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Abstract. One of the most common vision problems is Video based
Action Recognition. Many public datasets, public contests, and so on,
boosted the development of new methods to face the challenges posed by
this problem. Deep Learning is by far the most used technique to address
Video-based Action Recognition problem. The common issue for these
methods is the well-known dependency from training data. Methods are
effective when training and test data are extracted from the same dis-
tribution. However, in real situations, this is not always the case. When
test data has a different distribution than training one, methods result
in considerable drop in performances. A solution to this issue is the so-
called Domain Adaptation technique, whose goal is to construct methods
that adapt test data to the original distribution used in training phase in
order to perform well on a different but related target domain. Inspired
by some existing approaches in the scientific literature, we proposed a
modification of a Domain Adaptation architecture, that is more efficient
than existing ones, because it improves the temporal dynamics alignment
between source and target data. Experiments show this performance im-
provement on public standard benchmarks for Action Recognition.

Keywords: Domain Adaptation · Action Recognition · Temporal Shift
Model

1 Introduction

Human action recognition has become a challenging topic during the last years
due to the impact that it represents in the comprehension of human behaviour
(see [19, 21, 27] for some examples). Unsurprisingly, the action recognition field
is extremely more difficult task than object recognition, for various reasons. In
addition to the typical difficulties related to image recognition, such as scale
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variation, lighting or contrast, other obstacles must be taken into account to
perform action recognition: the shooting point of view, the color scheme, the
background clutter, and most importantly, the temporal dimension that further
complicates the task.

Deep learning is by far the most used technique to address this problem
(e.g. [16, 7, 24, 29], and [28] for a good survey of these methods). While very
effective, these techniques suffer from the problem of being too dependent on
training data. The vast majority of supervised learning methods share a com-
mon prerequisite: training data and testing data are extracted from the same
distribution [26]. However this may not always be the case. When this constraint
is violated, the classifier trained on a dataset, which will be referred to as the
source domain, exhibits a considerable drop in performance when tested on a
different dataset, called the target domain.

A solution to this issue can be the use of the so-called Domain Adaptation.
Domain adaptation refers to the goal of learning a concept from labeled data
in a source domain that performs well on a different but related target domain.
There are many domain adaptation proposals in the scientific literature, also in
the context of Action Recognition (see Section 2).

The main goal of this paper is to propose a new architecture of Domain
Adaptation for Action Recognition. The contribution is to propose integrating
a different temporal module within an existing architecture, in order to improve
the temporal adaptability between source and target domains, and consequently,
improving the performances.

The rest of the paper is organized as follows: Section 2 illustrates a brief
survey of the main domain adaptation techniques for Action Recognition. In
Section 3 we recall the basic principles of an existing architecture for Domain
Adaptation which served as our basis for proposing our modification described
in Secion 4. In Section 5, after describing the test protocol, we present some ex-
perimental results that prove the effectiveness of our approach. Some conclusions
and perspectives are drawn in the last Section 6.

2 Related Works

Domain adaptation methods make the assumption that the tasks are the same
and the differences are only caused by domain divergence. According to Wang
et al. [5], considering the labeled data of the target domain, domain adaptation
algorithms can be classified in three categories:

– Supervised (e.g. [17]): a small amount of labeled target data are present. The
issue is that the labeled data are commonly not sufficient for tasks.

– Semi-supervised (e.g. [20]): there are limited labeled data and redundant
unlabeled data in the target domain. This only allows the network to learn
the structure information of the target domain.

– Unsupervised (e.g. [14]): there are labeled source data and only unlabeled
target data available for training the network.
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Supervised action recognition state-of-the-art methods all use deep learning
algorithms, by leveraging CNNs for spatio-temporal information (see [2, 25] for
some examples). However, as we said in the Section 1, these supervised action
recognition approaches are still limited by the dependency on annotated labels
for each clip. There is no guarantee of robust performances if the algorithms are
directly transferred to another domain, due to the presence of domain shift.

In this context, many Domain Adaptation techniques are proposed and ap-
plied to the Action Recognition problem. First works in this direction was focused
geometric transformations of videos in the context of Supervised Domain Adap-
tation. Some works utilise supervisory signals such as skeleton or pose [12] and
corresponding frames from multiple viewpoints [22, 8].

On the contrary, Unsupervised Domain Adaptation (UDA) has been used for
recovering and adapting changes, more general than only geometrical ones. At
the first time, UDA for action recognition used shallow models to align source
and target distributions of handcrafted features [1, 4]. By the advent of Deep
Learning, more proposals have been done for Domain Adaptation, but especially
for image-based tasks. Authors of [13, 15] proposed some Deep Networks to align
the joint distributions by minimizing maximum mean discrepancy (MMD) or
joint maximum mean discrepancy (JMMD) between source and target domains.
Recently, some works deals with video domain adaptation. In [6] authors utilize
an adversarial learning framework with 3D CNN to align source and target
domains. TA3N [3] leverages a multi-level adversarial framework with temporal
relation and attention mechanism to align the temporal dynamics of feature
space for videos.

Inspired by this last work, and being convinced that temporal alignment
remains the key feature in domain adaptation, our contribution can be stated as
follow: we propose adapting an existing temporal alignment module to a Domain
Adaptation Deep Network for improving the temporal dynamics correspondences
between source and target videos.

3 Recalls basics of an architecture for Domain Adaptation

The architecture proposed by Chen et al. [3] consists of 3 main components: a
spatial module, a temporal module, and a class predictor. The input data comes
from frame-level feature vectors, which are extracted directly from the raw action
videos via a ResNet convolutional network.

Spatial module. This component uses fully-connected layers to translate
feature vectors into features useful for the action recognition task.

Temporal module. This module consists of a TRN that extracts the most
representative frames of the videos and identifies the temporal relationships be-
tween them.
To capture temporal relations at different time scales, in the temporal relation
module, multiple representations of relation features are generated, each of which
leverages a different number of ordered frames.
In mathematical formula, considering a video input V composed by n ordered
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frames, the temporal relation between k frames can be expressed as:

Tk(V ) = hϕ

 ∑
i<j<...<k

gθ(fi, fj , . . . , fk)

 (1)

where fi indicates the feature representation of the ith frame and the h and
g functions aim to fuse together the features of multiple frames.

This formula can then be used to accumulate frame relations at multiple time
scales to obtain multiscale temporal relations:

MTN (V ) = T2(V ) + T3(V ) + . . .+ TN (V ) (2)

Then, an attention mechanism focused on domain discrepancy is used. This
is made up of a series of domain attention blocks with relation discriminators
for each representation of relation features. Finally, the outputs of the blocks are
added together.

Class predictor. Finally, this classifier is also a fully connected layer that
converts features extracted from previous modules into the final class. For this
purpose an attentive entropy loss is generated by domain entropy and class en-
tropy.

In addition to these modules, there is a set of discriminators trained with the
adversarial learning technique inspired by DANN [5]. The aim of these networks
is to learn domain-invariant features and a symmetric mapping of source and
target distributions in order to align them both spatially and temporally.

Spatial discriminator. It applies an image-based domain adaptation to
learn the spatial parameters by maximizing the spatial domain discrimination
loss.

Temporal discriminator. It applies a temporal-based domain adaptation
to learn the features encoded in the temporal dynamics by maximizing the tem-
poral domain discrimination loss.

Relation discriminator. It generates a domain attention value, used to
attend local temporal features, maximizing the relation domain loss.

4 The new designed architecture

The architecture described above focuses on aligning the features that contribute
more than others to the overall domain shift, i.e. those that have a greater dis-
crepancy between domains.
A larger domain gap, however, can be caused by frames that are not relevant to
the action recognition task. Therefore, aligning those irrelevant frames can lead
to suboptimal results in some cases.
Moreover, this module performs temporal modeling only after feature extrac-
tion, identifying the most descriptive frames of actions and attending on those.
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Therefore, several pieces of information may be lost during the feature extrac-
tion process.
These considerations led to the idea of designing a new architecture, with a
temporal module that overcomes these disadvantages.

Fig. 1. The new designed architecture. Above we show the original architecture of
domain adaptation. There are three main parts: on the left the feature extractor, in
the middle the temporal module which aims to align the time instants of the sequences
in the two domains, and on the right the classification part. The adaptation of the
architecture that we propose, consists in replacing the temporal module (Temporal
Relation Network, TRN) with the Temporal Shift Module (TSM) that is illustrated
below. Note that, contrary to the original architecture, features of the video are directly
fed in TSM, avoiding frames alignment as in TRN.

Specifically, the use of the Temporal Shift Module proposed by Lin et al. [11]
in place of the Temporal Relation Network (TRN) was considered (as shown
in Fig. 1). This module has the advantage of enabling all levels of temporal
modeling, even during the feature extraction itself, just like methods based on
3D CNNs, but maintaining a reasonable computational time. Consequently, there
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is no need to attend frame relations. Furthermore, this module avoids the risk
of aligning unnecessary frames.
As explained by Lin et al. [11], an activation in a video model can be represented
as A ∈ RN×C×T×H×W , where N is the batch size, C is the number of channels,
T is the time, H is the height and W is the width of the image.
TSM performs temporal modelling shifting by ±1 along the temporal dimension
a fraction of the features extracted from the frame, about 1

8 , to merge them with
the features extracted from the frames immediately preceding and immediately
following.
Consequently, after the shifting operation, the information of the current frame
is fused together with the neighboring frames. An example of a tensor with C
channels and T frames can be seen in figure 2, where different colors for each
row indicate the features extracted from different frames.

Fig. 2. Temporal modeling performed by TSM, obtained shifting a fraction of the
features along the temporal dimension. The offline and online temporal shift are shown.
(Figure from [11])

The new network formed by this temporal module was subsequently tested
on the most common action datasets.

5 Experiments and results

In this section we describe the used experimental protocol (Datasets and metrics)
and we present the results of some results together with some comments on them.

5.1 Datasets and metrics

The datasets considered for the experimental analysis are: UCF101 [23], Olympic
Sports [18], and HMDB51 [10], all of which contain actions from real-world sce-
narios. UCF101 is an action recognition data set of realistic action videos, col-
lected from YouTube, having 101 action categories. It contains 13, 320 videos
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from 101 action categories. The videos in 101 action categories are grouped
into 25 groups, where each group can consist of 4-7 videos of an action. The
videos from the same group may share some common features, such as similar
background, similar viewpoint, etc. Olympic Sports dataset contains sport ac-
tivities from YouTube sequences. It contains 16 sport classes, with 50 sequences
per class. The HMDB51 dataset is a collection of realistic videos from various
sources, including movies and web videos. The dataset is composed of 6, 849
video clips from 51 action categories (such as “jump”, “kiss” and “laugh”), with
each category containing at least 101 clips.

For the domain adaptation test, only the subsets of overlapping categories
across UCF101 and Olympic Sports datasets and the overlapping categories
across UCF101 and HMDB51 datasets are used. Therefore, the experimental
tests are conducted over two action datasets, namely UCF−Olympic and UCF−
HMDBfull, that are the most commonly used to benchmark the performance
of domain adaptation and action recognition algorithms [9].

The labeled target data are used in the learning phase to set an upper bound
on how well the model can perform. This experiment will be indicated as Target-
only, since it is conducted entirely on the target domain. The same can be done
with a Source-only experiment to obtain a lower bound, which is a result of the
absence of adaptation.

Furthermore, the architecture that uses the original TRN as temporal module
will be referred to as TRN-Model, while the architecture that uses the TSM as
temporal module, that is our proposition, will be referred to as TSM-Model.

The Accuracy, that is the percentage of correct classified videos, will be used
as the performance metric for method comparison.

5.2 Parameters setting details

The data used for this experiments consists of frame-level feature vectors pre-
extracted from a ResNet-101 model pre-trained on ImageNet. The number of
frame-level feature vectors sampled for each video is fixed to 5. Only RGB inputs
are considered for the temporal alignment operation. The stochastic gradient
descent (SGD) is utilized as the optimizer with momentum fixed to 0.9. The
initial learning rate is 3× 10−2, and then it is decreased following the common
strategy shown in DANN [5]. The weight decay is 10−4 and the batch size is
scaled proportionally to the ratio between source and target datasets.

Parameters settings for TRN-Model and TSM-Model are the follows. For
TRN-Model, The optimization was conducted as described by Chen et al. [3]:
the optimized values of λr, λt and λs, have been found using a coarse-to fine
grid search approach. This means that firstly was used a coarse grid with the
geometric sequence [0, 10−2, 10−1, 100, 101]. Then, after finding the optimal range
of values, being [0, 1], a new fine-grid search was conducted in this range with
the arithmetic sequence [0, 0.25, 0.50, 0.75, 1]. The final values found are: 1 for
λr, 0.5 for λt and 0.75 for λs. A coarse search was also conducted on the γ
value, whose best value is 0.3. For TSM-Model, it should be noted that in this
case the λr representing the trade-off weighting for relational domain loss, has
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no influence, since the domain attention blocks have been removed. The other
values of λt, λs and γ have been found similarly to the other architecture. The
final values found are: 0.5 for λt, 0.75 for λs and 0.7 for γ.

5.3 Results and comments

Source → Target U → O Gain O → U Gain
Source only 80.74 85.83
TRN-Model 96.30 +5.56 90.42 +4.59
TSM-Model 96.30 +5.56 92.08 +6.25
Target only 97.74 94.45

Table 1. Accuracy (%) for the UCF − Olympics adaptation. Gain represents the
absolute difference from the Source only accuracy.

Table 1 shows the accuracy for the UCF − Olympic experiments. As we
said before, we show the lower (training only on source data) and upper bound
(training only on target data) and the performances of original architecture
(TRN-Model) and the proposed one (TSM-Module). We tested the two configu-
ration when UCF101 dataset was the source and target was the Olympic dataset
and viceversa. It is clearly shown the gain when we perform a domain adaptation
on data for classification and it is clear that our proposition outperform existing
one.

Source → Target U → H Gain H → U Gain
Source only 72.5 85.83
TRN-Model 75.28 +2.78 80.56 +7.71
TSM-Model 77.22 +4.72 83.19 +10.34
Target only 85.28 94.57

Table 2. Accuracy (%) for the UCF − HMDBfull adaptation. Gain represents the
absolute difference from the Source only accuracy.

Similarly, Table 2 show the results of the UCF − HMDBfull experiment.
The gain with TSM-Model is even more pronounced.

The results show the importance of the spatial and temporal alignment across
domains with high discrepancy. The domain shift is evident from the performance
gap between baselines trained exclusively on the source domain and the upper
bound defined by the networks trained on target domain data. The new designed
architecture, TSM-Model, successfully improves the results of previous works on
this application. Overall, the temporal shift allows to better understand the
temporal dynamics of the videos.
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6 Conclusions

In this paper we propose adapting an existing temporal alignment module to
a Domain Adaptation Deep Network for improving the temporal dynamics cor-
respondences between source and target videos. Experimental results show the
importance of learning temporal consistency between source and target domains,
in order to improve data adaptation within a deep learning context for Action
Recognition.

In the future we plan to analyse what is the mutual contribution of spatial
and temporal alignment in domain adaptation and we plan to design some new
architecture that exploit this knowledge in order to boost current performances.
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