition II.1).
For example, since the shift operator is not continuous on
L∞(R,Rn), the flow associated to ẋ = 0 is not continuous
at the initial condition

x0 : s 7→

{
0 if − θp ⩽ s ⩽ −θp/2

1 if − θp/2 < s ⩽ 0
.

However, since solutions are continuous from t = 0 (see
Remark II.2), the flow is continuous over [θp,+∞).

We now extend several properties of time-delay systems
that are usually defined only for X 0-solutions [3]. We start
with forward completeness.

Definition II.5. Let X be either X 0 or X∞. We say that
(TDS,X ,U) is forward complete (FC) if for all x0 ∈ X
and all u ∈ U , the corresponding solution x(·, x0, u) of
(TDS,X ,U) exists on [0,+∞).



We may additionally request that, over any bounded time
interval, the solutions generated from a bounded set of
initial states, with inputs taking values in any given bounded
set, cover only a bounded subset of the state space. This
corresponds to the BRS property, also sometimes referred to
as robust forward completeness in the literature [3], [9], [12].

Definition II.6. Let X be either X 0 or X∞. We say that
(TDS,X ,U) has bounded reachability sets (is BRS) if it is
FC and for any r > 0, the set

{x(t;x0, u) | t ∈ [0, r], x0 ∈ X , u ∈ U ,
∥x0∥X ⩽ r, ∥u∥L∞ ⩽ r}

is bounded.

Remark II.7. By causality, one can equivalently write
∥u|[0,r]∥L∞ ⩽ r instead of ∥u∥L∞ ⩽ r in the above
condition without changing the definition of BRS.

An equivalent characterization of BRS is given by the
following lemma, which requires only FC and bounded
reachable sets on a (possibly short) time interval.

Lemma II.8. (TDS,X ,U) is BRS if and only if it is FC and
there exists T > 0 such that for all r > 0 the following set
is bounded:

{x(t;x0, u) | t ∈ [0, T ], x0 ∈ X , u ∈ U ,
∥x0∥X ⩽ r, ∥u∥L∞ ⩽ r}.

Proof. We proceed by induction. Assume that for some n ∈
N>0 and all r > 0, the set

Sn,r = {x(t;x0, u) | t ∈ [0, nT ], x0 ∈ X , u ∈ U ,
∥x0∥X ⩽ r, ∥u∥L∞ ⩽ r}

is bounded. Define ρn,r = max(r, supξ∈Sn,r
|ξ|).

By the cocycle property of the flow, x(t + T ;x0, u) =
x(T ;xt(x0, u), u(t+ ·)) for all t, T > 0, all x0 ∈ X and all
u ∈ U . Hence, for all r > 0,

Sn+1,r

⊂ Sn,r ∪ {x(t;x0, u) | t ∈ [nT, (n+ 1)T ], x0 ∈ X , u ∈ U ,
∥x0∥X ⩽ r, ∥u∥L∞ ⩽ r}

⊂ Sn,r ∪ {x(t;xnT (x0, u), u(nT + ·)) |
t ∈ [0, T ], x0 ∈ X , u ∈ U ,
∥x0∥X ⩽ r, ∥u∥L∞ ⩽ r}

⊂ Sn,r ∪ {x(t;x0, u) |
t ∈ [0, T ], x0 ∈ X , u ∈ U ,
∥x0∥X ⩽ ρn,r, ∥u∥L∞ ⩽ r}

⊂ Sn,r ∪ S1,ρn,r
.

Hence, if S1,r is bounded for all r > 0, so is Sn,r for all
n ∈ N>0 and all r > 0, thus the system is BRS.

To investigate the relation between FC and BRS for the
state spaces X 0 and X∞, we consider the following ODE
with inputs associated to (TDS):

ż(t) = f(z(t), (vk(t))k∈{1,...,p}, u(t)), (ODE)

where v = (vk)k∈{1,...,p} and u are inputs. Define

V0 = C0(R+, (Rn)p) and V∞ = L∞
loc(R+, (Rn)p),

and assume that v ∈ V where V is either V0 or V∞. Recall
that f is continuous and locally Lipschitz continuous with
respect to its first variables (in Rn), uniformly with respect to
the last variables (in (Rn)p ×Rm). Hence, according to the
Cauchy-Lipschitz theorem, the Cauchy problem associated
to system (ODE) with an initial condition z0 ∈ Rn and an
input (v, u) ∈ V × U admits a unique maximal solution
z(·; z0, v, u) ∈ C0([0, T ),Rn) for some T ∈ R>0 ∪ {+∞}.
We denote this control system (ODE,Rn,V ×U). We recall
the definition of FC and BRS for this system, and distinguish
between two different classes of inputs.

Definition II.9. Let V be either V0 or V∞. We say that
(ODE,Rn,V × U) is forward complete (FC) if for all z0 ∈
Rn, all v ∈ V , and all u ∈ U , the corresponding maximal
solution of (ODE,Rn,V × U) exists on [0,+∞).

Definition II.10. Let V be either V0 or V∞. We say that
(ODE,Rn,V×U) has the bounded reachability sets property
(is BRS) if it is FC and for any r > 0, the set

{z(t; z0, v, u) | t ∈ [0, r], z0 ∈ Rn, v ∈ V, u ∈ U ,
|z0| ⩽ r, ∥v∥L∞ ⩽ r, ∥u∥L∞ ⩽ r}

is bounded.

Our motivation for introducing system (ODE) is the fol-
lowing lemma that relates solutions of (TDS) with those of
(ODE). Our investigation of FC and BRS of (TDS) relies on
the study of FC and BRS of (ODE), as was already done in
[12, Theorem 9] for the state space X 0 and input space V∞.

Lemma II.11. Given i ∈ {0,∞}, let X = X i and V = Vi.
Let z0 ∈ Rn, u ∈ U , and T ∈ R>0 ∪ {+∞}. Let x ∈
C0([0, T ),Rn) be such that x(0) = z0. Then:

• if x is a solution to (TDS,X ,U) for some initial
condition x0 ∈ X and some u ∈ U , then x is also
a solution to (ODE,Rn,V × U) with inputs u and
v = ((x0 ⋄ x)(· − θk))k∈{1,...,p} ∈ V .

• conversely, if (v, u) ∈ V × U and x is a corre-
sponding solution to (ODE,Rn,V × U), then for any
δ ∈ (0,min(T, θ1,mink,j∈{1,...,p}

k ̸=j

|θk − θj |)), and any

x0 ∈ X such that x0|[−θk,−θk+δ] = vk(· + θk) for all
k ∈ {1, . . . , p}, x|[0,δ) is a solution to (TDS,X ,U) with
initial condition x0 ∈ X and input u.

Proof. On the one hand, assume that x is a solution to (TDS)
and define v = ((x0⋄x)(·−θk))k∈{1,...,p} ∈ V . Then it holds
for almost all t ∈ [0, θ1) that

ẋ(t) = f
(
x(t),

(
(x0 ⋄ x)(t− θk)

)
k∈{1,...,p}, u(t)

)
= f(x(t), v(t), u(t)),

meaning that x is a solution to (ODE) with inputs v and u. On
the other hand, assume that v ∈ V satisfies the assumptions



of the lemma. The choice of δ is made to avoid conflicting
definitions of v. Then it holds for almost all t ∈ [0, δ) that

ẋ(t) = f(x(t), v(t), u(t))

= f
(
x(t),

(
(x0 ⋄ x)(t− θk)

)
k∈{1,...,p}, u(t)

)
= f

(
x(t),

(
x0(t− θk)

)
k∈{1,...,p}, u(t)

)
.

Hence, x|[0,δ) is a solution to (TDS) with initial condition
x0 and input u.

III. MAIN RESULT

Our main result is the following relations between FC and
BRS for systems (TDS) and (ODE).

Theorem III.1. All the following statements are equivalent:
(i) (TDS,X∞,U) is FC

(ii) (TDS,X∞,U) is BRS
(iii) (TDS,X 0,U) is BRS
(iv) (ODE,Rn,V∞ × U) is FC
(v) (ODE,Rn,V∞ × U) is BRS

(vi) (ODE,Rn,V0 × U) is BRS
Moreover, the following statements are equivalent, implied
by the above, and do not imply the above:

(vii) (TDS,X 0,U) is FC
(viii) (ODE,Rn,V0 × U) is FC

The implications used to prove Theorem III.1 are depicted
in Figure 1. From the fact that X 0 ⊂ X∞ and V0 ⊂ V∞,
the following implications easily hold

(TDS,X∞,U) is FC ⇒ (TDS,X 0,U) is FC,
(TDS,X∞,U) is BRS ⇒ (TDS,X 0,U) is BRS,

(ODE,Rn,V∞ × U) is FC ⇒ (ODE,Rn,V0 × U) is FC
(ODE,Rn,V∞ ×U) is BRS ⇒ (ODE,Rn,V0 ×U) is BRS

Since BRS implies FC, we also have that

(TDS,X∞,U) is BRS ⇒ (TDS,X∞,U) is FC,
(ODE,Rn,V∞ ×U) is BRS ⇒ (ODE,Rn,V∞ ×U) is FC,

(TDS,X 0,U) is BRS ⇒ (TDS,X 0,U) is FC,
(ODE,Rn,V0 × U) is BRS ⇒ (ODE,Rn,V0 × U) is FC.

Moreover, from [12, Theorem 9], [12, Theorem 10] and
[10, Proposition 5.1] respectively, we know that

(TDS,X 0,U) is BRS ⇔ (ODE,Rn,V∞ × U) is FC,
(TDS,X 0,U) is FC ⇔ (ODE,Rn,V0 × U) is FC,

(ODE,Rn,V∞ ×U) is FC ⇔ (ODE,Rn,V∞ ×U) is BRS.

According to [11, Example 3.5],

(ODE,Rn,V0 × U) is FC ⇏ (ODE,Rn,V∞ × U) is FC.

Combining all these previous results we see that, in order to
prove Theorem III.1, it remains to show that

• (TDS,X∞,U) is FC ⇒ (ODE,Rn,V∞ × U) is FC
• (ODE,Rn,V∞ ×U) is BRS ⇒ (TDS,X∞,U) is BRS
• (ODE,Rn,V0 × U) is BRS ⇒ (TDS,X 0,U) is BRS.

Proof that:
(TDS,X∞,U) is FC ⇒ (ODE,Rn,V∞ × U) is FC

and
(TDS,X 0,U) is FC ⇒ (ODE,Rn,V0 × U) is FC1.

Given i ∈ {0,∞}, let X = X i and V = Vi. Assume
that (TDS,X ,U) is FC. It is known that FC corresponds
to the absence of finite escape time (see e.g. [3, Theo-
rem 2]). Assume for the sake of contradiction that there
exists T ∈ (0,+∞), z0 ∈ Rn, u ∈ U and v ∈ V
such that |z(t; z0, v, u)| → +∞ as t → T−. Set δ =
1
2 min(T, θ1,mink,j∈{1,...,p}

k ̸=j

|θk − θj |). Since all delays are

assumed positive and distinct, it holds that δ > 0. Let
t0 = T−δ > 0. Note that for all k ∈ {1, . . . , p}, we have that
0 /∈ [−θk,−θk + δ] and [−θk,−θk + δ]∩ [−θj ,−θj + δ] = ∅
for all j ∈ {1, . . . , p} with k ̸= j. Then, we can choose
x0 ∈ X such that:

• x0(0) = z(t0; z0, v, u)
• for all k ∈ {1, . . . , p} and almost all t ∈ [−θk,−θk+δ],
x0(t) = vk(t0 + t+ θk).

Then, by assumption, the Cauchy problem (TDS) initialized
at x0 and with input u(t0 + ·) admits a unique solu-
tion x(·;x0, u(t0 + ·)) over [−θp,+∞). By Lemma II.11,
x(·;x0, u(t0 + ·)) is also a solution to (ODE) with input
((x0 ⋄ x)(· − θk))k∈{1,...,p} over [−θp, δ]. In particular, for
almost all t ∈ [0, θ1] and all k ∈ {1, . . . , p}, we have (x0 ⋄
x)(t−θk) = x0(t−θk) = v(t0+t). Hence, x(·;x0, u(t0+·))
is a solution to (ODE) with inputs v(t0 + ·) and u(t0 + ·)
over [0, δ]. By uniqueness of solutions to the Cauchy problem
associated to (ODE) initialized at z(t0; z0, v, u), it holds that
z(t0+ t; z0, v, u) = x(t;x0, u(t0+ ·)) for all t ∈ [0, δ]. Since
x(·;x0, u(t0 + ·)) is continuous over [0,+∞), we get that
z(t; z0, v, u) → x(δ;x0, u(t0 + ·)) as t → T−, which is a
contradiction.

Proof that:
(ODE,Rn,V∞ × U) is BRS ⇒ (TDS,X∞,U) is BRS

and
(ODE,Rn,V0 × U) is BRS ⇒ (TDS,X 0,U) is BRS.

Given i ∈ {0,∞}, let X = X i and V = Vi. As-
sume (ODE,Rn,V × U) is BRS. We make use of Lemma
II.8 by considering T = θ1/2. Assume for the sake of
contradiction that there exist r > 0, sequences (tj)j∈N
in [0, T ], (xj

0)j∈N in X , and (uj)j∈N in U such that
∥xj

0∥X ⩽ r and ∥uj |[0,T )∥L∞ ⩽ r for all j ∈ N and
that |x(tj ;xj

0, uj)| → +∞ as j → +∞. For each j ∈ N,
define vj = ((xj

0 ⋄ x(·;xj
0, uj))(· − θk))k∈{1,...,p} ∈ V .

By Lemma II.11, z(·;xj
0(0), vj , uj) = x(·;xj

0, uj). Since
T < θ1, we have ∥vj |[0,T )∥L∞ ⩽ ∥xj

0∥X ⩽ r. By
assumption, (z(tj ;x

j
0(0), vj , uj))j∈N is bounded. Hence,

(x(tj ;x
j
0, uj))j∈N is bounded, which is a contradiction.

IV. RELATIONS BETWEEN GAS AND UGAS
In this section, we specialize (TDS) to systems without

inputs, that is,

ẋ(t) = f(x(t), (x(t− θk))k∈{1,...,p}). (TDS)

1Although (TDS,X 0,U) is FC ⇒ (ODE,Rn,V0×U) is FC is already
stated in [12, Theorem 10], we give a proof for the sake of completeness.
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Fig. 1. Proof architecture of Theorem III.1. Implications proved in the present article are indicated in blue. Implications known from the literature and
trivial implications are indicated in black, as well as an implication known to be false ( ̸⇒). Together, these implications are sufficient to establish Theorem
III.1.

Using our main result, we show that global asymptotic
stability is necessarily uniform in the X∞ setting (in contrast
to the X 0-case). To formalize this, recall the following
notions.

Definition IV.1. Let X be either X 0 or X∞. We say that
(TDS,X ) is:

• locally stable (LS) if for all ε > 0, there exists δ > 0
such that

sup{∥xt(x0)∥X | t ⩾ 0, ∥x0∥X ⩽ δ} ⩽ ε;

• globally attractive (GA) if
∥xt(x0)∥X → 0 as t → +∞ for all x0 ∈ X ;

• globally asymptotically stable (GAS) if it is both LS
and GA;

• uniformly globally asymptotically stable (UGAS) if
there exists β ∈ KL such that

∥xt(x0)∥X ⩽ β(∥x0∥X , t), ∀x0 ∈ X , ∀t ∈ R+.

Unlike GAS, the UGAS property guarantees that starting
from a bounded set of initial states, the convergence rate to
zero cannot be arbitrarily slow, and the transient overshoot
cannot be arbitrarily large. From [4] we know that, unlike in
ODE case [10], for (TDS,X 0), GAS does not imply uniform
global attractivity, and by [12, Proposition 7], for (TDS,X 0),
GAS and uniform global attractivity still do not apply UGAS.
Nevertheless, the use of other state spaces, such as Hölder or
Sobolev spaces, allows recovering the equivalence between
GAS and UGAS [9]. It was shown there that GAS and UGAS
are equivalent properties, provided that the system has BRS.
Using our main result, we show that uniformity always holds
in the X∞ setting, at least for systems with a finite number
of discrete delays.

Theorem IV.2. The following assertions are equivalent:
(i) (TDS,X∞) is GAS

(ii) (TDS,X∞) is UGAS
(iii) (TDS,X 0) is UGAS

Moreover, the following statement is implied by the above
and does not imply the above:

(iv) (TDS,X 0) is GAS

The proof architecture is depticted by Figure 2.

(TDS,X∞) is UGAS ks +3

��

(TDS,X 0) is UGAS

��
(TDS,X∞) is GAS +3

3;

(TDS,X 0) is GAS

[12]⧸

KS

Fig. 2. Proof architecture of Theorem IV.2. Implications proved in the
present article are depicted in blue. Implications known from the literature,
trivial implications, as well as an implication known to be false (̸⇒) are
indicated in black. Together, these implications are sufficient to establish
Theorem IV.2.

Proof. It is clear from the definitions that

(TDS,X∞) is UGAS ⇒ (TDS,X∞) is GAS,
(TDS,X 0) is UGAS ⇒ (TDS,X 0) is GAS.

From the inclusion X 0 ⊂ X∞, and since on X 0 the norms
of X 0 and X∞ coincide, it follows that

(TDS,X∞) is UGAS ⇒ (TDS,X 0) is UGAS,
(TDS,X∞) is GAS ⇒ (TDS,X 0) is GAS.

According to [12, Proposition 7],

(TDS,X 0) is GAS ⇏ (TDS,X 0) is UGAS.

Hence, it remains to prove that

(TDS,X∞) is GAS ⇒ (TDS,X 0) is UGAS
⇒ (TDS,X∞) is UGAS.

Proof that (TDS,X∞) is GAS ⇒ (TDS,X 0) is UGAS.
Assume that (TDS,X∞) is GAS. In particular,

(TDS,X∞) is FC. Hence, according to Theorem III.1,
(TDS,X 0) is BRS. Moreover, (TDS,X 0) is GAS. Hence,
according to [9, Theorem 1], (TDS,X 0) is UGAS.

Proof that (TDS,X 0) is UGAS ⇒ (TDS,X∞) is UGAS.
As (TDS,X 0) is UGAS, (TDS,X 0) is BRS. By Theorem



III.1, (TDS,X∞) is BRS. Applying2 [15, Lemma 3] to
(TDS), we get that there exists a continuous function µ :
R2

+ → R+, non-decreasing with respect to each variable,
such that

∥xt(x0)∥X∞ ⩽ µ(t, ∥x0∥X∞), x0 ∈ X∞, t ⩾ 0.

In particular, for all t ∈ [0, θp],

∥xt(x0)∥X∞ ⩽ µ(θp, ∥x0∥X∞).

Let κ : R+ → R+ be a continuous function such that
for all r > 0, κ(r) is greater than the Lipschitz constant
of f over the ball of X∞ of center 0 and radius r. Then,
by Grönwall’s inequality and using that f(0, 0) = 0, for all
t ∈ [0, θp] and all x0 ∈ X∞,

∥xt(x0)∥X∞ ⩽ eθpκ(µ(θp,∥x0∥X∞ ))∥x0∥X∞ . (1)

On the other hand, using the cocycle property, xt(x0) =
xt−θp(xθp(x0)) for all t ⩾ θp and all x0 ∈ X . Since x(·;x0)
is continuous over [0,+∞), xθp(x0) ∈ C0([−θp, 0],Rn).
Thus, x(·;xθp(x0), 0) is an X 0-solution of (TDS). Hence,
there exists β ∈ KL such that for all x0 ∈ X∞ and all
t ⩾ θp,

∥xt(x0)∥X∞ ⩽ β(∥xθp(x0)∥X∞ , t− θp)

⩽ β(eθpκ(µ(θp,∥x0∥X∞ ))∥x0∥X∞ , t− θp). (2)

For all r, t ⩾ 0, define

β̃(r, t) =

{
β(r, 0)e−t if t ∈ [−θp, 0)

β(r, t) if t ⩾ 0

and

β̄(r, t) = max(eθp−teθpκ(µ(θp,r))r, β̃(eθpκ(µ(θp,r))r, t− θp)).

Then, β̃(·, · − θp) ∈ KL since β ∈ KL, (r, t) 7→
eθp−teθpκ(µ(θp,r))r is of class KL, and β̄ ∈ KL as the
maximum between two functions of class KL. Combining
(1) and (2), we obtain that for all x0 ∈ X∞ and all t ∈ R+,

∥xt(x0)∥X∞ ⩽ β̄(∥x0∥X∞ , t).

Thus, (TDS,X∞) is UGAS.

V. CONCLUSION

We have shown that, when working with the state space
L∞ × Rn, FC implies BRS for time-delay systems with a
finite number of discrete delays. It is worth noticing that this
space is larger than the usual space of continuous functions.
Hence, it is now established that the equivalence between
FC and BRS for time-delay systems fails in the state space
of continuous functions [12], but holds both for a smaller
state space (Sobolev or Hölder, [9]) and for a larger one
(L∞ × Rn, present paper).

This equivalence in L∞ × Rn opens the door to the
relaxation of many characterizations of stability properties

2Note that system (TDS) does not exactly fit the framework of [15,
Lemma 3], since its flow is not necessarily continuous when X is X∞

(see Remark II.2). However, the proof of [15, Lemma 3] does not exploit
at all continuity of the flow, hence remains valid in our context.

such as ISS, UGAS, etc. (see [17] for corresponding results
in the state space of continuous functions), at the cost of
recasting all the results that are known in the continuous
state space [3] into L∞ × Rn. We have illustrated this by
proving that GAS implies UGAS in the new framework.

The question of extending these results to systems with
distributed delays remains open. Firstly, to the best of the
authors’ knowledge, the proof of the existence of solutions
in the state space Lp × Rn fails when p = ∞ (see [5]).
Secondly, even if a solution exists for a specific system, the
approach developed in this paper (based on relating the delay
system with an ODE) fails. Hence, new tools have to be
developed.
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