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successes and failures. Far from wanting to propose a new survey on the subject, this paper aims to present the areas7
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1 Introduction14

Graphs are powerful data structures that represent mainly relationships between entities.15

Graph representation is very common in many application contexts, from social networks to16

chemo-informatics and transportation systems. But graphs have been effectively used in many17

other contexts, in particular image processing and computer vision.18

Pattern Recognition methods using graphs have been proposed since early 90’s (see1 for a sur-19

vey on first papers discussing graph-based representation in Pattern Recognition). In this early20

period, until about 2010, researchers focused on problems of graph matching,2 graph embedding21

(3–5), and graph topology (6, 7). After there was an explosion of interest in deep learning tech-22

niques, and the use of graphs in neural networks (8, 9). Recent trends can be found in some recent23

surveys10, 11 and a dozen other surveys are present in the literature.24

However the goal of this paper is not to write a one more survey, rather a historical excursion25

of the use of graphs in pattern recognition. And even more than a historical excursion, to point out26
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some method that was a pillar in this topic.27

The intention here is to propose a generic view of the different possibilities of the use of graphs28

in Pattern Recognition, possibly for a non-expert audience (which might differentiate it from other29

surveys). By presenting the best successes, and also what did not succeed, the reader can already30

get an idea of where to start when beginning research in this field. The reader will then be able31

to realize where graphs can be used effectively, and possibly jump into the fray to propose new32

solutions to open problems.33

The rest of the paper is organized as follows: in the Section 2 we present some of the main34

methods that have had successful results in the use of graphs in pattern recognition; graph-based35

representation presents some drawbacks that we illustrate in the Section 3; we cannot pass over36

in silence, of course, a discussion of recent propositions of graph neural networks (GNN) which37

we do in the Section 4; in the Section 5 we describe the main applications and benchmarks used38

for graph problems in pattern recognition; and we discuss of main open problem in the Section 6;39

finally we draw some conclusions in the Section 7.40

2 Some successes on the use of graphs in pattern recognition41

2.1 Graph Matching42

Graph matching is the problem of finding an optimal correspondence between the vertices and43

edges of two graphs. The Graph Matching problem can be divided into two general categories:44

exact matching and inexact matching. Exact matching aims to find a strict correspondence, or45

at least among their substructures. In the inexact matching, this constraint is relaxed to find the46

bijection between the vertex that optimizes a certain affinity or distortion criterion.47
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Graph Matching is a fundamental problem in computer science and relates to many areas such48

as combinatorics, pattern recognition, multimedia and computer vision.49

Referring back to other surveys for details, we would like to highlight here some of the most50

effective methods of graph matching.51

Graph Matching can be formulated as quadratic assignment problem (QAP) that is known to52

be NP-hard. One of the most successfully proposal for finding a solution in a reasonable time53

is the one proposed by Zhou et al.12 Following12 graph with n nodes and m directed edges are54

represented by a 4-tuple G = {P,Q,G,H}, where Pdp×n contains features for nodes and Qdg×m
55

features for edges (dp and dq are the dimensions of the features space). The topology of the graph56

is encoded by two node-edge incidence matrices G, H where gic = hjc = 1 if the cth edge starts57

from the ith node and ends at the jth node. Given a pair of graphs, G1 and G2, an affinity matrix58

K ∈ Rn1n2×n1n2 is defined encoding the node and edge affinities, to measure the similarity of each59

node and edge pair respectively. Therefore, the problem of Graph Mathing consists in finding the60

optimal correspondence X between nodes, such that the sum of the node and edge compatibility is61

maximized. Using K, Graph Mathing can be formulated as the QAP of Eq. 1.Given X, which is a62

matrix in which each element (i, j) is one if node i of graph G1 is to be associated with node j of63

graph G2 and zero otherwise, the formula expresses the fact that, among all possible combinations64

of values for the matrix X , the algorithm provides as a solution the one that maximizes the affinities65

between the nodes.66

max
X∈Π

vec(X)TKvec(X) (1)

where X is constrained to be a one-to-one mapping, and Π is the set of partial permutation67
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Fig 1 Example of Graph Matching defition as defined in12 (Figure modified from the paper). Note that the assignement
of X corresponds to the node associations for which in the K matrix the affinities have the highest values.

matrices. In Fig. 1 there is an illustrative example of these definitions.68

The main idea of this paper is to propose a new factorization of the pairwise affinity matrix69

K. This factorization provides a light-weight representation for Graph Matching problems, allows70

a unification of Graph Matching methods (subgraph isomorphism, graph edit distance, etc.), and71

it allow a good performance in terms of time. For details on this factorization please refer to.12
72

Results are very competitive in terms of time and quality of assignment, with respect many of73

state-of-the-art methods.13–15
74

A particular Graph Matching (GM) problem which has been addressed by many researchers is75

the so-called Graph Edit Distance (GED). The latter can be stated as follows: given two graphs, and76

some edit operations with an edit cost, graph edit distance is the problem of finding the minimum77

sum of edit cost to transform a graph into the other; Graph Edit Distance provides also a node-to-78

node correspondence between the nodes of the two graphs. Actually in 2021, Raveaux16 shows79

that the GED problem can be equivalent to the GM problem under certain permissive conditions.80

4



Nevertheless, as GED was widely addressed in literature we propose here some of key papers on81

this specific problem.82

We have seen a quadratic formulation of Graph Matching problem, and therefore equivalently83

there are some quadratic formulation of GED. But as quadratic formulation is NP-hard, many84

papers proposed a linear formulation of the GED problem, at the expense of a less precise but85

still acceptable final solution. However some researcher have tried to find techniques for solving86

the linear formulation that are both fast and accurate. Darwiche et al.17 propose the use of some87

research operational methods, in particular here is the Local Branching technique, to solve efficacy88

the GED problem. Here we present the general principle of this proposal.89

First an attributed graph is defined as a 4-tuple G = (V,E, µ, ξ) where, V is the set of vertices,90

E is the set of edges, such that E ⊆ V × V , µ : V → LV (resp. ξ : E → LE) is the function91

that assigns attributes to a vertex (resp. an edge), and LV (resp. LE) is the label spaces for vertices92

(resp. edges). Next, given two graphs G = (V,E, µ, ξ) and G′ = (V ′, E ′, µ′, ξ′), GED is the task93

of transforming one graph source into another graph target. To accomplish this, GED introduces94

the vertices and edges edit operations: (u → v) is the substitution of two nodes, (u → ϵ) is the95

deletion of a node, and (ϵ → v) is the insertion of a node, with u ∈ V, v ∈ V ′ and ϵ refers to the96

empty node. The same logic goes for the edges. In mathematical formula the Graph Edit Distance97

between two graphs G and G′ is defined by:98

dλmin
(G,G′) = min

λ∈Γ(G,G′)

∑
ei∈λ

c(ei) (2)

where Γ(G,G′) is the set of all complete edit paths, λmin represents the set of operations with99

the minimal cost, and c is the cost function that assigns the costs to elementary edit operations. See100
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Fig 2 An intuitive explanation of the GED: Given two graphs G and G′, the figure shows the edit operations to
transform G in G′, each operation having a cost ci. The sum of the costs is the GED measure between the two graphs.

at the Fig. 2 for an intuitive explanation of the GED.101

The main idea in the linear formulation of GED consists in determining the permutation matrix102

minimizing the L1 norm of the difference between adjacency matrix of the input graph and the103

permuted adjacency matrix of the target one. The model is as follows:104

min
P,S,T∈{0,1}N×N

N∑
i=1

N∑
j=1

c (µ(ui), µ
′(vj))P

ij +

(
1

2
× const× (S + T )ij

)
(3)

such that105

(AP − PA′ + S − T )
ij
= 0 ∀i, j ∈ {1, N} (4)

106

N∑
i=1

P ik =
N∑
j=1

P kj = 1 ∀k ∈ {1, N} (5)

where A and A′ are the adjacency matrices of graphs G and G′ respectively, c : (µ(ui), µ
′(vj)) →107

R+ is the cost function that measures the distance between two vertices attributes. As for P, S108
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and T , they are the permutation matrices of size N × N , and of type boolean. P represents the109

vertices matching e.g. P ij = 1 means a vertex i ∈ V ∪{vϕ} is matched with vertex j ∈ V ′∪{vϕ}.110

While S and T are for edges matching. Local Branching heuristic is a local search approach, that111

makes use of MILP solver to explore the neighborhood of solutions through a branching scheme.112

In addition, it involves mechanisms such as intensification and diversification. In17 they adapt the113

branching scheme and intensification and diversification phases in the case of Graph Matching. We114

refer to the paper for details. Authors show that for classical benchmarks for GED (see Section 5115

for details on benchmarks) the method is in average more accurate than others by one or two orders116

of magnitude while remaining competitive in terms of execution time.117

The difficulty of solving the GED and the quality of the result also depends on the definition of118

the edit cost. For this reason, some researchers, instead of focusing on the search for new resolution119

techniques, propose to learn which are the best edit costs, based on the problem at hand, and in120

some precise application contexts where it is possible to know some instances of correspondence121

between graphs from which to learn. Some examples of this technique can be found in.18–21 More122

recently there some deep learning technique to learn edit costs for GED, we will discuss about that123

in Secion 4. In Fig. 3 we illustrate the basic principle of edit cost learning: some ground truth124

data are available that indicate the true correspondences between a set of graph couples; theses125

correspondences are used in some learning schema (neural networks or other regression schema)126

to learn the best edit cost that give the true correspondence between graphs as solution of GED127

problem; then these cost are used in an application context. In19 authors show that, learning costs,128

given a fixed dataset in which some graph correspondences are known, provide better results than129

using some fixed edit costs.130
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Fig 3 A general framework for edit cost learning (Figure modified from the paper19).

2.2 Graph Embedding131

In some contexts, particularly in classification and regression applications, the node-to-node cor-132

respondence between graphs is not necessary, and what is useful is to be able to compare graphs133

with each other in order to have a measure of distance for use with machine learning tools for re-134

gression and classification. In these cases graph embedding has emerged as a promising solution.135

Graph embedding methods map either explicitly or implicitly graphs into high dimensional spaces136

hence allowing to perform the basic mathematical computations required by various statistical pat-137

tern recognition techniques. Graph embedding methods appear thus as an interesting solution to138

address graph clustering and classification problems.139

The implicit graph embedding methods are based on graph kernels. A graph kernel is a function140

that can be thought of as a dot product in some implicitly existing vector space. Explicit graph141

embedding methods explicitly embed an input graph into a feature vector and thus enable the use142

of all the methodologies and techniques devised for vector spaces.143
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Fig 4 The set of treelets having a size lower than or equals to 6 nodes (taken from22).

Among the proposals that have been made in recent years, we choose two in particular that144

have proven particularly effective in classification contexts.145

Treelet kernel22 is a graph kernel based on a bag of non linear patterns which computes an146

explicit distribution of each pattern within a graph. This method explicitly enumerates the set of147

treelets included within a graph. The set of treelets, denoted T , is defined as the 14 trees having148

a size lower than or equals to 6 nodes (Fig. 4, taken from the paper, shows the set of treelets).149

Thanks to the limited number of different patterns encoding treelets, an efficient enumeration of150

the number of occurrences of each labeled pattern within a graph can be computed by algorithm151

defined in the paper.22 Treelet kernel between graphs is defined as a sum of sub kernels between152

common treelets of both graphs (Eq. 6)153

KT (G,G′) =
∑

t∈T (G)∩T (G′)

k(ft(G), ft(G
′)) (6)

where T (G) encodes the set of treelets included within G, ft(G) encodes the number of occur-154

rences of each treelet t ∈ T and k(., .) defines any positive definite kernel between real numbers155
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Fig 5 The non-isomorphic graph network used to embed the topology.4

such as linear, Gaussian or polynomial kernel. Each sub kernel k(., .) encodes the similarity of the156

number of occurrences for each treelet t common to both graphs to be compared.157

The topological embedding method proposed in23 uses a generic lexicon of topological struc-158

tures that could be enumerated in graphs during the computation of the vectorial signature of the159

graphs. This lexicon must be comprehensive enough to ensure discrimination from a graph to160

another. They have therefore decided to take as a baseline the non-isomorphic graphs network161

presented in.24 The network presents all graphs composed of n edges up to N (where N is the162

maximum number of edges) (see Fig. 5 for an example). The vectorial representation of a graph163

topology will be built by counting the occurrences of each pattern of the lexicon: each element of164

the vector is the frequency of apparition of a pattern, which represents a descriptor of a part of the165

graph. This vectorial representation needs now to be enriched by encapsulating the information166

provided by attributes that can be associated to the edges and vertices, or by discretizing numerical167

attributes or by performing a clustering in the label space using attributes as feature vectors. More168

details about this topological embedding method can be found in.23
169

Just to get an idea of the efficiency of these methods, we present in Table 1 an extract of the170

results of both methods, presented in,4 on known graph bases for classification.171
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Table 1 Classification results for different graph embedding methods and datasets (extracted from4).
AIDS MAO

Treelet kernel22 99.1 91.2
Topological Embedding23 99.4 91.2

2.3 Graph Topology172

Graph representation is particularly useful when the data encodes information in which topology173

is important, notably image processing. Many classical image processing have been efficiently174

handled by a graph-based representation: image segmentation,25 LBP coding,26 Connected Com-175

ponents Labeling.27
176

Graph representation is particularly efficient when we want to represent an image at different177

resolution in a multi-level representation of an image called pyramid.28 This hierarchy may be178

encoded using Irregular Pyramids.29, 30 These data structures encode each image as a graph whose179

nodes and edges respectively correspond to regions and region’s adjacencies. Irregular pyramids180

are a stack of successively reduced graphs where each graph is constructed from the graph below181

by selecting a specific subset of vertices and edges. For generation of irregular pyramids, two182

basic operations on graphs are needed: edge contraction and edge removal. The former merge183

two connected nodes in one, removing the edge connecting them. All edges that were incident184

to the joined vertices will be incident to the resulting vertex after the operation. Edge removal185

removes an edge from the graph, without changing the number of vertices or affecting the incidence186

relationships of other edges. In each level of the pyramid, the vertices and edges disappearing in187

level above are called non-surviving and those appearing in the upper level surviving ones.188

There are different structures to build the irregular pyramid such as simple graphs,31 dual189

graphs32 and combinatorial maps.33 Combinatorial Maps are most efficient data structure to built190

and represent irregular pyramid:25 within the combinatorial maps the dual graphs may be implicitly191

11



encoded and thus updated, this property allows to decrease both the memory and computational192

time requirements; combinatorial maps preserve the local orientation of edges around vertices and193

faces; combinatorial map formalism may be easily extended to higher dimensions.194

3 Drawbacks of graph-based representation195

The main drawback in the use of graph data structures is the processing times. In all the problems196

described above, the execution time remains a challenge to solve. The GED and GM problems197

have been proven to be NP-hard.34, 35 So, solving the problem to optimality cannot be done in198

polynomial time with respect to the size of the input graphs. On the other hand, heuristics are199

used when the demand for low computational time dominates the need to obtain optimal solutions.200

Graph embedding is also a costly operation. For example, treelet kernel requires to enumerate201

all labeled treelets from a graph with an overall complexity required equals to O(nd5) where n202

is the number of nodes and d is the maximum degree of the graph.22 Construction of Irregular203

Pyramid requires also many operations,36 and for this reason some parallel algorithms are proposed204

to overcome this problem.6205

Another drawback of using graph-based representation, is that in several application context206

this kind of representation is not unique and the way in which the graphs are defined to represent207

the data strongly influences the results. If, for example, a graph-based representation of chemical208

data, or social networks, is quite straightforward, in domains such as image processing or computer209

vision, there are many possible alternatives of graph-based representations. Attributes on nodes210

and edge contribute to the variety of possible data representations. Data should be represented as211

nodes, or attributes on it, as edges or edges attributes. For example, when you deal with spatio-212

temporal data, you should choose to represent temporal data by a sequence of nodes at the different213
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time instances, or you can choose to represent a time series data as an attribute of a node. This214

variety of representations makes it difficult to generalise the algorithms to all application domains.215

Even more, in the contexts of learning, the solutions proposed are very specific to the domain under216

consideration.217

4 The revival of graphs: Graph Neural Networks (GNN) and other machine learning tools218

for graphs219

For the reasons mentioned in the previous section 3, research in the domain of graphs has always220

remained a somewhat niche research, without crossing the boundaries of a more or less restricted221

community. This is not the case nowadays: with the advent of Deep Learning, many researchers222

have proposed graph-based neuron network solutions. The positive and surprising thing is that223

these solutions have provided excellent results in many application contexts, particularly in the224

domain of image processing and computer vision, in which graphs had not been very successful225

until now (apart from a few happy exceptions). Today, however, there is great interest in graph-226

based neural networks and the major conferences in the field of pattern recognition, computer227

vision, and machine learning always contain many papers on this topic.228

In this section, we give a brief overview of the principles behind these techniques and a brief229

excursion of the possible proposals in the domain of GNNs, referring to the numerous papers in230

the scientific literature to explore the subject further. We are inspired here mainly by the work of231

Wu et al.8 which is a good survey to introduce the topic.232
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4.1 Basics on Graph Neural Networks233

The basic principle of a Graph Neural Network is to update node features, in the different level of234

the network, based on an information diffusion mechanism, i.e. by exchanging node neighborhood235

information. This exchange is made by means of convolution operators defined on graph nodes.236

Convolution operators fall into two categories, spectral-based and spatial-based. Spectral based237

approaches define graph convolutions by introducing filters from the perspective of graph signal238

processing.37 Spatial-based approaches defines graph convolutions by information propagation.239

Since GCN38 bridged the gap between spectral-based approaches and spatial-based approaches,240

spatial-based methods have developed rapidly recently due to its attractive efficiency, flexibility,241

and generality.8242

The basic convolution operator expressed in mathematical formulas is as follows. For this243

purpose we define here a graph as G = (V,E) where V is the set of vertices and E is the set of244

edges. The neighborhood of a node i is defined as N(i) = {j ∈ V |(i, j) ∈ E}. A is the adjacency245

matrix of G (Aij = 1 if eij ∈ E, 0 otherwise) and F ∈ Rn×d is node feature matrix where fi ∈ Rd
246

represents the feature vector of a node i. Analogously graph may have an edge attributes matrix247

Fe ∈ Rm×e. So a generic convolution operator for a node i in a layer k is defined by Eq. 7, where248

a(·) is an activation function and h(0) = 0. W and Θ are learnable model parameters that are249

learned with classical tools of Deep Learning.250

y
(k)
i = a(W(k)fi +

∑
j∈N(i)

Θ(k)h(k−1)) (7)

The main intuition behind the formula is that, at each convolution level, the new features of a251

node results from the features of the node itself, plus the weighted average of all neighbors’ node252
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Fig 6 An illustration of graph convolution on a graph node: here f(i) is the input features vector of the node i, f(j)
are the features vectors of the neighboring nodes j of i, α0, . . . , α5 are learnable parameters, and y(i) is the output
feature vector (figure adapted from39).

features. In the Fig. 6 this principle is visually explained for a node of an example graph.253

4.2 A brief survey on GNN models254

The general formula presented above, declines in various versions in the various propositions of255

GNN models. Diffusion Graph Convolution (DGC)40 add a transition probability matrix in the256

convolution to measure the contribution of each neighbors to a central node. As the number of257

neighbors of a node can vary from one to a thousand or even more, it is inefficient to take the full258

size of a node’s neighborhood. GraphSage41 adopts sampling to obtain a fixed number of neighbors259

for each node. Graph Attention Network (GAT)42 adopts attention mechanisms to learn the relative260

weights between connected nodes. Mixture Model Network (MoNet)43 introduces node pseudo-261

coordinates to determine the relative position between a node and its neighbor. In such a way,262

the parameters of a graph filter can be shared across different locations. PATCHY-SAN44 orders263

neighbors of each node according to their graph labelings and selects the top q neighbors. As each264

node now has a fixed number of ordered neighbors, graph-structured data can be converted into265

grid-structured data.266

Based on the convolution operator, many Neural Networks architectures have been developed267

for different tasks: Convolutional graph neural networks for node or graph classification, graph268
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a) b)

c) d)

Fig 7 Figure extracted from paper of Wu et al.:8 different models of GNN: a) a Convolutional GNN for node classifi-
cation, b) a Convolutional GNN for graph classification, c) a Graph Auto Encoder and d) a Spatio-Temporan GNN.

autoencoders, spatio-temporal graph neural networks.269

5 Applications and Datasets270

Many application domain have exploited graph-based representation. We present here some of the271

main domains in which graph was successfully used. In these contexts we also present the typical272

benchmarks used for evaluating algorithms based on graph representation.273

5.1 Chemistry274

Graph theory provides a very natural representation of a 2D chemical structure, with the nodes275

and edges of a graph denoting the atoms and bonds of a molecule, and enables the exploitation276

of previously developed algorithms for the manipulation of graphs.45 There are many properties277

of chemical compounds that are dependent on the structure of the components; problems related278

to these properties (searching for molecules that have similar properties, or searching for chem-279

ical components that have a particular action such as carcinogenicity, etc.) are therefore solved280
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through graph matching46–48 or even graph embedding techniques.4 Some of classical datasets in281

this domain are briefly described below.282

• AIDS:49 This dataset consists of two classes (active, inactive) of 2000 graphs representing283

molecules with activity against HIV or not.284

• Mutagenicity:49 This dataset is divided in two classes regarding the mutagenicity (one of285

the numerous adverse properties of a compound that hampers its potential to become a mar-286

ketable drug) of 4337 molecules.287

• Predictive Toxicology Challenge (PTC):50 This dataset deals with the predicting of the288

outcome of biological tests for the carcinogenicity of chemicals using information related289

to chemical structure only (positive or negative) on four catgories of animals : female rats290

(FR), male rats (MR), female mice (FM), male mice (MM) with about 240 graphs per set.291

• Monoamine oxidase dataset (MAO):22 This problem is defined on a set of 68 molecules292

divided into two classes: the molecules that inhibit the monoamine oxidase (antidepressant293

drugs) and those that do not.294

With respect to these datasets we would like to emphasize here one very important thing. While295

from the application point of view the use of these databases still makes sense to solve some prob-296

lems in chemo informatics, using these benchmarks to test algorithms on graphs (graph matching,297

etc.) does not make much sense nowadays. It has proved that these data have known defects for298

benckmarking graph matching algorithms: for example the dataset Mutagenicity is known51 to299

have an error, all vertices of graphs with more than 99 vertices are isolated, so it is not appro-300

priate to evaluate graph matching problems; Solnon52 shows also that graph size is not the only301
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parameter to take into consideration for evaluating graph matching problem, in fact there are still302

small but hard instances which cannot be solved within a reasonable amount of time by any of303

state-of-the-art methods.304

In conclusion, our opinion is that the above described datasets are somehow out to date and it305

is important to evaluate solvers on other hard instances and more recent benchmarks.306

5.2 Social Networks307

Another application domain in which is immediate to represent the data in terms of graphs is social308

or web network analysis. In this context nodes of graphs can represent people, web pages, papers,309

etc. and edges represent interactions between people, or citation between papers, hyperlinks.310

In this context there are many problems dealt with graph-based algorithms: Community detec-311

tion53 or interaction,54 recommendation systems.55
312

A good collection of benchmarks in this context can be found on the website of Stanford Large313

Network Dataset Collection56 (SNAP).314

5.3 Image Processing315

The representation of images by graphs is less immediate than in other areas. Nevertheless several316

image processing problems were addressed through graph-based representations. We have seen317

(Section 2) that irregular pyramids have been successfully used for representing images at differ-318

ents resolution levels and for dealing with some classical problem: image segmentation, connected319

component labeling, and so on.320

Thus, in this field we can mention the following databases: the YACCLAB,57 a dataset for321
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comparing Connected Components Labeling Algorithms; the dataset for evaluating image seg-322

mentation problem proposed by Martin et al.58
323

In the context of image processing, several databases exist also as benchmark for graph match-324

ing problems. The CMU house/hotel image sequence59 was commonly used to test the perfor-325

mance of graph matching algorithms. This dataset consists of 111 frames of a house, each of326

which has been manually labeled with 30 landmarks. The car and motorbike image dataset was327

also created in.59 This dataset consists of 30 pairs of car images and 20 pairs of motorbike im-328

ages taken from the PASCAL challenges. The UCF shape dataset60 has also been widely used for329

comparing graph matching algorithms.330

5.4 Computer Vision331

Deep Learning with graph-based representation has been widely used in the field of Computer332

Vision. The notably graph representations are based on the extraction of features points from333

object of interest in videos, that will represent the node of graphs, and connecting them by edge334

based on some rules (e.g. the proximity of points). In this category are widely used the following335

datasets for skeleton-based action recognition. The Kinetics dataset61 is a large-scale, high-quality336

dataset for human action recognition in videos. The dataset consists of around 500,000 video337

clips covering 600 human action classes with at least 600 video clips for each action class. The338

Human3.6M62 dataset is one of the largest motion capture datasets, which consists of 3.6 million339

human poses and corresponding images captured by a high-speed motion capture system. NTU340

RGB+D63 is a large-scale dataset for RGB-D human action recognition. It involves 56,880 samples341

of 60 action classes collected from 40 subjects.342

But some other graph-based representation was proposed for addressing computer vision prob-343
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lem. Thus, the very famous image datasets ImageNet,64 Coco,65 Pascal VOC,66 used for object344

detection and recognition, are also used by graph-based Deap Learning techniques.345

6 To go further: open problems346

As we have seen, graph-based techniques have evolved greatly in recent years, with many effective347

proposals. However, some open problems remain, and can be addressed in the coming years.348

The first main problem, which we described earlier but which still remains unresolved, is that of349

execution time. Graph-based algorithms still spend a lot of resources, in terms of time, compared350

to equivalent algorithms that are based on a statistical representation of data. Many efforts have351

been made in this direction, but there is still room for improvement.352

We also talked about a second, still open, problem which we want to call the representation353

gap here. In itself this is not a problem, but it is inherent in graph-based representation: data354

can be represented as graphs by many different ways. This means that algorithms cannot always355

be generalized to all application contexts because performance depends very much on how the356

data has been represented. This fact actually, rather than a problem, may also prove to be a good357

opportunity to propose new graph-based representations that provide surprising results in various358

application domains, such as image processing and computer vision.359

7 Conclusions360

In this paper we wanted to discuss pattern recognition techniques that make use of graphs. De-361

ferring a full presentation to other survey papers, our proposed objective was rather to show the362

successes of using graphs in pattern recognition in some applications and the drawbacks yet to be363

overcome.364
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The research domain of graph-based pattern recognition is increasingly in vogue with the ad-365

vent of deep learning, and there is much room to research and propose increasingly effective solu-366

tions.367

We hope that this paper will fuel the desire of researchers to delve into this wonderful world of368

graphs.369
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