
HAL Id: hal-04493165
https://hal.science/hal-04493165v2

Preprint submitted on 29 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling polyhedral symmetries with a dedicated
Branch&Cut: application to a knapsack variant

Alexandre Heintzmann, Pascale Bendotti, Cécile Rottner

To cite this version:
Alexandre Heintzmann, Pascale Bendotti, Cécile Rottner. Handling polyhedral symmetries with a
dedicated Branch&Cut: application to a knapsack variant. 2024. �hal-04493165v2�

https://hal.science/hal-04493165v2
https://hal.archives-ouvertes.fr

Handling polyhedral symmetries with a dedicated
Branch&Cut: application to a knapsack variant

Alexandre Heintzmann, Pascale Bendotti, and Cécile Rottner

EDF Lab Saclay, 7 bd Gaspard Monge, 91120 Palaiseau, France.
{alexandre.heintzmann, pascale.bendotti, cecile.rottner} @edf.fr

Abstract. In this paper, we define a new variant of the knapsack prob-
lem, the Symmetric-weight Chain Precedence Knapsack problem (SCPKP).
The (SCPKP) is the core structure of the Hydro Unit Commitment
problem, the latter being a production scheduling problem relative to
hydroelectric plants. The (SCPKP) is shown to be NP-hard. Polyhedral
symmetries, featured by the (SCPKP), are introduced as a generaliza-
tion of the classical symmetries applying only on the constraints without
restricting the values of two symmetric solutions to be equal. A polyhe-
dral study focuses on inequalities with 0-1 coefficients. Necessary facet-
defining conditions are described through a new structure, called pattern,
encoding the polyhedral symmetries of the (SCPKP). A dedicated two-
phase Branch & Cut scheme is defined to exploit the symmetries on the
pattern inequalities. Experimental results demonstrate the efficiency of
the proposed scheme in particular with respect to default CPLEX and a
family of cover inequalities related to the Precedence Knapsack Problem.

Keywords: Polyhedral study · Precedence constraints · Cover inequal-
ities.

Consider I groups of J elements, where I and J are positive integers. Let
item (i, j) be element j of group i. Item (i, j) has weight wij ≥ 0 and value vij .
Within each group, order constraints are such that any item (i, j) can be selected
provided item (i, j − 1) is selected, thus inducing chain precedence constraints.
Let C be the maximum capacity. The Chain Precedence Knapsack problem
(CPKP) is to maximize the total value of the selected items, while the chain
precedence constraints are verified, and the total weight of the selected items
is less than or equal to C. The Symmetric-weight Chain Precedence Knapsack
problem (SCPKP) is a (CPKP) where item (i, j) has weight wij = wj , i.e.,
the weight of item (i, j) does not depend on the group index i. It means that
items (i, j) and (i′, j) have the same weight, thus the knapsack is symmetrically
weighted with respect to the groups.

The motivation for studying the (SCPKP) is that it is the core structure of
the Hydro Unit Commitment (HUC) problem [8], which is a production schedul-
ing problem relative to hydroelectric plants.

The Knapsack Problem (KP) and its variants have been widely studied in
the literature [11]. The (SCPKP) and the (CPKP) have not been studied yet,

2 A. Heintzmann et al.

but can be related to some classical variants of the knapsack problem. As the
chain precedence constraints are a special case of precedence constraints, the
(CPKP) is a direct special case of the Precedence Knapsack Problem (PKP) [5].
Similarly as disjunctive constraints can be used alternatively for the (CPKP),
the (CPKP) is also a special case of the Disjunctive Knapsack Problem (DKP)
[20].

In this paper, the (SCPKP) is shown to be NP-hard. A compact formulation
is defined with its corresponding polytope. A literature review of facet-defining
inequalities for problems related to the (SCPKP) is exposed. The main contribu-
tions are the polyhedral study of the (SCPKP), extending the preliminary work
in [9], and a two-phase Branch & Cut (B&C) scheme. A new structure, called
pattern, is defined to embed the symmetries of the (SCPKP). New inequalities,
associated with the patterns and covering all the facets of the (SCPKP) with
0-1 coefficients are introduced. Necessary facet-conditions are defined for these
inequalities. An algorithm to generate patterns verifying these conditions is de-
scribed and is used as pre-processing in the first phase of the B&C scheme. The
separation algorithm, involved in the second phase of the B&C scheme, reduces
to solve a maximum matching problem for the pool of the first phase generated
patterns. To evaluate the efficiency of the corresponding inequalities, a numerical
comparison shows that pattern inequalities largely outperform CPLEX gener-
ated cuts, and also improve standard lifted minimal (induced) cover inequalities
for variants of the KP.

In Section 1 the complexity of the (SCPKP) is stated and some polyhe-
dral results from the literature for variants of the KP are reported. Polyhedral
symmetries are introduced. In Section 2 patterns are defined as well as in-
equalities and necessary facet-defining conditions are provided. In Section 3
the two-phase B&C scheme is described. In Section 4 experimental results are
presented. Proofs and algorithmic details can be found in an online companion
paper [10].

1 The Symmetric-weight Chain Precedence Knapsack

In this section, we first state the NP-hardness of the (SCPKP). A literature
review of related problems is done, and first polyhedral properties are provided
and polyhedral symmetries are introduced.

We first identify two special cases where the (SCPKP) is easy to solve.

Property 1 If I = 1 or J = 1, the (SCPKP) can be solved in polynomial time.

In the following, we then only consider instances of the (SCPKP) with I ≥ 2
and J ≥ 2. The NP-hardness of the (SCPKP) can be proven by reduction from
the Subset Sum Problem.

Theorem 1 The (SCPKP) is NP-hard when I ≥ J

Let xij be a binary variable such that xij = 1 if item (i, j) is selected in
the solution. We denote V the set of variables xij for the (SCPKP). The total

Handling polyhedral symmetries with a dedicated Branch&Cut 3

number of variables is n = I × J . The (SCPKP) can be formulated with the
Integer Linear Program (ILP) FSCPK as follows.

max
xij∈{0,1}

I∑
i=1

J∑
j=1

vijxij

s.t.
I∑

i=1

J∑
j=1

wjxij ≤ C, (1)

xij ≤ xij−1 ∀xij ∈ V, j ≥ 2 (2)

In this formulation, the objective function is to maximize the total value of
the selected items. Inequality (1) is the capacity constraint, inequalities (2) cor-
respond to the chain precedence constraints. We define the polytope P(SCPKP)

as the convex hull of the feasible solutions of the (SCPKP):

P(SCPKP) = conv
{
x ∈ {0, 1}n : x satisfies (1)− (2)

}
.

The proposed formulation is the so-called incremental formulation [16]. It
is also possible to define a multiple choice formulation, featuring disjunctive
constraints instead of chain precedence constraints (2). Both formulations yield
the same LP relaxation [6], but we do not further detail the multiple choice
formulation, as it is not necessary for the purpose of this paper.

We can remark that the (SCPKP) features symmetries. Indeed, items have
symmetric weights, the chain precedence constraints (2) are the same for each
group, and the capacity constraint (1) applies to all groups. Hence, from a feasible
solution, one can obtain another feasible solution by a permutation of the groups.
However, the values of such solutions are not necessarily the same, as there are
no symmetries in the values. We define polyhedral symmetry as a symmetry
restricted to the constraints set.

Definition 1 A polyhedral symmetry is a permutation π of the variables such
that for any feasible solution x, π(x) is also a feasible solution.

In other words, a polyhedral symmetry only concerns the constraints, thus gen-
eralizing the classical concept of symmetry, which also restricts the objective
values of two symmetric solutions to be equal. Therefore classical methods to
handle symmetries [15] may not apply to polyhedral symmetries.

For example, polyhedral symmetries featured by the SCPK correspond to the
action of the symmetric group acting on the columns of the solution matrix, i.e.,
any permutation of the columns of the solution matrix is a polyhedral symmetry.
The most recent developments to handle such symmetries involve lexicographical
ordering [11, 3, 4], symmetric branching disjunctions [17] or variable aggregation
[12]. Such techniques rely on the symmetrical aspects of the objective function
and therefore do not apply to polyhedral symmetries of the SCPK.

In particular, the idea is not to find a representative solution and discard the
symmetric solutions, but rather to capture all polyhedral symmetric solutions in
a special structure providing an efficient way to find an optimal solution.

4 A. Heintzmann et al.

1.1 Related knapsack polytopes

The (SCPKP) is a knapsack variant. In this section, we present valid inequalities
of related knapsack problems. We focus on generalizations of the (SCPKP),
namely the (PKP) and the (DKP).

Disjunctive constrained Knapsack Problem Five families of inequalities
containing facet-defining inequalities have been reported for the (DKP) [20]: the
clique inequalities; the cover inequalities; odd-cycle and hypergraph inequalities,
the clique-cover inequalities; the clique-cover-partition inequalities. Extensions of
cover inequalities such as clique-cover inequalities and clique-cover-partition in-
equalities rely on cliques in the disjunctive graph. The odd-cycle inequalities and
their extension, the hypergraph inequalities, apply to cycles in the disjunctive
graph. As for the precedence graph of the (SCPKP), the corresponding disjunc-
tive graph is very special, therefore the aforementioned inequalities cannot be
adapted to the (SCPKP).

Precedence constrained knapsack polytope The (PKP) [5] is defined as
a binary knapsack problem with additional prcedence constraints. Classical in-
equalities from the binary knapsack polytope, namely minimal cover and related
inequalities [1], have been extended to the (PKP) [5] as Minimal Induced Cover
(MIC) inequalities [5, 18, 14]. These MIC inequalities have been enhanced with a
lifting procedure [18], to obtain Downlifted and Uplifted MIC inequalities. Such
inequalities can be adapted to the (SCPKP), by introducing coefficients αij and
βij . In this case, they have the following form:∑

(i,j)∈U

xij +
∑

(i,j)∈Up

αij(1− xij) +
∑

(i,j)∈Ur

βijxij ≤ |U | − 1;

where U is a MIC, Up the set of predecessors of U and Ur the set of all items
that are not in U ∪ Up. First, we have the following property.

Property 2 Let U be a MIC for the (SCPKP), for all (i, j) ∈ Up, the downlift-
ing procedure yields αij = 0.

This property means that there is no need to downlift an inequality for the
(SCPKP), as it can only yield coefficient 0. However, there is no similar proof
for coefficients βij , i.e., for the uplifting.

Valid Uplifted MIC (UMIC) inequalities can be obtained with the β coeffi-
cients produced by the procedure of [7]. Such inequalities will be experimentally
compared to the inequalities introduced in this paper in Section 4.

1.2 First polyhedral properties and definitions

Definition 2 (Full-dimensional condition (fd)) An (SCPKP) verifies (fd)
if any item (i, j), can be selected in at least one feasible solution.

Handling polyhedral symmetries with a dedicated Branch&Cut 5

Theorem 2 P(SCPKP) is full dimensional if condition (fd) holds.

Property 3 Any instance of the (SCPKP) that does not verify (fd) can be trans-
formed into an instance of the (SCPKP) that verifies (fd), with the exact same
solutions.

Without loss of generality, in the following we will only consider (SCPKP)
instances verifying (fd).

We define an item set X a set of items (i, j) of the (SCPKP). To account for
the chain precedence constraints, we introduce the set weights associated with
an item set X . In the following, we only consider item sets X such that item
(i, j) ∈ X corresponds to variable xij ∈ V. For a given item set X , and for all
i ≤ I, j ≤ J , the set weights are

sij(X) =

0 if (i, j) /∈ X ,∑j

k=j′+1 wk if (i, j) ∈ X with j′ = max{j′|(i, j′) ∈ X , j′ < j},∑j
k=1 wk if (i, j) ∈ X and (i, j′) /∈ X ,∀j′ < j.

The coefficient sij(X) embed the chain precedence constraints. Indeed, if
xij = 1, (i, j) ∈ X , then all xij′ = 1, j′ ≤ j, even for (i, j′) /∈ X . Thus, if xij = 1
then the weights of all item (i, j′) /∈ X should be accounted for, which is the
purpose of coefficients sij(X).

For the sake of simplicity, we introduce the k-intersection.

Definition 3 (k-intersection) Let X , Y be item sets. Item set Y is a k-intersection
of X if the three following conditions hold: 1) |Y ∩ X | = k, 2) for each item
(i, j) ∈ Y if (i, j′) ∈ X with j′ ≤ j, then (i, j′) ∈ Y, 3)

∑
(i,j)∈Y sij(Y) ≤ C.

Following this definition, a k-intersection of X defines a set of items that can
all be selected simultaneously in a feasible solution of the (SCPKP), in which k
items of X are selected. Consequently, if there exists a k-intersection of X , then
there is a feasible solution where k items of X are selected.

Note that if Y is a k-intersection of X , the reverse can also be true. Conse-
quently, a k-intersection of X is not necessarily a subset of X .

Because of the symmetric weights, if a solution is feasible, then any sym-
metric solution with respect to the group indices is also feasible. Moreover, the
symmetries also appear in the facet-defining inequalities of the (SCPKP).

Property 4 If an inequality is facet-defining for the (SCPKP), any of its sym-
metries is also facet-defining for the (SCPKP).

Clearly, the result of this property is directly due to the polyhedral symmetry,
defined in Definition 1. Like the binary knapsack problem [1], the (SCPKP)
features three types of facet-defining inequalities: the ones from the initial for-
mulation, binary inequalities with 0-1 coefficients, and integer inequalities, with
non-negative integer coefficients. In the article, the polyhedral study focuses on
the binary inequalities through a structure, defined as a pattern, to handle their
symmetries.

6 A. Heintzmann et al.

2 Patterns inequalities

In this section we introduce new inequalities. We are interested in the faces
defined by these inequalities, i.e., the set of points of the polytope P(SCPKP)

verifying these inequalities to equality. To handle the symmetries of the inequal-
ities efficiently, we introduce a structure called pattern.

A pattern P is a collection of I sets Si(P) ⊆ {1, . . . , J}, i ≤ I. A set Si(P)
contains the indices j of the items in a same group. The sets of a pattern are
not ordered, meaning that a pattern represents any permutation of an item set
of the (SCPKP).

The aim is to produce inequalities from the patterns. For this purpose, we
define the item set X associated with pattern P and a permutation π of {1, . . . , I}
such that (i, j) ∈ X for each j ∈ Sπ(i)(P). We denote Ω(P) the set of all item
sets associated with P. Note that |Ω(P)| is in general exponential.

For the remainder of Section 2, when referring to X ∈ Ω(P), we consider
without loss of generality that π is the identity permutation πid if not mentioned
otherwise.

We extend the definition of cardinality for a set to cardinality for a pattern
P as card(P) = |X | with X ∈ Ω(P). This extension is valid by definition of an
item set associated to P.

The rank of a pattern P is the valid upper bound for the sum of variables in
any item set associated with P, as follows

rank(P) = max
X∈Ω(P)

{
max

∑
(i,j)∈X

xij : satisfying (1)− (2)
}
.

The rank of a pattern can be computed with a shortest path algorithm [2].
With rank(P) and Ω(P), we can define pattern inequalities.

Definition 4 (Pattern inequalities) The pattern inequalities associated with
a pattern P are the following, for any X ∈ Ω(P):∑

(i,j)∈X

xij ≤ rank(P). (pi(X))

By definition of the rank, pattern inequalities are valid for P(SCPKP). A
pattern P is a facet-defining pattern if for every X ∈ Ω(P), inequality (pi(X))
is facet-defining for the (SCPKP).

2.1 Necessary facet defining conditions

In this section, we consider P be a pattern of rank k and an associated item set
X ∈ Ω(P). We define three necessary conditions for a pattern to be a pattern-
facet. The first one is for a pattern to have at least one item in each if its sets.

Property 5 (Condition (i): no empty group) Let P be a pattern. If P is a
pattern-facet, then it verifies condition (i):

(i) For every set Si(P) ∈ P : |Si(P)| ≥ 1

Handling polyhedral symmetries with a dedicated Branch&Cut 7

The idea of the following condition is that for any X ∈ Ω(P), there is a
feasible solution with (pi(X)) to equality, and xiJ = 1 for any group i.

Property 6 (Condition (ii): selection of item J) Let P be a pattern and
X ∈ Ω(P) a variable set. If P is a pattern-facet, then P verifies condition (ii) :

(ii) For each i ≤ I, there is Y a k-intersection of X with (i, J) ∈ Y

The following condition is quite similar to condition (ii), but for any variable
xij−1 with (i, j) ∈ X , instead of any variable xiJ .

Property 7 (Condition (iii): independence from the predecessors) Let
P be a pattern and X ∈ Ω(P) be an item set. If P is a pattern-facet, then P
verifies condition (iii) :
(iii) For each variable (i, j) ∈ X , there is Y a k-intersection of X with

(i, j − 1) ∈ Y and (i, j′) /∈ Y for every j′ ≥ j.

For a given pattern P, conditions (i) can clearly be verified in linear time.
Also, conditions (ii) and (iii) can be verified in polynomial time, by solving a
shortest path algorithm at most once for each variable. As these conditions are
necessary, we define a flexible pattern, which verifies conditions (i), (ii) and (iii).

The conditions on a flexible pattern P are not sufficient for P to be a pattern-
facet. However, a minimum dimension can be guaranteed for the faces defined
by flexible patterns inequalities.

Theorem 3 (n− card(P) linearly independent points) Let P be a flexible
pattern and an associated pattern inequality pi(X). Let n be the number of vari-
ables of the (SCPKP). There are at least n−card(P) linearly independent points
that verify pi(X) to equality.

This result will be used in the separation to generate strong pattern-inequalities.

3 Two-phase Branch&Cut algorithm for pattern
inequalities

As the separation problem for pattern inequalities seems to be NP-hard, we show
that a special case of this problem (namely the fixed-pattern case) can be solved
in polynomial time. Based on this result, we devise a two-phase Branch&Cut
algorithm.

Definition 5 (Fixed-pattern separation problem) Consider x̃ a fractional
solution for the (SCPKP). Let P be a pattern of rank k. Finding the most vio-
lated pattern inequality associated to pattern P means finding the permutation π
maximizing

∑I
i=1

∑
j∈Si(P) x̃π(i)j − k

We show that the fixed-pattern separation problem can be done in polynomial
time by solving a Maximum Matching Problem (MMP)

8 A. Heintzmann et al.

Property 8 Finding a permutation π maximizing the
∑I

i=1

∑
j∈Si(P) x̃π(i)j can

be obtained by solving the (MMP) in a particular weighted bipartite graph.

As the (MMP) is a problem that can be solved in polynomial time [13], so is
the fixed-pattern separation problem. Based on this complexity result, we define
a two-phase B&C scheme. The first phase generates flexible patterns as a pre-
processing step. The second phase separates the inequalities associated to this
predefined set of patterns within a B&C framework.

First phase: pattern generation The idea of the proposed procedure is to itera-
tively construct patterns so we obtain a pool P0 of flexible patterns of non-trival
rank. The generation procedure iterates until a predefined time limit is reached.
At each iteration of the generation, the procedure selects randomly an integer
k as the target rank for the pattern P to be constructed and first initializes a
pattern P containing I times the set {J}. Then the goal is to iteratively modify
pattern P until we obtain a flexible-pattern with rank k. To do so, while the
cardinality of P is less than k, a random group i is selected and j − 1 is added
to Si(P), where j is the smallest index in Si(P). Then, once card(P) ≥ k, we
update P in order to satisfy flexible-pattern conditions, in particular (ii) and
(iii). If at the end of the iteration we obtain a flexible pattern of rank k, we add
it to the pattern pool P0.

Second phase: fixed-pattern separation at each node For each fractional point
encountered in the B&C tree, we run the following separation procedure if the
number of pattern inequalities added is below 100. For each pattern P of the
pool P0 generated in the first phase, we run the Hungarian algorithm to solve the
matching problem associated to the fixed-pattern separation problem for pattern
P. For each pattern, this yields a pattern inequality. We add the most violated
pattern inequality and discard the others. For each pattern, we compute an
indicator corresponding to the average violation value of all added cuts associated
to the pattern. In order to limit the separation time, we progressively reduce the
size of pool P0 and keep patterns with the highest average violation value.

4 Experimental results

Results are computed on a single thread of a Linux machine with Intel Core
i7-9850H CPU @ 2.60GHz processor, and 12 CPUs of 12 cores. Version 12.8
of CPLEX C++ API is used to solve model FSCPK . We compare four sets of
inequalities: Cplex’s internal cuts (denoted by Cplx), UMIC inequalities (denoted
by Umic), pattern inequalities (denoted by Psep) and the combination of all
three (denoted by All). Each of these sets are implemented within a branch&cut
(B&C) framework, limited to 3600 seconds of computational time. Pattern and
UMIC inequalities are added with CPLEX’s usercut callbacks.

Handling polyhedral symmetries with a dedicated Branch&Cut 9

Instances From a pool of hundred randomly generated instances, sixty are re-
tained. The selection criteria is for these instances to take at least 60 seconds
to be solved by CPLEX, with all the default options enabled but the cuts. As
such, we obtain difficult instances with a strong enough correlation between
weights and values [19]. The sixty retained instances are with I ∈ {20, 30} and
J ∈ {5, 10}. The generation of instances is further detailed in [10].

Separation Cplx corresponds to default CPLEX, and the default CPLEX sepa-
ration algorithm is used. For variant Umic, we separate UMIC inequalities with
the uplifting and separation algorithms described in [7]. In particular, the sep-
aration is only enabled for the root node. The separation procedure is disabled
once the number of UMIC inequalities added reaches ten times the number of
inequalities of FSCPK . For variant Psep, the separation of the pattern inequali-
ties is done as described in Section 3. The time limit for the first phase is fixed
to 30 seconds. For Umic and Psep, the separation algorithms are implemented
using UserCut Callback, and all CPLEX’s cuts are disabled.

Results The results in terms of computational time (resp. number of nodes) are
presented in Figure 1a (resp. 1b), representing the number of instances solved
for each variant with respect to the computational time (resp. number of nodes).
Note that for easy readability of Figure 1a (resp. Figure 1b), the scale is linear
until 500 seconds (resp. 2 000 000 nodes), then a logarithmic scale is used. We
notice on Figure 1a that with 100 seconds, All solves the largest number of
instances and Umic the smallest number of instances. However, when the com-
putational time reaches 100 seconds, variant Psep becomes the most efficient
whereas Cplx becomes the least efficient. In Figure 1b, All is the variant devel-
oping the lowest number of nodes and Umic is the variant developing the largest
number of nodes.

Interpretation Variant Cplx solves far less instances than variants Psep and Umic
for large computational times, despite developing fewer nodes. This could mean
that Cplx adds many more inequalities than variants Umic and Psep, which
slightly reduces the number of nodes, but greatly increases the computational
time. In both figures, variant All clearly dominates variant Cplx meaning that
UMIC and pattern inequalities always improve the resolution. Variant All is
particularly effective for instances where at least one of the variants Cplx, Umic
and Psep yield cuts that drastically reduce the B&C tree. However, when no
variant yield such efficient cut, similar conclusions can be drawn for All than for
Cplx, i.e., too many inequalities are added, which yields larger computational
times than variants Psep and Umic for instances. When comparing Umic and
Psep, Figures 1a and 1b are consistent, as Psep is quicker than Umic and develops
fewer nodes. These results show that our two-phase B&C scheme outperforms a
standard B&C featuring state-of-the-art separation algorithms.

10 A. Heintzmann et al.

1 3 5
0

20

40

60

Time (102 seconds)

#
in

st
a
n
ce

s
so

lv
ed

10 30

Cplx
Umic
Psep
All

(a) Number of instances solved with respect
to the computational time

1 2

#nodes (106)

10 50

(b) Number of instances solved with
respect to the number of nodes

Fig. 1: Comparative performance of the B&C algorithms involving either Cplx,
Umic, Psep or All

5 Perspectives

In this paper, two main contributions are proposed. A polyhedral study of the
(SCPKP) and the two-phase B&C scheme, both revolving around the patterns
introduced to handle polyhedral symmetries.

One direct extension of this work is to find efficient combinations of the
considered inequalities, in order to yield an even more effective B&C algorithm.
It would be relevant to study integer inequalities for the (SCPKP), as they
are part of the convex hull for many Knapsack Problem variants, including the
(SCPKP). The proposed patterns can also be extended to other problems, such
as the use case of the Hydro Unit Commitment problem whose core structure
corresponds to the (SCPKP). A promising perspective would be to generalize
the two phase B&C scheme to other problems facing polyhedral symmetries.

Bibliography

[1] Balas, E.: Facets of the knapsack polytope. Mathematical programming
8(1), 146–164 (1975)

[2] Bellman, R.: On a routing problem. Quarterly of applied mathematics
16(1), 87–90 (1958)

[3] Bendotti, P., Fouilhoux, P., Rottner, C.: Symmetry-breaking inequalities for
ilp with structured sub-symmetry. Mathematical Programming 183, 61–103
(2020)

[4] Bendotti, P., Fouilhoux, P., Rottner, C.: Orbitopal fixing for the full (sub-)
orbitope and application to the unit commitment problem. Mathematical
Programming 186, 337–372 (2021)

[5] Boyd, E.: Polyhedral results for the precedence-constrained knapsack prob-
lem. Discrete Applied Mathematics 41(3), 185–201 (1993)

[6] Croxton, K.L., Gendron, B., Magnanti, T.L.: A comparison of mixed-integer
programming models for nonconvex piecewise linear cost minimization prob-
lems. Management Science 49(9), 1268–1273 (2003)

[7] Espinoza, D., Goycoolea, M., Moreno, E.: The precedence constrained knap-
sack problem: Separating maximally violated inequalities. Discrete Applied
Mathematics 194, 65–80 (2015)

[8] Hechme-Doukopoulos, G., Brignol-Charousset, S., Malick, J., Lemaréchal,
C.: The short-term electricity production management problem at EDF.
Optima Newsletter 84, 2–6 (Oct 2010)

[9] Heintzmann, A., Bendotti, P., Rottner, C.: Polyhedral study of the sym-
metrically weighted matrix knapsack problem. In: Proceedings of the 7th
International Symposium on Combinatorial Optimization (2022)

[10] Heintzmann, A., Bendotti, P., Rottner, C.: Two-phase branch & cut for the
symmetric weight matrix knapsack polytope. URL: https://hal.science/hal-
03992007v1 (2023)

[11] Hojny, C., Gally, T., Habeck, O., Lüthen, H., Matter, F., Pfetsch, M.E.,
Schmitt, A.: Knapsack polytopes: a survey. Annals of Operations Research
292(1), 469–517 (2020)

[12] Knueven, B., Ostrowski, J., Watson, J.P.: Exploiting identical generators in
unit commitment. IEEE Transactions on Power Systems 33(4), 4496–4507
(2017)

[13] Kuhn, H.W.: The hungarian method for the assignment problem. Naval
research logistics quarterly 2(1-2), 83–97 (1955)

[14] van de Leensel, R.L., Van Hoesel, C., Van de Klundert, J.: Lifting valid
inequalities for the precedence constrained knapsack problem. Mathematical
programming 86(1), 161–185 (1999)

[15] Margot, F.: Symmetry in integer linear programming. 50 Years of Integer
Programming 1958-2008: From the Early Years to the State-of-the-Art pp.
647–686 (2009)

12 A. Heintzmann et al.

[16] Markowitz, H.M., Manne, A.S.: On the solution of discrete programming
problems. Econometrica: journal of the Econometric Society pp. 84–110
(1957)

[17] Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching.
Mathematical Programming 126, 147–178 (2011)

[18] Park, K., Park, S.: Lifting cover inequalities for the precedence-constrained
knapsack problem. Discrete Applied Mathematics 72(3), 219–241 (1997)

[19] Pisinger, D.: Where are the hard knapsack problems? Computers & Oper-
ations Research 32(9), 2271–2284 (2005)

[20] Salem, M.B., Taktak, R., Mahjoub, A.R., Ben-Abdallah, H.: Optimization
algorithms for the disjunctively constrained knapsack problem. Soft Com-
puting 22(6), 2025–2043 (2018)

	Handling polyhedral symmetries with a dedicated Branch&Cut: application to a knapsack variant

