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Abstract. In this paper, a method is introduced which enables the forcing of any degrees of freedom
in 6 DoFs ship simulator. It is based on the introduction of an extra force in the equation of motion of
the ship and on the forcing of the second derivatives of the forced degrees of freedom rather than the
forced degrees of freedom themselves. The method is explicit which makes it easy to implement in
existing software. Examples of its application to oblique towing tests and forced heading in wind and
waves are presented.
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NOMENCLATURE

A incident wave complex amplitude
A added mass matrix (6 × 6)

A∞ added mass matrix at infinite frequency (6 × 6)
B radiation damping matrix (6 × 6)
G ship gravity centre [m]
I0 ship inertia matrix at center of gravity [kg.m2]
k incident wave number
K impulse response matrix (6 × 6)
LS selection matrix (6 × 6)
m ship mass [kg]

MT total generalized mass matrix (6 × 6)
n number of forced degrees of freedom
O origin of the North-East-Down (NED) reference frame [m]
Ob origin of the ship reference frame in NED reference frame [m]
p x-component of the angular velocity in the ship reference frame [rad s−1]
q y-component of the angular velocity in the ship reference frame [rad s−1]
qr r-component of the ship quaternion
qi i-component of the ship quaternion
qj j-component of the ship quaternion
qk k-component of the ship quaternion
r z-component of the angular velocity in the ship reference frame [rad s−1]

RNED,b rotation matrix from ship reference frame to NED reference frame [-]
TPG velocity transport operator from gravity centre to ship reference frame [-]
Tqω conversion operator of angular velocity to quaternion [-]
TΞλ conversion operator (6 × 6 − n matrix) of the 6 − n non-forced degrees of freedom λ to vector of non-forced degrees of freedom Ξ̃ [-]
Tτµ conversion operator (6 × n matrix) of the n components of the forcing extra force µ to the forcing extra force τ̂
u x-component of the ship velocity in the ship reference frame [m s−1]
v y-component of the ship velocity in the ship reference frame [m s−1]
vb velocity of the ship gravity centre [m s−1]
Vu Generalized velocity vector [m s−1, m s−1, m s−1, rad s−1, rad s−1, rad s−1]
w w-component of the ship velocity in the ship reference frame [m s−1]
x x-coordinate of the origin of the ship reference frame in the NED reference frame [m]
x0 x-axis of the North-East-Down reference frame [-]
xb x-axis of the ship reference frame [-]
Xu Generalized position vector [m, m, m, rad, rad, rad]
y y-coordinate of the origin of the ship reference frame in the NED reference frame [m]
y0 y-axis of the North-East-Down reference frame [-]
yb y-axis of the ship reference frame [-]
z z-coordinate of the origin of the ship reference frame in the NED reference frame [m]
z0 z-axis of the North-East-Down reference frame [-]
zb z-axis of the ship reference frame [-]
β true wind direction [°]
γ wave propagation direction [°]
ξG y-coordinate of the ship gravity centre in the ship reference frame [m]
Ξ vector of degrees of freedom [m, m, m, rad, rad, rad]
Ξ̂ vector of forced degrees of freedom [m, m, m, rad, rad, rad]
Ξ̃ vector of non-forced degrees of freedom [m, m, m, rad, rad, rad]
θ pitch motion [°]
λ vector of 6 − n non-forced degrees of freedom
µ vector of n degrees of freedom of the forcing extra force τ̂
ζG z-coordinate of the ship gravity centre in the ship reference frame [m]
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τ generalized force vector [N, N, N, N.m, N.m, N.m]
τ̂ forcing extra force [N, N, N, N.m, N.m, N.m]
τrad radiation force vector [N, N, N, N.m, N.m, N.m]
τdif diffraction force vector [N, N, N, N.m, N.m, N.m]
φ roll motion [°]
ψ yaw motion [°]
χG x-coordinate of the ship gravity centre in the ship reference frame [m]
ω incident wave frequency
ωb angular velocity from the NED reference frame to the ship reference frame [rad s−1]
ωe encounter frequency

1 INTRODUCTION

Ship simulators have been developed to assess the performance of a ship in various weather condi-
tions. For sailing yachts, steady-state ship simulators are called Velocity Prediction Programs (VPPs).
They were originally developed in the 1970s in the context of the development of the Measurement
Handicapping System Cairoli, 2000. According to Day et al., 2002, modern VPPs are reliable tools
for predicting sailing yacht speed in steady-states conditions.

The need to optimize maneuvers led to the later development of Dynamic VPPs (DVPPs) Oliver et al.,
1987. 6 degrees of freedom DVPPs were first introduced by Day et al., 2002 (first DVPPs used to
neglect the effect of sinkage and trim). In that work, quasi-steady forces were modelled using the Delft
Systematic Yacht Hull Series Gerritsma et al., 1993 while unsteady forces due to wave action were
modelled using the nonlinear Froude-Krylov approach (radiation and diffraction forces are obtained
from linear potential flow theory while Froude-Krylov and hydrostatic forces are obtained by integration
of the pressure over the instantaneous wetted surface). The aerodynamic loads were modelled using
the IMS method Poor, 1986. The forces from the appendages were modelled assuming they behave
like isolated lifting surfaces. In Harris, 2005, quasi-steady forces were computed from a panel code
while unsteady loads were obtained from strip theory. In Kostia and Kobus, 2004, a DVPP dedicated to
match racing is presented. Aerodynamic interactions between the sails of the two competing boats are
taken into account by modelling the wake of the sails with horseshoe vortices. The DVPP presented
in Kerdraon et al., 2020 has been developed to deal with multihulls equipped with hydrofoils. The
most significant differences of their DVPP in comparison to earlier DVPPs include (i) the use of a
polynomial model for the quasi-steady forces whose coefficients are obtained from CFD simulations
and (ii) the use of a Vortex Lattice Method (VLM) to model the appendages. That DVPP has recently
been coupled to a structural solver (based on Timoshenko beams) to investigate flutter risk for the
appendages of high performance sailing yachts Kerdraon et al., 2023.

Dynamic models have also been developed for commercial vessels. Until the renewed interest in the
use of wind for propulsion of those vessels, the focus was mostly on the prediction of motion and loads
in waves Kring et al., 1996Kim et al., 2011. The equipment of cargo vessels with wind propulsion
systems making their performance also dependent on wind, performance prediction programs for
cargo vessels have been modified such that their modelling capabilities are becoming similar to that
of VPPs or DVPPs. Examples of such ship simulators are described in Tillig and Ringsberg, 2020,
Kjellberg et al., 2023 and Charlou et al., 2022.

Modern ship simulators are usually based on the nonlinear 6 DoFs equation of motion presented in
Fossen, 2011 (or an equivalent formulation). Be it a yacht or a commercial ship, a practical difficulty
in such simulators is that of heading control. Indeed, the specification of a heading control system
is a challenging task for the naval architect, as even a simple PID controller requires the tuning of
coefficients to adapt them to the case study. Moreover, in the design process, one may be interested
in replicating towing tank tests for which a number of degrees of freedom are either blocked (e.g. yaw)
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Figure 1. Basis reference frame and ship-fixed reference frame

or forced (e.g. horizontal ship position).

To these ends, a method that would allow forcing degrees of freedom is required. Such a method
is not available in the literature to the authors’ knowledge. The present paper addresses this gap.
Moreover, another advantage of the proposed method is that it gives access to the force required for
the forcing, which is useful information e.g for the design of the appendages or for the specification
of the dynamometer in an oblique towing test.

The remainder of this paper is structured as follows. The proposed method is described in 2. Ex-
amples of its application to the simulation of an oblique towing test and to the simulation in wind and
waves of a ship with forced heading are shown in section 3.1.

2 METHODS

2.1 Notations and conventions

The frames of reference are shown in Fig. 1. The North-East-Down (NED) reference frame is chosen
as the inertial frame of reference (RNED). Its origin is O. Its axis are x0 (pointing to the North),
y0 (pointing to the East) and z0 (pointing down). The waves propagation direction is denoted γ.
γ =0◦ corresponds to waves propagating to the North. The true wind direction is denoted β. β =0◦

corresponds to wind blowing to the North.

The frame of reference attached to the ship is Rb. Its origin is Ob. Its axis (xb,yb, zb) are such as xb
points to the bow, yb points to port and zb points down.

The coordinates of the origin of the ship reference frameOb in the inertial reference frame are denoted
(x, y, z). Let G be the center of gravity of the ship. Its coordinates in the ship reference frame are
denoted (χG, ξG, ζG). Its velocity relative to the inertial frame and expressed in the ship reference
frame is denoted vb = [u, v, w]T .

The ship rotations are denoted φ (roll), θ (pitch) and ψ (yaw). The ship reference frame is deduced
from the NED reference frame using the usual Cardan/Tait-Bryan angles convention, i.e rotation of
ψ about z0 first, then rotation of θ about the new y-axis, and finally rotation of φ about the new x-
axis (equal to xb). The angular velocity from the NED reference frame to the ship reference frame is
denoted ωb = [p, q, r]T .

The ship mass is denoted m. Its inertia matrix at its center of gravity is denoted I0.
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2.2 Equation of motion without forcing

Let us defineXu = [x, y, z, qr, qi, qj , qk]T the generalized position vector, in which we recall that (x, y, z)
are the coordinates of the ship reference frame origin, and in which [qr, qi, qj , qk] is the quaternion
corresponding to the rotation from the NED reference frame to the ship reference frame. For the
Cardan/Tait-Bryan angles convention, there exist the simple following relationships between the ship
rotations (roll, pitch, yaw angles) and the quaternion components Henderson, 1977:

• Pitch angle θ:

sin θ = 2(qrqj − qiqk) (1)

• Roll angle φ:

cosφ cos θ = 1 − 2(q2
i + q2

j )
sinφ cos θ = 2(qrqi + qjqk)

(2)

• Yaw angle ψ:

cosψ cos θ = 1 − 2(q2
j + q2

k)
sinψ cos θ = 2(qiqj + qrqk)

(3)

Let Vu = [u, v, w, p, q, r, ]T be the generalized velocity vector. In the case where the degrees of
freedom are not forced, the ship motion equation can be written as an ordinary differential equation
of first order :

®
Ẋu = f(Xu,Vu)
V̇u = M−1

T {
∑
i τi,G(t,Xu,Vu) + C(Vu)Vu}

(4)

Where:

• f is a function which relates the time derivative of the generalized position vector to the position
vector and the generalized velocity vector. It can be written:

f =
®

RNED,bTPGVu

1
2Tqωωb

(5)

With:

Tqω =


−qi −qj −qk
qr −qk qj
qk qr −qi

−qj qi qr

 (6)
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And:

TPG =

1 0 0 0 −ζG ξG
0 1 0 ζG 0 −χG
0 0 1 −ξG χG 0

 (7)

• MT is the total generalized mass matrix. It is equal to the sum of the generalized mass matrix
and the added mass matrix: MT = M + A∞. The generalized mass matrix reads: M =ï
mI3x3 03x3
03x3 I0

ò
• τi,G are the generalized external forces applying to the ship (gravity force, buoyancy force, wave-
structure interaction force, hull resistance, appendages force, etc.). They are expressed at the
ship COG G in the ship reference frame Rb.

• C(Vu)Vu is the fictitious force. The operator C(Vu) can be written:

C(Vu) =


0 mr −mq 0 0 0

−mr 0 mp 0 0 0
mq −mp 0 0 0 0
0 0 0 0 −Izxp− Izyq − Izzr Iyxp+ Iyyq + Iyzr
0 0 0 Izxp+ Izyq + Izzr 0 −Ixyq − Ixzr − Ixxp
0 0 0 −Iyxp− Iyyq − Iyzr Ixyq + Ixzr + Ixxp 0


(8)

Note that because of the off-diagonal terms of the generalized mass matrix M, the nonlinear terms
in the equation of motion (fictitious force C(Vu) and term Tqωωb in 5) and the forces applying to the
body, the degrees of freedom of the ship are coupled.

2.3 Equation of motion with forcing, extra force τ̂

Let us assume that an arbitrary number of degrees of freedom n among Ξ = [x, y, z, φ, θ, ψ]T are
forced. Let Ξ̂ be the vector of the forced degrees of freedom such as to have its components Ξ̂i equal
to the forced motion if the degree of freedom i is forced (1 ≤ i ≤ 6), or equal to 0 otherwise. Let Ξ̃
the vector of non-forced degrees of freedom complementary to Ξ̂, such as Ξ = Ξ̃ + Ξ̂. That vector
can be written:

Ξ̃ = TΞλλ (9)

where λ is the vector of the 6 − n non-forced degrees of freedom (thus TΞλ is a 6 × (6 − n) matrix).

The forcing is obtained by adding an extra force τ̂ . Taking into account the extra force, the equation
of motion becomes:

{ ˆ̇Xu = f(X̂u, V̂u)
ˆ̇Vu = MT

−1{
∑
i τi,G(t, X̂u, V̂u) + τ̂ + C(V̂u)V̂u}

(10)
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where X̂u, V̂u,
ˆ̇Vu are respectively the generalized position vector with forcing, the velocity vector with

forcing and the acceleration vector with forcing (the forced degrees of freedom are taken into account
in those vectors).

For the problem closure, the extra force must have n degrees of freedom. Therefore, without loss of
generality, one can write the extra force as a function of n variables µ =

[
µ1, . . . , µn

]
:

τ̂ = Tτµµ (11)

where Tτµ is a 6 × n matrix.

In theory, the operator Tτµ can be chosen arbitrarily provided that it allows the forcing to be achieved
(the corresponding mathematical condition is shown in section 2.5). However, in practice, one should
be careful to select an operator Tτµ representative to the case study. For example, in case one would
like to model an oblique towing test in which both sinkage and trim are free, the z-components of the
force and the moments must be 0. Therefore, all the elements of the third line and of the sixth line of
Tτµ must be equal to the zero in that case. In case of a forced heading, τ̂ = Tτµµ1 should represent
the effect of the rudder. Thus, one may use Tτµ =

[
0 1 0 0 0 χrd

]T with χrd be the x-coordinate
of the rudder axis in the ship-fixed reference frame. By doing so, µ1 is the side force delivered by the
rudder.

With the forcing, the problem of determining the degrees of freedom which are forced is replaced by
the problem of determining the extra force. This problem bears similarity with that of multibody sys-
tems modelling. Advanced methods have been developed to deal with such problems, including the
articulated-body algorithm or the composite-rigid-body algorithm Featherstone, 2008, the Augmented
formulation Negrut, 1998, the Discrete Euler-Lagrange equation Ham et al., 2015. Some have been
applied to deal with problems relevant to the ocean engineering, such as lifting or lowering operations
Cha et al., 2010; Ham et al., 2015; Wuillaume et al., 2021.

These methods are powerful but are also complex in their implementations, and for the user to specify
the input data. Therefore, in the present study, a simpler method is proposed. The concept is to
replace the forcing of the motion Ξ̂ by the forcing of their second derivatives ˆ̈Ξ, because (i) this will
make the ship follow the prescribed forced motions provided that the initial conditions match that of the
forced motion and (ii) it will be shown that it is relatively simple to relate the extra force to the second
derivatives of the forced motion. Nevertheless, to make the method works, relationships between the
second derivatives of the forced motion and the acceleration vector are required. They are developed
in the following section.

2.4 Relationships between the forced motion and the acceleration vector

Let us consider first the case of pitch motion. By differentiating Eq. 1, one can show that the time
derivatives of the pitch motion θ̇ and θ̈ can be related to the time derivatives of the quaternion com-
ponents:

θ̇ cos θ = 2(q̇rqj + qr q̇j − q̇iqk − qiq̇k) (12)

θ̈ cos θ − θ̇2 sin θ = 2ΛθQ̈ + 4(q̇r q̇j − q̇iq̇k) (13)
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Where Λθ =
[
qj −qk qr −qi

]
and Q̈ =

[
q̈r q̈i q̈j q̈k

]T .
Moreover, the time derivative of the angular velocity components ω̇b =

[
ṗ q̇ ṙ

]T are related to the
quaternion components according to:

Q̈ = 1
2

Tqωω̇
b + 1

2
Ṫqωω

b (14)

Where Ṫqω =


−q̇i −q̇j −q̇k
q̇r −q̇k q̇j
q̇k q̇r −q̇i

−q̇j q̇i q̇r


By combining Eq. 13 and Eq. 14, one can show:

ΛθTqωω̇
b = θ̈ cos θ + σθ (15)

Where:

σθ = −ΛθṪqωω
b − 4(q̇r q̇j − q̇iq̇k) − θ̇2 sin θ (16)

Using the same procedure, relationships similar to Eq. 15 can be established for roll motion and yaw
motion.

For roll motion, differentiation of Eq. 2 leads:

φ̈ cos θ−2φ̇ tan θ(q̇rqj+qr q̇j−q̇iqk−qiq̇k) = 2ΛφQ̈+4(q̇r q̇i+q̇j q̇k) cosφ−2(q̇rqi+qr q̇i+q̇jqk+qj q̇k)φ̇ sinφ
+ 4(q̇2

i + q̇2
j ) sinφ+ 4(qiq̇i + qj q̇j)φ̇ cosφ (17)

Where:

Λφ =
[
qi cosφ qr cosφ+ 2qi sinφ qk cosφ+ 2qj sinφ qj cosφ

]
(18)

Combining Eq. 14 and Eq. 17 leads to:

ΛφTqωω̇
b = φ̈ cos θ + σφ (19)

Where:

σφ = −ΛφṪqωω
b − 4(q̇r q̇i + q̇j q̇k) cosφ+ 2(q̇rqi + qr q̇i + q̇jqk + qj q̇k)φ̇ sinφ
− 4(q̇2

i + q̇2
j ) sinφ− 4(qiq̇i + qj q̇j)φ̇ cosφ− 2φ̇ tan θ(q̇rqj + qr q̇j − q̇iqk − qiq̇k) (20)
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For yaw, differentiation of Eq. 3 leads:

ψ̈ cos θ−2ψ̇ tan θ(q̇rqj+qr q̇j−q̇iqk−qiq̇k) = 2ΛψQ̈+4(q̇iq̇j+q̇r q̇k) cosψ−2(q̇iqj+qiq̇j+q̇rqk+qr q̇k)ψ̇ sinψ
+ 4(q̇2

j + q̇2
k) sinψ + 4(qj q̇j + qkq̇k)ψ̇ cosψ (21)

Where:

Λψ =
[
qk cosψ qj cosψ qi cosψ + 2qj sinψ qr cosψ + 2qk sinψ

]
(22)

Combining Eq. 14 and Eq. 21 leads to:

ΛψTqωω̇
b = ψ̈ cos θ + σψ (23)

Where:

σψ = −ΛψṪqωω
b − 4(q̇iq̇j + q̇r q̇k) cosψ + 2(q̇iqj + qiq̇j + q̇rqk + qr q̇k)ψ̇ sinψ

− 4(q̇2
j + q̇2

k) sinψ − 4(qj q̇j + qkq̇k)ψ̇ cosψ − 2ψ̇ tan θ(q̇rqj + qr q̇j − q̇iqk − qiq̇k) (24)

Finally, by assembling Eqs. 15, 19, 23, one can write:

ΛV̇u = cos θ

ϕ̈θ̈
ψ̈

+ σ (25)

Where

• Λ =

03x3

Λϕ

Λθ

Λψ

Tqω



• σ =

σϕσθ
σψ



By differentiating Eq. 5, one can show:

ẍÿ
z̈

 = RNED,bTPG
ˆ̇Vu + ṘNED,bTPGV̂u (26)
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Where ṘNED,b is given in Appendix.

Finally, by assembling Eq. 25 and 26, one can write:

Ξ̈ cos θ = AΛ
ˆ̇Vu + Bσ (27)

Where:

• Ξ̈ =
[
ẍ ÿ z̈ ϕ̈ θ̈ ψ̈

]T
• AΛ =

ï
RNED,bTPG cos θ

Λ

ò
• Bσ =

ñ
ṘNED,bTPGV̂u cos θ

−σ

ô
Eq. 28 provides the required relationship between the second derivatives of the degrees of freedom
and the acceleration vector.

2.5 Relationship between the extra force and the second derivatives of the forced degrees of
freedom

Let us recall that by definition, the vector of degrees of freedom Ξ is equal to the sum of the vector
of forced degrees of freedom Ξ̂ and the vector of the non-forced degrees of freedom Ξ̃ (Ξ = Ξ̂ + Ξ̃).
Thus, using Eq. 10, the relationship between the second derivatives of the degrees of freedom and
the acceleration vector (Eq. 28) can be rewritten such as to obtain a linear system relating the second
derivatives of the non-forced degrees of freedom ˜̈Ξ and the extra force τ̂ to the second derivatives of
the forced degrees of freedom ˆ̈Ξ and of the sum of the other forces :

ˆ̈Ξ cos θ + ˜̈Ξ cos θ = AΛMT
−1τ̂ + AΛMT

−1{
∑
i

τi,G(t, X̂u, V̂u) + C(V̂u)V̂u} + Bσ (28)

By recognizing in this last equation the equation of motion without forcing (Eq. 4) and by rearranging
the terms, one can show:

AMT
−1τ̂ − ˜̈Ξ cos θ = ˆ̈Ξ cos θ − AV̇u − B (29)

where V̇u is the acceleration vector without forcing as given by Eq. 4.

By definitions of the operators TΞλ and Tτµ (Eqs. 9 and 11), Eq. 30 can be rewritten:

AMT
−1Tτµµ− TΞλ cos θλ̈ = ˆ̈Ξ cos θ − AV̇u − B (30)
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Figure 2. Procedure for the calculation of the extra force and of the forced acceleration vector

Therefore, let us define the vector Y assembling the second derivatives of the non-forced degrees of

freedom and the components of the extra force: Y =
ñ
λ̈
µ

ô
. Eq. 30 can thus be rewritten:

{AMT
−1 [06×6−n Tτµ

]
− cos θ

[
TΞλ 06×n

]
}Y = ˆ̈Ξ cos θ − AV̇u − B (31)

This last equation (combined with Eq. 11) can be used to determine the extra force - and thus the
forced acceleration vector ˆ̈Vu (using Eq. 10) - provided that the matrix {AMT

−1 [06×6−n Tτµ

]
−

cos θ
[
TΞλ 06×n

]
} is invertible. Thismathematical condition expresses whether the selected operator

Tτµ allows the desired forced movement to be achieved.

2.6 Procedure of calculation of the forced acceleration vector

In practice, the procedure is as follows. At the current time t, the generalized position vector Xu and
generalized velocity vector Vu are known. Moreover, it is assumed that they are such that Ξ = Ξ̂
and Ξ̇ = ˆ̇Ξ (the forced degrees of freedom and their first derivatives have correctly been enforced up
to the current time t). The first step is to compute the ”free” acceleration vector V̇u using the ”free”
motion equation Eq. 4. The second step is then to calculate the extra force τ̂ using Eq. 31 and Eq.
11. The third step is to calculate the forced acceleration using Eq. 10 which is finally used by the time
stepper to advance forward in time.

Figure 2 shows a graphical representation of the procedure.

3 Results

The method has been implemented in xdyn. xdyn is an open-source system-based method ship
simulator which has mostly been developed by the company Sirehna xdyn n.d. It is a highly flexible
simulation tool as it allows the user to define which forces to take into account among many op-
tions. To date, the available options include the hydrodynamics forces acting on the hull according
to the MMG model Yasukama and Yoshimura, 2015, propeller(s) forces (including the Wageningen
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Full scale 1/110 scale
Hull
Lpp (m) 320.0 2.902
B/Lpp 0.181
d/Lpp 0.065
∇/L3

pp 0.00954
Cb 0.81

LCG/Lpp 0.035
Propeller
Dp/Lpp 0.0308
Z 4

P/Dp 0.721
AE/A0 0.431

Rudder
Ar/L

2
pp 0.00133

b/Lpp 0.0494
Wind propulsion units
Type Soft sails

Number 3
As/L

2
pp 0.00977

Ls1/Lpp -0.3125
Ls2/Lpp 0.
Ls2/Lpp 0.3125

Table 1. Main characteristics of the case study

B-series propellers Bernitsas et al., 1981), rudder forces, propeller and rudder forces taking into ac-
count interactions Blendermann et al., 1993, linear or nonlinear hydrostatic forces, wave forces (linear
radiation forces, linear diffraction forces, linear or nonlinear Froude-Krylov forces), wind forces and
wind propulsion units forces (through their aerodynamic coefficients). Moreover, controllers can be
taken into account. xdyn has been validated for the case of the performance of an energy ship in
calm water in Charlou et al., 2023. In its present state, xdyn can be used to simulate a single ship in
open water with waves and wind. More complex situations such as a ship in confined waters or ships
passing by each other would require further developments.

3.1 Case study

The case study is a KVLCC2 tanker SIMMAN 2008 : Workshop Verification and Validation of Ship
Manoeuvring Simulation Methods n.d. equipped with three soft sails (1000 m2 each) Charlou, 2023. Its
main characteristics are shown in Table 1 at full scale and at 1/110 scale. It is of particular interest for
this study because it includes wind propulsion, which introduces additional difficulty for course-keeping
(because a course deviation results in a change of apparent wind angle which in turn changes the
aerodynamic force from the sails).

The physical effects which are taken into account in the model are:

• Gravity force

• Hull resistance. It is modelled using the Holtrop & Mennen model Holtrop and Mennen, 1982.

• Maneuverability forces. They are modelled using the MMG model Yasukama and Yoshimura,
2015. The hydrodynamic derivatives are taken from that same source.

• Nonlinear hydrostatic and Froude-Krylov forces. In xdyn, they are obtained by integration of
the hydrostatic pressure and the dynamic pressure due to the incident waves over the instanta-
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neous wetted surface. Incident waves are modelled by superposition of elementary Airy waves.
Stretching is applied for the prediction above the mean water level of physical quantities related
to incident waves.

• Diffraction forces and radiation forces.

• Propeller and rudder forces. They are modelled according to Yasukama and Yoshimura, 2015.

• Sail forces. They are calculated from aerodynamic coefficients from theORCVPPmodel (ORC),
2021.

In xdyn, diffraction forces and radiation forces are expressed according to linear potential theory.
According to Bougis, 1980Horel, 2016, the radiation force τrad,G can be written:

τrad,G(t,Xu,Vu, V̇u) = −A∞V̇u +A∞LS(V̄u)(Vu −V̄u)−
∫ ∞

0
K(t′, V̄u)

(
Vu(t− t′) − V̄u

)
dt′ (32)

Where A∞ is the added mass matrix for infinite frequency and K(t′, V̄u) is the impulse response
function taking into account the average horizontal velocities (forward speed and drift velocity) V̄u) =[
ū v̄ 0 0 0 0

]T ; and where LS(V̄u) is the selection matrix:

LS(V̄u) =


0 0 0 0 0 v̄
0 0 0 0 0 −ū
0 0 0 −v̄ ū 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (33)

The added mass matrix for infinite frequency A∞ and the impulse response function K(t, V̄u) can be
obtained from hydrodynamic coefficients computed in the frequency domain without forward speed
(added mass A(ω) and radiation damping B(ω)) using:

A∞ = lim
w→+∞

A(ω) (34)

K(t, V̄u) = 2
π

∫ +∞

0
B(ω) cos(ωt)dω − 2

π

ï∫ +∞

0
(A(ω) − A∞) cos(ωt)dω

ò
LS(V̄u) (35)

The incident waves being modelled by superposition ofN elementary Airy waves, the diffraction force
can be written:

τdif,G(t) = ℑ

(
N∑
i=1

Fdif (ωe,i, ψ − γi)Aiei(ki(x cos γi+y sin γi)−ωit)

)
(36)

Where :

• Fdif (ωe,i, ψ − γi) is the diffraction force coefficient in frequency domain for an incident wave of
unit amplitude propagating in direction ψ − γi and with frequency ωe,i

• Ai, ki, ωi are respectively the incident wave amplitude (complex number including phase), the
wave number and the frequency of the component i of the incident wave.

The encounter frequency ωe,i and the incident wave frequency ωi are related by ωe,i = ωi−ki(ū cos γi+
v̄ sin γi).

In this study, the frequency domain hydrodynamic coefficients A(ω),B(ω) and Fdif (ω, γ) were com-
puted using the open-source software Nemoh Babarit and Delhommeau, 2015.
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3.2 Oblique Towing Test

This section shows a first example of application of the method. The configuration is that of an oblique
towing test with the 1/110 scale model. The propeller rotation velocity is 0. There are neither wind nor
waves. The forced motion is such that:

x(t) = Ut with U =0.763 m s−1 (corresponding to 15 kn at full scale)
y(t) = 0
φ(t) = 0
ψ(t) = 15◦

(37)

The ship is free to move only in heave and pitch, thus the operator TΞλ reads:

TΞλ =


0 0
0 0
1 0
0 0
0 1
0 0

 (38)

For the operator Tτµ, as noted previously, many options are possible provided that the elements of
the third row (component of the extra force in the vertical direction) and sixth row (moment along the
vertical axis of the extra force) are equal to zero. In this study, we chose the simplest possibility:

Tτµ =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 (39)

Figure 3 shows the simulated motion of the ship. One can see that it follows well the prescribed motion
for those degrees of freedom which are forced, while the free motions exhibit damped oscillations as
expected. Figure 4 shows the six components of the extra force. The z-component of the force and
y-component of the moment are equal to 0 as expected. The other components tend to constant
values after a few initial oscillations that can be attributed to radiation effects.

3.3 Forced heading

In this second example, the full-scale ship going forward in waves and wind is considered. The wind
profile is uniform. The wind speed is 10 m s−1 and the true wind direction is 90◦ (wind blowing to the
East). The incident wave is a regular wave of period 8 s, wave height 2 m and wave direction 120◦.
The propeller rotational speed is 99 rpm.

Three configurations were simulated. In the first one, the 6 Degrees of Freedoms of the ship are
enabled. No heading control system is specified. In Figure 5, one can see that the unbalance in the
yaw-moment causes the ship to slowly deviates from its original 0◦ heading angle. At t = 300 s, the
heading is −5◦. Furthermore, this phenomenon does not seem to dissipate with time. Longer simu-
lations have been carried out. They show that the heading angle keeps decreasing with increasing
simulation time (−68◦ at t = 1200 s).

In the second configuration, the ship heading is forced to 0◦. The operator Tτµ, was set to the simplest
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Figure 3. Motion of the ship in oblique towing test example
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Figure 4. Extra force in oblique towing test example
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Figure 5. Motion of the ship without heading control and with heading forced to 0◦. Wave period is
8 s, wave height is 2 m, and wave direction is 120◦. True wind speed is 10 m s−1, wind direction is 90◦.

possibility Tτµ =
[
0 0 0 0 0 1

]T . Conversely, the operator TΞλ is

TΞλ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 (40)

Figure 5 shows that, as expected, the ship heading remains constant (equal to 0◦) all over the simula-
tion. Moreover, it can be observed that during the first hundred seconds of the simulation, the motions
of the ship centre and both the roll motion and pitch motion of the ship are very similar to that of the
simulation with 6 DoFs. Differences only start to be visible by the second half of the simulation. They
can be attributed to the significantly different heading angles between the two configurations at that
point in the simulation. All in all, this indicates that the proposed forcing motion method can be used
as a simple heading control system with little to no effects on the ship response in the other degrees
of freedom.

From the results shown in Figure 5, one can get the impression that, without heading control, the ship
drifts towards y < 0 , which would be surprising since the wind direction and the wave propagation
direction are oriented towards y > 0. This effect actually results from the lack of heading control.
Indeed, as can be seen in the Figure, the ship slowly rotates towards the wind due to unbalance of
the moment in yaw (yaw motion is ψ = -5o at the end of the simulation). Therefore, as the ship is
moving forward and as the ship bow points more and more towards y < 0, the ship trajectory gets
deviated towards y < 0.

In the previous configuration, forced heading is achieved by applying a pure yaw moment (only the
sixth component of the operator Tτµ is different from 0). In practice, heading control is achieved thanks
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Figure 6. Comparison of the motion of the ship with forced heading angle with a pure yaw moment
for the extra force and with an extra force model mimicking the effect of a perfect rudder.

to the rudder action. A pure yaw moment is poorly representative of the physical effect of the rudder.
Indeed, a rudder essentially generates a side force. It is the fact that this side force is generated
far from the ship centre that leads to a yaw moment which can be significant. Therefore, a more
representative model of the ship with perfect heading control system can be obtained by using the
operator Tτµ =

[
0 1 0 0 0 χrd

]T with χrd be the x-coordinate of the rudder axis in the ship-fixed
reference frame.

Figure 6 shows a comparison of the motion response of the ship with forced heading achieved by
applying a pure yaw moment (configuration 2 labelled pure yaw moment in the figure) and by applying
a pure side force at the rudder axis (configuration 3 labelled perfect rudder in the figure). Figure 6
shows a comparison of the extra force in the two configurations. χrd =−170 m in the case study. One
can see despite the differences in the extra force models (Tτµ operator), the differences in the motion
response are hardly visible. This is due to the side force component of the extra force being small
in comparison to other forces. Overall, it seems that using a pure yaw moment for the extra force
required to achieve a fixed heading is quite acceptable.

4 CONCLUSION

In this study, a method to force a number of degrees of freedom in ship simulators has been proposed.
It is based on the forcing of the second derivatives of the forced degrees of freedom. The method
has been implemented in the open-source simulator xdyn. Examples of simulations of oblique towing
tests and forced heading have been presented which show that the method works as expected.

The authors believe that the proposed method is beneficial for the ocean engineering community
because it allows both the modelling of a ship using modern formulations of its equation of motion
and the forcing of some of its degrees of freedom. An example is that is allows the forcing of the
ship heading without the difficult task of having to specify a heading control system. Furthermore,
the forcing force can be used by the naval architect for the design of the heading control system and
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Figure 7. Comparison of the extra force for the ship with forced heading angle with a pure yaw
moment for the extra force and with an extra force model mimicking the effect of a perfect rudder.

appendages.

The method requires an explicit relationship between the second derivatives of the degree of freedom
and the acceleration vector. Such relationship is provided in this paper for the Cardan/Tait-Bryan
angles convention. Similar relationships for other angles convention remain to be derived, which has
been left for future work. Moreover, future work may consider coupling the proposed method to the
articulated-body algorithm to deal with, for example, ships equipped with cranes.

APPENDIX

The rotation matrix RNED,b can be written as function of the quaternion components as:

RNED,b =

q2
r + q2

i − q2
j − q2

k 2(qiqj − qrqk) 2(qiqk + qrqj)
2(qiqj − qrqk) q2

r + q2
i − q2

j − q2
k 2(qjqk − qrqi)

2(qiqk + qrqj) 2(qjqk − qrqi) q2
r + q2

i − q2
j − q2

k

 (41)

Its derivative is:

ṘNED,b = 2

 qr q̇r + qiq̇i − qj q̇j − qkq̇k
q̇iqj + qiq̇j − q̇rqk − qr q̇k)
q̇iqk + qiq̇k + q̇rqj + qr q̇j

q̇iqj + qiq̇j − q̇rqk − qr q̇k q̇iqk + qiq̇k + q̇rqj + qr q̇j
qr q̇r + qiq̇i − qj q̇j − qkq̇k q̇jqk + qj q̇k − q̇rqi − qr q̇i
q̇jqk + qj q̇k − q̇rqi − qr q̇i qr q̇r + qiq̇i − qj q̇j − qkq̇k

 (42)
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