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Abstract

A path cover of a digraph is a collection of paths collectively containing the vertex set of the digraph.
A path cover with minimum cardinality for a directed acyclic graph can be found in polynomial time
[Fulkerson, AMS ’56; Cáceres et al., SODA’22]. Moreover, Dilworth’s celebrated theorem on chain
coverings of partially ordered sets equivalently states that the minimum size of a path cover of a DAG is
equal to the maximum size of a set of mutually unreachable vertices. In this paper, we examine how far
Dilworth’s theorem can be extended to a “dynamic” analogue of directed acyclic graphs.

A temporal digraph has an arc set that changes over discrete time-steps. Furthermore, if the underlying
digraph (i.e., the union of all the arc sets that appears at some point) is acyclic, then we have a temporal
directed acyclic graph (or simply a temporal DAG). A temporal path is a directed path in the underlying
digraph, such that the time-steps of arcs are strictly increasing along the path. Two temporal paths are
temporally disjoint if they do not occupy any vertex at the same time. A temporal path cover is a collection
C of temporal paths that covers all vertices. Furthermore, C is a temporally disjoint path cover if all
temporal paths are pairwise temporally disjoint. In this paper, we study the computational complexities of
the problems of finding a temporal (disjoint) path cover with minimum cardinality (denoted as Temporal
Path Cover and Temporally Disjoint Path Cover).

We show that both Temporal Path Cover and Temporally Disjoint Path Cover are NP-
hard even when the underlying DAG is planar, bipartite, subcubic, and there are only two arc-disjoint
time-steps. Moreover, Temporally Disjoint Path Cover remains NP-hard even on temporal oriented
trees. We also observe that natural temporal analogues of Dilworth’s theorem on these classes of temporal
DAGs do not hold.

In contrast, we show that Temporal Path Cover is polynomial-time solvable on temporal oriented
trees by a reduction to Clique Cover for (static undirected) weakly chordal graphs (a subclass of
perfect graphs for which Clique Cover admits an efficient algorithm). This highlights an interesting
algorithmic difference between the two problems. Although it is NP-hard on temporal oriented trees,
Temporally Disjoint Path Cover becomes polynomial-time solvable on temporal oriented lines and
temporal rooted directed trees. For all these positive algorithmic results, we also show that temporal
analogues of Dilworth’s theorem hold for the corresponding temporal graph classes.

We also show that Temporal Path Cover and Temporally Disjoint Path Cover become effi-
ciently solvable when the number of time-steps is bounded and the underlying graph is close to a tree.
More precisely, we show that Temporal Path Cover admits an XP time algorithm with respect to pa-
rameter tmax+ tw, where tmax is the maximum time-step, and tw is the treewidth of the underlying static
undirected graph. We also show that Temporally Disjoint Path Cover admits an FPT algorithm
with respect to the same parameter.

∗This work was supported by the International Research Center "Innovation Transportation and Production Systems" of the
I-SITE CAP 20-25 and by the ANR project GRALMECO (ANR-21-CE48-0004). Ralf Klasing’s research was partially supported
by the ANR project TEMPOGRAL (ANR-22-CE48-0001).
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1 Introduction
A classic theorem of Dilworth from 1950 [13] states that in any partially ordered set (poset), the minimum
number of chains required to cover all the elements is equal to the maximum size of an antichain. Dilworth’s
theorem is fundamental from the mathematical point of view; furthermore, an algorithmic proof (that enables
to construct a chain cover and an antichain in polynomial time) was published by Fulkerson in 1956 [16].
This theorem and its algorithmic form have many applications, not only in combinatorics, but also in various
fields such as bioinformatics [6], scheduling [33], databases [22], program testing [38], etc.

A collection P of (resp. pairwise vertex-disjoint) directed paths of a digraph D is a path cover (resp. path
partition) of D if all vertices of D are contained in some path of P. Dilworth’s theorem can be restated in
an equivalent form, equating the minimum cardinality of path covers on directed acyclic graphs (DAGs) and
the maximum size of a set of pairwise “unreachable” vertices, or antichain vertices [4, 5, 15].

Theorem 1 (Dilworth [13]). For any DAG D, the minimum number of paths that cover its vertex set, is
equal to the maximum size of an antichain of D.

Fulkerson [16] showed that finding a minimum-size path cover of a DAG can be done in polynomial time.
Moreover, it is known that finding a minimum-size path partition can also be done in polynomial time for
arbitrary DAGs [10, Probl. 26-2]. Improving the best known algorithms for path cover and partitions of DAGs
still form an active field of research, see for example [4, 5, 9, 32] for some recent results.

The notions of directed paths and path covers naturally extends to temporal (di)graphs. Informally, the
arc set of a temporal digraph changes over discrete time-steps and labels of an arc are the time-steps where the
arc appears. Temporal (di)graphs have been extensively studied in the two last decades, with contributions
from and applications to various fields, see [7, 21, 23, 35, 36, 39]. A temporal path of a digraph is a path
that traverses edges appearing at strictly increasing time-steps. The asymmetric nature of temporal paths
has motivated many recent algorithmic works on related reachability or path problems on temporal graphs,
such as [1, 2, 3, 8, 24, 34].

Two temporal paths are temporally disjoint if they do not occupy a vertex at the same time-step. This
definition was introduced by Klobas et al. [25] and has since then garnered attention in the graph algorithmic
community [29]. Even though the above notion was introduced in the context of temporal undirected graphs,
it naturally extends to temporal digraphs and motivates the corresponding covering problems. The objective
of Temporal Path Cover (resp. Temporally Disjoint Path Cover) is to cover an input temporal
digraph by a minimum number of temporal paths (resp. temporally disjoint paths).

Main objectives. In this paper, we initiate the algorithmic study of Temporal Path Cover and Tem-
porally Disjoint Path Cover and focus on temporal directed acyclic graphs (or simply, temporal DAGs).
A temporal digraph is a temporal DAG if the union of all arcs across all time-steps induces a (static) DAG.
We say that a temporal digraph satisfies the Dilworth property (resp. temporally disjoint Dilworth property,
or TD-Dilworth property for short) if the largest size of a temporal antichain (understood as a set of pairwise
unreachable vertices) is equal to the smallest size of a temporal path cover (resp. temporally disjoint path
cover). The main goals of this paper are the following:

(a) Determine classes of temporal DAGs satisfying the (TD-)Dilworth property.

(b) Study the computational complexities of Temporal Path Cover and Temporally Disjoint Path
Cover on temporal digraphs.

Practical motivations. A first motivation is multi-agent-based decision-making (a well-studied problem
from artificial intelligence [41, 44]) in a temporal setting, such as for coral reef protection [45] or crime preven-
tion in transportation networks [46]. In this setting, the temporal DAG can model a decision-making process,
where the vertices represent the states of an environment. Agents navigate the DAG, an arc representing an
agent’s move from one state to another. As the situation is varying over time, a move may only be available
at specific time-steps. A path in this DAG thus represents the overall activity of an agent. In this setting,
Temporal Path Cover represents the situation where a set of k agents need to cover all the possible states.
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In Temporally Disjoint Path Cover, the agents must also avoid each other, and cannot cover the same
state at the same time, a scenario described as vertex-conflicts in the literature [41].

Another natural application is multi-robot path planning [12, 42]. Imagine the setting where k robots are
assigned the task of exploring a hazardous facility. Since the facility changes over time, it is modeled as a
temporal digraph. If the facility digraph does not contain directed cycles, it is modeled by a temporal DAG
(for example, if the facility is inherently directed from a start area towards a target area). The exploration
path of a robot can be modeled by a temporal path. Now, Temporal Path Cover corresponds to the
situation where the robots need to explore the whole facility, while for Temporally Disjoint Path Cover,
the robots also cannot be simultaneously at the same location.

Our results. We begin by formally defining the problems studied in this paper.

Temporal Path Cover (TPC)
Input: A temporal digraph D, an integer k.
Problem: Does there exist a set C of k temporal paths in D such that every vertex of D is covered

by some path of C?

Temporally Disjoint Path Cover (TD-PC)
Input: A temporal digraph D, an integer k.
Problem: Does there exist a set C of k temporally disjoint temporal paths in D such that every

vertex of D is covered by some path of C?

We observe that in general, temporal DAGs do not have the Dilworth property (see Figure 1a). Then,
we prove the following negative result.

Theorem 2. Temporal Path Cover and Temporally Disjoint Path Cover are NP-hard on temporal
DAGs, even if the input is planar, bipartite, subcubic, of girth 10, uses only one time label per arc, and every
label is either 1 or 2.

A temporal directed acyclic graph D is a temporal oriented tree if the underlying directed graph of D is
a tree. On the positive side, we prove the following.

Theorem 3. There is an O(ℓn2 + n3)-time algorithm for Temporal Path Cover on temporal oriented
trees with n vertices and at most ℓ many labels per arc. Furthermore, temporal oriented trees satisfy the
Dilworth property.

We briefly describe the technique we use for proving Theorem 3. Two vertices of a temporal digraph are
temporally connected if they are covered by the same temporal path. The connectivity graph of a temporal
digraph D is an undirected (static) graph whose vertex set is the same as that of D, and whose edge
set consists of all pairs of temporally connected vertices. To prove the above theorem, we show that the
connectivity graph of a temporal oriented tree is a weakly chordal graph [19] (a subclass of perfect graphs).
We show Temporal Path Cover can be reduced to Clique Cover on weakly chordal graphs. The
above observation, combined with the Weak Perfect Graph Theorem (proved by Lovász [31]), proves that
temporal oriented trees satisfy the Dilworth property. Moreover, the existing O(nm)-time algorithm [20] to
compute a minimum clique cover of a weakly chordal graph (having n vertices and m edges) completes the
proof of Theorem 3. Our proof gives interesting structural information on the interaction between temporal
paths in temporal oriented trees. Interestingly, another important class of perfect graphs plays an important
role in connection with Dilworth’s theorem and its translation to the setting of static DAGs: the class of
comparability graphs, see [18, Chapter 5.7]. In our case, there does not appear to be any connection to
comparability graphs.

On the other hand, temporal oriented trees do not satisfy the TD-Dilworth property (see Figure 1b for
an example). Then, we prove the following negative result.

Theorem 4. Temporally Disjoint Path Cover is NP-hard on temporal oriented trees.
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(a) A temporal DAG not having the Dilworth
property.
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(b) A temporal oriented tree not having the
TD-Dilworth property.

Figure 1: A minimum-size (temporally disjoint) temporal path cover is shown, vertices in a maximum-size
temporal antichain are in black.

To find classes that satisfy the TD-Dilworth property, we study temporal oriented lines (that is, where
the underlying digraph is an oriented path) and temporal rooted directed trees. A tree is a rooted directed tree
if it is an oriented tree with a single source vertex called the root. We prove the following result.

Theorem 5. Temporal Path Cover and Temporally Disjoint Path Cover can be solved in time:
(a) O(ℓn) on temporal oriented lines;
(b) O(ℓn2) on temporal rooted directed trees;

where ℓ is the maximum number of labels per arc and n is the number of vertices. Furthermore, both classes
satisfy the TD-Dilworth property.

Note that some related problems remain NP-hard for temporal lines, such as Temporally Disjoint
Walks [26]. Theorem 5(a) shows that this is not the case here. To prove Theorem 5(b), we begin by
constructing a temporal path cover before transforming it into a temporally disjoint one of the same size.
This is in contrast with general temporal oriented trees, for which, by Theorem 4, such an approach is not
possible.

As Temporally Disjoint Path Cover is NP-hard even on temporal oriented trees and on temporal
DAGs with two time-steps, a natural question is what happens when the number of time-steps is small and
the underlying digraph is a tree. Motivated by this question, we study the case where both the number
of time-steps and the treewidth of the underlying digraph are bounded (where we define the treewidth of a
temporal digraph as the treewidth of the underlying static undirected graph). We show that both problems
become tractable in this setting. More precisely, we give a fixed-parameter tractable (FPT) algorithm for
Temporally Disjoint Path Cover with treewidth and number of time-steps as parameters. The same
technique gives an XP algorithm for Temporal Path Cover.

Theorem 6. There is an algorithm for Temporally Disjoint Path Cover on general temporal digraphs
that is FPT with respect to the treewidth of the underlying undirected graph and the maximum number of
labels per arc. For Temporal Path Cover on general temporal digraphs, there is an XP algorithm for the
same parameter.

See Table 1 for a summary of our algorithmic results.

Further related work. Algorithms for solving several types of path and distance problems in temporal
graphs have been developed, see for example [3, 24, 43]. Recently, the problem Temporally Disjoint
Paths was introduced in [25], as a generalization of the notorious Disjoint Paths problem (also known as
Linkage). In Temporally Disjoint Paths, one is given a temporal graph with k pairs of vertices called
terminals, and the goal is to find a set of k pairwise temporally disjoint paths, each of them connecting one
pair of terminals. Temporally Disjoint Paths is NP-hard, even for temporal lines and two paths [25] or
temporal stars [29], but becomes FPT for trees when parameterized by the number of paths [25]. Algorithms
that are FPT for certain structural parameters are given in [29].
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temporal graph class TPC TD-PC

temporal DAGs (planar bipartite subcubic,
girth 10, two arc-disjoint time-steps) NP-c. NP-c.

temporal oriented trees poly NP-c.

temporal rooted directed trees poly poly

temporal oriented lines poly poly

general temporal digraphs with
bounded treewidth and number of time-steps poly (XP) poly (FPT)

Table 1: Summary of our algorithmic results. For all polynomial-time solvable classes of temporal DAGs, we
also show that the Dilworth property (or TD-Dilworth property for TD-PC) holds.

Structure of the paper. We start with the hardness result for temporal DAGs (Theorem 2) in Section 3.
We then prove our results for temporal oriented trees (Theorem 3 and Theorem 4) in Sections 4 and 5.
We prove Theorem 5, the polynomial-time algorithms for special temporal oriented trees (temporal rooted
directed trees and temporal oriented lines), in Section 6. We then prove our results for temporal digraphs of
bounded treewidth and number of time-steps (Theorem 6) in Section 7. We conclude in Section 8.

2 Preliminaries
A temporal digraph D = (V,A1, . . . , Atmax

) is given by a sequence of arc-sets representing tmax discrete time-
steps {1, . . . , tmax}, where an arc in Ai is active at time-step i [25]. Let us denote by D = (V,A), where
A = ∪tmax

i=1 Ai, the underlying digraph of temporal digraph D = (V,A1, . . . , Atmax) (sometimes called footprint
(di)graph [7]). Equivalently, one can view the time-steps as an arc-labelling function λ : A(D) → 2[tmax],
where λ(−→xy) ⊆ [tmax] is the set of time-steps where −→xy is active [24]. In that case, we may denote the temporal
digraph as D = (D,λ). We say that a temporal digraph has a given property P (planarity, given girth...) if
the undirected graph obtained by forgetting the orientation of the arcs of its underlying digraph has property
P. For a given temporal digraph, we denote by ℓ the maximum number of labels per arc and by n the number
of vertices in the underlying digraph.

For a (temporal) (di)graph D and subset S of its vertices (resp. edges), D \ S denotes the (temporal)
(di)graph obtained by removing the vertices (resp. edges) in S from D.

In a temporal digraph, a temporal (directed) path is a sequence (v1, v2, t1), (v2, v3, t2), . . . , (vk−1, vk, tk−1)
such that for any i, j with 1 ≤ i < j ≤ k, vi ̸= vj and for any i with 1 ≤ i ≤ k − 1, ti < ti+1 and there is an
arc −−−→vivi+1 at time-step ti. These paths are sometimes called strict in the literature.1 For a temporal path
P = (v1, v2, t1), . . . , (vk−1, vk, tk−1), we denote by V (P ) the set ∪k

i=1{vi} and by A(P ) the set ∪k−1
i=1 {

−−−→vivi+1}.
The length of a temporal path is the number of arcs it uses. We say that a temporal path P =

(v1, v2, t1), . . . , (vk−1, vk, tk−1) occupies vertex vi during the time interval {ti−1, . . . , ti}. Two temporal paths
P1, P2 are temporally disjoint if for all arcs e1 ∈ A(P1), e2 ∈ A(P2) incident with a common end-vertex, the
time-step of e1 in P1 is distinct from the time-step of e2 in P2. In other words, two paths are temporally
disjoint if they do not occupy the same vertex at the same time. A temporal path cover (resp. temporally
disjoint path cover) of a temporal digraph D is a collection of temporal paths (resp. temporally disjoint
paths) that cover all vertices of D. Two vertices are temporally connected in D if there exists a temporal
path between them. A temporal antichain is a set of vertices that are pairwise not temporally connected.

Definition 7. A class C has the Dilworth property (resp. TD-Dilworth property) if the cardinality of the
minimum temporal path cover (resp. temporally disjoint path cover) is equal to the maximum cardinality of
a temporal anti-chain.

1For non-strict paths, the condition ti < ti+1 is replaced with ti ≤ ti+1, but as argued in [29], the strict definition is more
natural for applications where an agent cannot traverse an arbitrary number of arcs at once, this is why we chose this convention.
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A hole of a static undirected graph is an induced cycle of length at least 5, and an anti-hole is the
complement of a hole. A graph G is weakly chordal if it has no hole or anti-hole. A (minimum) clique
cover of a graph G is a (minimum cardinality) set of complete subgraphs of G that covers all vertices. A
(maximum) independent set of a graph G is a (maximum cardinality) set of pairwise non-adjacent vertices.
We shall use the following results for weakly chordal graphs.

Theorem 8 ([20, 31, 40]). Let H be a weakly chordal graph with n vertices and m edges. Then, a minimum
clique cover of H can be found in O(nm)-time. Furthermore, the maximum size of an independent set of H
equals the minimum size of a clique cover of H.

3 Temporal DAGs
We provide a reduction (inspired by [37]) from a restricted variant of 3-Dimensional Matching to prove
the following.

Theorem 2. Temporal Path Cover and Temporally Disjoint Path Cover are NP-hard on temporal
DAGs, even if the input is planar, bipartite, subcubic, of girth 10, uses only one time label per arc, and every
label is either 1 or 2.

Proof. We will reduce the Temporal (Disjoint) Path Cover problem on temporal DAGs from the 3-
Dimensional Matching problem. The reduction is inspired from [37].

3-Dimensional Matching (3DM)
Instance: A set S ⊆ X × Y × Z, where X, Y , and Z are disjoint sets having the same number q
of elements.
Question: Does S contain a perfect matching, i.e., a subset M ⊆ S such that |M | = q and no two
elements of M agree in any coordinate?

It is well-known that 3-Dimensional Matching is NP-hard [17].
Given an instance I = (S,X×Y ×Z) of 3DM, where S = {s1 . . . , sp}, X = {x1, . . . , xq}, Y = {y1, . . . , yq}

and Z = {z1, . . . , zq}, we build an instance D = (V,A1, A2) of Temporal (Disjoint) Path Cover, where
D is a temporal DAG, as follows.

To each triple si = (xi,1, yi,2, zi,3) ∈ S, we associate a gadget H(si) that consists of a collection

{P i,1, P i,2, P i,3} of 3 directed vertex-disjoint paths of 3 vertices with P i,r = {
−−−−→
ai,r1 ai,r2 ,

−−−−→
ai,r2 ai,r3 } for r = 1, 2, 3;

and the time labels are 1 for the arcs
−−−−→
ai,r1 ai,r2 and 2 for the arcs

−−−−→
ai,r2 ai,r3 . We add to H(si) the arcs

−−−−→
ai,13 ai,23

and
−−−−→
ai,23 ai,33 , in order to form a 4th directed path of 3 vertices; and the time labels are 1 for the arcs

−−−−→
ai,13 ai,23

and 2 for the arcs
−−−−→
ai,23 ai,33 . Finally, we add to H(si) the arcs

−−−−→
ai,12 xi,1,

−−−−→
ai,22 yi,2 and

−−−−→
ai,32 zi,3, with the time label

2 (see Figure 2 for an illustration).

ai,11 ai,12 ai,21 ai,22 ai,31 ai,32

ai,13 ai,23 ai,33

xi,1 yi,2 zi,3

1 1 1

2 2 2

1 2

2 2 2

Figure 2: The gadget H(si).
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ai,11 ai,12 ai,21 ai,22 ai,31 ai,32

ai,13 ai,23 ai,33

xi,1 yi,2 zi,3

ai,11 ai,12 ai,21 ai,22 ai,31 ai,32

ai,13 ai,23 ai,33

xi,1 yi,2 zi,3

1 1 1

2 2 2

1 2

2 2 2

(a) si ∈ M

ai,11 ai,12 ai,21 ai,22 ai,31 ai,32

ai,13 ai,23 ai,33

xi,1 yi,2 zi,3

ai,11 ai,12 ai,21 ai,22 ai,31 ai,32

ai,13 ai,23 ai,33

xi,1 yi,2 zi,3

1 1 1

2 2 2

1 2

2 2 2

(b) si ̸∈ M

Figure 3: Vertex partition of the gadget H(si) into length-2 paths.

The above construction yields a temporal digraph D on 9p+3q vertices. Note that the construction uses
only 1 label per arc, and every label is either 1 or 2.

We claim that there exists a perfect matching M ⊆ S in I if and only if there exists a temporal (disjoint)
path cover (partition) of D of size 3p+ q.

(⇒) Let M ⊆ S be a perfect matching in S, and consider the following collection of directed vertex-

disjoint temporal length-2 paths in the gadget H(si): {
−−−−→
ai,13 ai,23 ,

−−−−→
ai,23 ai,33 }, {

−−−−→
ai,11 ai,12 ,

−−−−→
ai,12 xi,1}, {

−−−−→
ai,21 ai,22 ,

−−−−→
ai,22 xi,2},

{
−−−−→
ai,31 ai,32 ,

−−−−→
ai,32 xi,3} if si ∈ M , and P i,1, P i,2, P i,3 if si ̸∈ M . As M is a perfect matching in S, the collection of

the temporal paths defined above constitute a vertex-disjoint (and thus temporally disjoint) temporal path
cover of D of size 3p + q. Figures 3a and 3b illustrate the construction of the temporal path partition on
V (H(si)) with respect to a given matching M for 3DM.

(⇐) Assume that there exists a (temporally disjoint) path cover C of D of size 3p+q. As |V (D)| = 9q+3p,
|C| = 3p+ q and every (temporal) path in D has length at most 2, all paths in C must have exactly length 2,
and C is indeed a partition of V (D) into length-2 paths. All length-2 paths in D are depicted in Figures 3a
and 3b. Hence, any path partition C of D must have, for each triple gadget, the path structure as depicted in
either one of Figures 3a and 3b, and there must be q gadgets H1, . . . ,Hq that are each covered by four vertex-
disjoint temporal length-2 paths from C, and p − q gadgets Hq+1, . . . ,Hp where the vertices ai,r1 ai,r2 ai,r3 (for
r = 1, 2, 3) are covered by three vertex-disjoint temporal length-2 paths from C and the vertices xi,1, xi,2, xi,3

are not covered. Then, the triples (xi,1, yi,2, zi,3) corresponding to H1, . . . ,Hq constitute a perfect matching
in S.

This completes the NP-hardness proof of Temporal (Disjoint) Path Cover in temporal DAGs. In
order to show that Temporal (Disjoint) Path Cover remains NP-hard in planar, bipartite, subcu-
bic temporal DAGs of girth 10, we apply the above proof, except that we start from a restriction of the
three-dimensional matching problem, in which every element appears in either two or three triples, and the
associated bipartite graph (formed by the elements and triples as its vertices, with edges connecting each
element to the triples it belongs to) is planar and subcubic, denoted by Planar 3DM-3. It is well-known
that this restriction of 3DM is still NP-hard [14]. Following a planar embedding of the bipartite graph as-
sociated to the instance of Planar 3DM-3, one can obtain a planar enmbedding of the constructed graph.
Note that the underlying DAG in the above reduction is bipartite, as it can be 2-colored as follows: vertices
in X and Z are colored 1, vertices in Y are colored 2, and then the coloring can be extended to the triple
gadgets. Note as well that the shortest cycle in the underlying undirected graph has length 10.

We also show the following.

Proposition 9. There are temporal DAGs (whose underlying digraph is a transitive tournament) that satisfy
neither the Dilworth nor the TD-Dilworth property. Moreover, the ratio between the minimum-size temporal
path cover and temporally disjoint path cover and the maximum-size temporal antichain can be arbitrarily
large.

Proof. Consider the temporal digraph Tn = (Tn, λ) where Tn is the transitive tournament on vertices
u1, . . . , un and λ(−−→uiuj) = n − (j + 1) for all i < j. Tn is a temporal DAG, and since its underlying digraph
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is a transitive tournament, all the pairs of vertices are temporally connected, implying that the temporal
antichain is of size 1. However, no temporal path can contain more than two vertices, and thus

⌈
n
2

⌉
paths are

needed to cover it. Hence, the gap between the maximum size of a temporal antichain and the minimum size
of a temporal path cover can be as large as we want for a temporal DAG. Furthermore, the minimum-size
TPC is also vertex-disjoint (and thus temporally disjoint) if n is even since the paths will never intersect;
and if n is odd, then at most two paths in a minimum-size TPC can intersect in at most one vertex, thus we
can reduce one of the two intersecting paths to cover only one vertex, giving us a TPC of the same size with
vertex-disjoint, and thus temporally disjoint, paths. This is depicted in Figure 4.

3

2
1

1

1

2

(a) n = 4

4

3

2

1

3 2
1

1

12

(b) n = 5

Figure 4: Tn, a temporal DAG with a maximum-size temporal antichain of size 1 and a minimum-size
temporal path cover of size

⌈
n
2

⌉
, for n = 4, 5.

4 Temporal Path Cover on temporal oriented trees
In this section we prove the following theorem.

Theorem 3. There is an O(ℓn2 + n3)-time algorithm for Temporal Path Cover on temporal oriented
trees with n vertices and at most ℓ many labels per arc. Furthermore, temporal oriented trees satisfy the
Dilworth property.

For the rest of this section, T = (T, λ) shall denote a temporal oriented tree with n vertices and at most
ℓ-many labels per edge. We construct the connectivity graph of T , denoted by G, as follows: V (G) = V (T )
and E(G) = {uv | u ̸= v and u and v are temporally connected}. In other words, the connectivity graph of a
temporal oriented tree connects vertices that are temporally connected. Observe that G can be constructed
in O(ℓn2)-time. The next observation follows immediately from the definition.

Observation 10. A set S of vertices of T is a temporal antichain if and only if S induces an independent
set in G.

We have the following relationship between temporal paths in T and cliques in G.

Lemma 11. Let S be a set of vertices of T . Then S is contained in a temporal path in T if and only if S
is contained in a clique of G.

Proof. Let S be contained in temporal path P in T . Let u1, u2, . . . , uk where k = |S|, be the ordering of the
vertices in S as they are encountered while traversing P from the source to the sink. Notice that, for each
1 ≤ i < j ≤ k, there is a temporal path from ui to uj . Therefore, ui is adjacent to uj in G. Hence, S is
contained in a clique of G.

Let S be contained in a clique of G and S′ be a maximal complete subgraph of G such that S ⊆ V (S′).
Now, we orient the edges of S′ to create a digraph

−→
S′ as follows. For an edge uv ∈ E(S′), we introduce an

arc −→uv ∈ A(
−→
S′) if there is a temporal path from u to v in T . Since T is acyclic,

−→
S′ is a transitive tournament.

Hence, there is an ordering u1, u2, . . . , uk of the vertices of S′ where k = |V (S′)| such that for 1 ≤ i < j ≤ k,
there is a temporal path from ui to uj in T . Now, consider any temporal path P from u1 to uk in T . (P
exists as −−→u1uk ∈ A(

−→
S′). Since T is a temporal oriented tree, P will contain all vertices of S′ and therefore of

S.
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Following is an immediate corollary of the above.

Corollary 12. The minimum cardinality of a temporal path cover of T is equal to the minimum cardinality
of a clique cover of G.

We will often use the following lemma about vertex-intersecting temporal paths between pairs of vertices.

Lemma 13. Let {u, v, w, x} ⊆ V (T ) be four vertices such that any temporal path from u to v has a vertex
in common with any temporal path from w to x. Then, there is a temporal path from u to x, or a temporal
path from w to v.

Proof. Assume that there is no temporal path from u to x. Let y be the vertex of a temporal path from w
to x that is closest to u in T . Let t be the smallest integer such that there is a temporal path from u to v
that reaches y at time-step t. Observe that no temporal path from y to x can start at time-step t′ > t since,
otherwise, there would be a temporal path from u to x. This implies that all temporal paths between w and
x reach y at time-step t′′ ≤ t. Let P1 be a temporal path from w to y which is also a subpath of a temporal
path from w to x. Let P2 be a temporal path from y to v which is also a subpath of a temporal path from u
to v. The above arguments imply that the arc incident with y in P1 has time-step at most t. Similarly, the
arc incident with y in P2 has time-step strictly greater than t. Hence, the concatenation of P1 and P2 is a
temporal path in T from w to v.

4.1 The case of holes
In this subsection, we will show that the connectivity graph G does not contain any holes. We use the
following lemma.

Lemma 14. Let H be an induced cycle of length at least 4 in G. Then, for every vertex v ∈ V (H) and every
arc −→a of T incident with v, the vertices of H \ {v} lie in the same connected component of T \ {−→a }.

Proof. For the sake of contradiction, let there exist vertices {u, v, w} ⊆ V (H) and an arc −→a of T incident
with v such that u and w lie in two different connected components of T ′ = T \ {−→a }. Let Cu and Cw be
the sets of vertices of H \ {v} contained in the same connected component as u and w, respectively. Since
H \ {v} is connected, there exist u′ ∈ Cu and w′ ∈ Cw such that u′w′ ∈ E(H) i.e. u′w′ ∈ E(G). Hence,
there is a temporal path P from u′ to w′ or w′ to u′ in T . Since T is a tree, P must contain v. Lemma 11
implies that {u′, v, w′} forms a subset of a clique in G, and therefore {u′, v, w′} forms a triangle. But this
contradicts that H is a hole.

Going forward, we need the following notations. For an edge e = uv ∈ E(G), let Qe denote a temporal
path from u to v or v to u in T . For an induced cycle H of length at least 4 in G, let TH denote the smallest
connected subtree of T containing all vertices of H. Lemma 14 implies that every vertex of H must be a leaf
in TH . For a vertex v ∈ V (H), let −→a (v) be the arc incident with v in TH . Let H be an induced cycle of
length at least 4 in G. We can partition the vertex set of H into two sets IN(H) and OUT (H) as follows: a
vertex v ∈ V (H) is in IN(H) if −→a (v) is directed towards v, and otherwise v is in OUT (H).

For a vertex v ∈ IN(H), notice that both neighbors of v in H must lie in OUT (H), and vice versa, since
they must be connected by a directed path in T . Hence, H is bipartite, and therefore G does not contain
any odd hole (i.e., a hole with an odd number of vertices):

Lemma 15. The connectivity graph G does not contain any odd hole.

Without loss of generality, we assume in the following that OUT (H) (resp. IN(H)) contains every odd-
indexed (resp. even-indexed) vertex of H. For an even hole H whose vertices are cyclically ordered as
u1, u2, . . . , uk, we use a cyclic definition of addition, so k + 1 = 1. We first prove the following lemmas.

Lemma 16. Let H be an even hole in the connectivity graph G. Then, for every i, Quiui+1
and Qui+2ui+3

share a common vertex.
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Proof. Assume by contradiction that Quiui+1
and Qui+2ui+3

are vertex-disjoint. Assume without loss of
generality that Quiui+1 goes from ui to ui+1. Note that, since each vertex of the hole is a leaf of TH as
a consequence of Lemma 14, the two paths Quiui+1 and Qui+1ui+2 have to share a common vertex other
than ui+1 (its neighbour in TH). By the same reasoning, Qui+1ui+2

and Qui+2ui+3
share a common vertex

other than ui+2. Hence, since the three paths Quiui+1
, Qui+1ui+2

and Qui+2ui+3
are in TH , and Quiui+1

and
Qui+2ui+3

are vertex-disjoint, there is an arc −→a contained in Qui+1ui+2
that separates Quiui+1

and Qui+2ui+3
.

Removing −→a from T partitions the vertices of H into two sets H1 and H2: H1 (resp. H2) contains the
vertices of H that are in the same part of T \ −→a as ui+1 (resp. ui+2). Now, since H is a cycle, there is an
edge ujuj+1 such that (without loss of generality) uj ∈ H1, uj+1 ∈ H2 and (j, j + 1) ̸= (i + 1, i + 2). This
implies that the path Qujuj+1

has to use −→a in T , and thus Qui+1ui+2
and Qujuj+1

share a common vertex.
Hence, Lemma 13 implies that there is a temporal path from uj+1 to ui+1 or from ui+2 to uj . However, since
j ̸= i + 3 (uj ∈ H1 and ui+3 ∈ H2) and j + 1 ̸= i (uj+1 ∈ H2 and ui ∈ H1), both temporal paths would
induce a chord in H, a contradiction.

Lemma 17. The connectivity graph G does not contain any hole of size 6.

Proof. Assume by contradiction that there is a hole on six vertices u1, . . . , u6. We know that Qu1u2
and Qu4u5

are vertex-disjoint (since otherwise, by Lemma 13, at least one of the chords u1u4 or u2u5 would exist). The
ui’s are leaves of TH , so Qu1u2

and Qu1u6
, being paths with a common leaf in the same subtree, share at least

one common vertex other than u1 (its neighbour in TH), let v be the last (with respect to the orientation
of T ) vertex in their common subpath. Now, Qu5u6 has a common vertex with both Qu1u2 (by Lemma 16)
and Qu1u6

(the neighbour of u6 in TH), so it has to contain v by the Helly property of subtrees of a tree. By
the same reasoning, Qu4u5

and Qu5u6
share at least one common vertex other than u5 (its neighbour in TH),

let w be the last vertex in their common subpath. The Helly property of subtrees of a tree again implies
that both Qu2u3

and Qu3u4
have to contain w, since they pairwise intersect with Qu4u5

. But this means that
Qu2u3 and Qu5u6 share both v and w as common vertices, and so by Lemma 13 there is at least one of the
two chords u2u5 or u3u6, a contradiction.

We can now prove that there is no even hole in G:

Lemma 18. The connectivity graph G does not contain any even hole.

Proof. Assume by contradiction that G contains an even hole H on k ≥ 8 vertices (k = 6 is impossible by
Lemma 17). We know by Lemma 16 that both Qu3u4 and Quk−1uk

intersect Qu1u2 , but do not intersect each
other (otherwise, by Lemma 13, at least one of the edges u3uk or u4uk−1 would exist, and both would be
chords since k ≥ 8), so there is an arc −→a in T that separates them. Removing −→a from T partitions the
vertices of H into two sets H1 and H2: H1 (resp. H2) contains the vertices of H that are in the same part of
T \−→a as u3 (resp. uk). Now, since H is a cycle, there is an edge ujuj+1 such that (without loss of generality)
uj ∈ H1 and uj+1 ∈ H2. This implies that the path Qujuj+1 has to use −→a in T , and thus Qu1u2 and Qujuj+1 ,
both containing −→a , share a common vertex. Hence, Lemma 13 implies that there is a temporal path from
uj+1 to u2 or from u1 to uj . However, since j ̸= k (uj ∈ H1 and uk ∈ H2) and j + 1 ̸= 3 (uj+1 ∈ H2 and
u3 ∈ H1), by Lemma 13 both temporal paths would induce a chord in H, a contradiction.

4.2 The case of anti-holes
In this subsection, we will show that the connectivity graph G does not contain any anti-hole. For an anti-
hole H, let its vertices be circularly ordered as u1, u2, . . . , uk as they are encountered while traversing the
complement of H (which is a hole). Let ODD (H) (resp. EV EN (H)) denote the set of vertices with odd
(resp. even) indices.

Lemma 19. The connectivity graph G does not contain any anti-hole.

Proof. Assume by contradiction that G contains an anti-hole H with k vertices. If k = 5, then H is a hole,
which contradicts Lemma 15; hence, assume k ≥ 6.
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When k is odd, let F1 = ODD (H) \ {uk}, F2 = EV EN (H). When k is even, let F1 = ODD (H) , F2 =
EV EN (H). Observe that |F1| = |F2| ≥ 3 and both sets induce (vertex-disjoint) cliques in G. By Lemma 11,
there are temporal paths P1 and P2 in T containing F1 and F2, respectively, which we can assume are minimal
vertex-inclusion-wise (so that, for each i ∈ {1, 2}, both end-vertices of Pi lie in Fi). For i ∈ {1, 2}, let vi and
wi denote the source and sink of Pi, respectively. We have two cases.

Case 1: V (P1) ∩ V (P2) = ∅. Let Q be the shortest temporal path that contains vertices from both P1

and P2. Let p1, p2 be the end-vertices of Q that lie on P1 and P2, respectively. Since for each i ∈ {1, 2} and
Z ∈ {F1, F2}, NG(wi)∩Z ̸= ∅, Q is oriented from p1 to p2, or vice versa. Without loss of generality, assume
that Q is oriented from p2 to p1. Then, necessarily p2 = w2, since otherwise w2 is not temporally connected
with any vertex of F1, a contradiction. By a similar argument, we have p1 = v1. Now, consider the clique
induced by N(v2)∩F1. Due to Lemma 11, all vertices of N(v2)∩F1 and v2 itself are contained in a temporal
path, which also necessarily contains w2. Hence all of F2 (P2, even) is in a temporal path containing v1,
since the path has to go through v1 to reach other vertices of F1, and so F2 ∪ {v1} forms a clique. This is a
contradiction as v1 necessarily has at least one non-neighbor in F2.

Case 2: V (P1)∩V (P2) ̸= ∅. Let Q denote the maximal vertex-inclusion-wise path that is common to both
P1 and P2, i.e., the path induced by the set V (P1) ∩ V (P2). Note that Q does not contain any vertex from
H, since a vertex of H in Q would be temporally connected to every other vertex of F1 ∪F2, a contradiction.
Let p denote source of Q and for each i ∈ {1, 2} let Qi (resp. Q′

i) be the subpath of Pi between p and wi

(resp. p and vi).
Note that no vertex of Q′

1 \ {p} can be in a directed path with any vertex of Q′
2 \ {p}. Similarly, no

vertex of Q1 \ {p} can be in a directed path with any vertex of Q2 \ {p}. Thus, the two subgraphs of the
connectivity graph G induced by the vertices of (V (Q1) ∪ V (Q2)) \ V (Q) and (V (Q′

1) ∪ V (Q′
2)) \ {p} each

induce the complement of a complete bipartite graph. As H does not contain any complement of a 4-cycle
as an induced subgraph, this implies that there are exactly three vertices of H in each of these two subsets
of vertices (since Q does not contain any vertex of H). In particular, H has size either 6 or 7.

Without loss of generality, we assume that Q′
1 contains only one vertex of H, which must be v1. Thus,

there are two vertices of H in Q′
2: v2 and another vertex, say, v′2. Since F1 and F2 both have size 3, the

vertices of H in Q1 are w1 and (say) w′
1, and the only vertex of H in Q2 is w2. Now, observe that if v2 is

contained in a temporal path with w1, then v2, v′2, w′
1 and w1 are in a common temporal path. This is not

possible, since in H, there is either one or two non-edges among these four vertices (depending on whether
H has size 7 or 6). Thus, w1 and v2 are in no common temporal path. Since v2 has no non-neighbour in H
other than v1 and w1, v2 and w′

1 are in a common temporal path, that also contains v′2. Thus, {v2, v′2, w′
1}

form a clique in H. Similarly, {v′2, w′
1, w1} also form a clique in H. If H had size 6, v′2 and w′

1 would need
to be non-neighbours in H (since w1 already has two non-neighbours in H), a contradiction. Thus, H has
size 7, and the two non-neighbours in H of u7 (the vertex of H not in F1 ∪F2) are v′2 and w′

1 (since they are
the only ones without two non-neighbours in H). But u7 has to be temporally connected to all of v1, v2, w1

and w2, so u7 has to be in Q. But any temporal path from v2 to a vertex of Q has to contain v′2, and so u7

and v′2 are temporally connected, a contradiction. This completes the proof.

4.3 Completion of the proof of Theorem 3
Lemmas 15, 18 and 19 imply that the connectivity graph of a temporal oriented tree is weakly chordal. Note
that this cannot be strengthened to chordal, as there are temporal oriented trees whose connectivity graphs
contain induced 4-cycles: let λ(−→s1c) = λ(−→s2c) = 1 and λ(

−→
ct1) = λ(

−→
ct2) = 2, the vertices s1, t1, s2 and t2 induce

a C4 in the connectivity graph. Corollary 12 implies the correspondence between a minimum temporal path
cover of a temporal oriented tree and a minimum clique cover of the corresponding connectivity graph. We
then conclude using Theorem 8 for the algorithm. Observation 10, Corollary 12 and Theorem 8 together give
the Dilworth property.
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5 Temporally Disjoint Path Cover on temporal oriented trees
Theorem 4. Temporally Disjoint Path Cover is NP-hard on temporal oriented trees.

Proof. The reduction is inspired from Theorem 1 in [29, 30]. However, in [29, 30], the terminal vertices of
the paths are fixed, which is not the case in our problem. Thus, nontrivial additions are needed. We reduce
from Unary Bin Packing, which is NP-complete [17].

Unary Bin Packing
Instance: A list of item sizes (x1, . . . , xn), a number of bins b, each of size B. x1, . . . , xn, b, B are
integers encoded in unary, and verify

∑n
i=1 xi = bB.

Question: Is it possible to assign every item to a bin, filling all the bins?

The idea of the reduction will be to have pairs of vertices serving as bins, each with B leaves, and to have
vertices representing, for each item, the bins that are unused by this item.

We construct the following temporal oriented tree T = (T, λ):

• V (T ) = {c} ∪
b⋃

i=1

{si, ti} ∪
B⋃

j=1

{rji , u
j
i}

 ∪
n⋃

i=1

(xi−1)(b−1)⋃
j=1

{vji , w
j
i }

• A(T ) =

b⋃
i=1

{−→sic,
−→
cti} ∪

B⋃
j=1

{
−−→
rji si,

−−→
tiu

j
i}

 ∪
n⋃

i=1

(xi−1)(b−1)⋃
j=1

{
−→
vji c,

−−→
cwj

i }

For the sake of simplicity, we will use layers to represent the time labels: for each item i, the layer λi will

assign to every arc a subset of {1, . . . , 2bxi+4}. Thus, for an arc a, we have λ(a) =
n⋃

i=1

{ℓ+
∑i−1

j=1(2bxi+4) | ℓ ∈

λi(a)}. This allows us to describe the layers starting with label 1. We call two time labels 2-successive if
they differ by 2. The time labels in layer i are as follows.

• For every j ∈ {1, . . . , b} and k ∈ {1, . . . , B}: λi(
−−→
rkj sj) = {every 2-successive label between

2(j − 1)xi + 1 and 2jxi − 1}; λi(
−→sjc) = {every 2-successive label between 2(j − 1)xi + 2 and 2jxi};

λi(
−→
ctj) = {every 2-successive label between 2(j − 1)xi + 3 and 2jxi + 1}; λi(

−−→
tju

k
j ) = {every

2-successive label between 2(j − 1)xi + 4 and 2jxi + 2}.

• For every j ∈ {1, . . . , (xi − 1)(b − 1)}: λi(
−→
vji c) =

⋃b
k=1{the xi − 1 first labels of −→

ctk}; λi(
−−→
cwj

i ) =⋃b
k=1{the xi − 1 highest labels of −→skc}. For a given k, those are called the bin-k-labels.

A layer of this construction is depicted in Figure 5. The number of vertices is 1 + 2b+ 2bB +
∑n

i=1(xi −
1)(b− 1) = 2b(bB − n+ 1) + 2n+ 1, among which 2b(bB − n) + 2n are leaves (half of them are sources, the
other half sinks). The number of different time labels is 2bxi + 4 for layer i, and thus a total of 2b(bB + 4n).
Hence, the reduction is polynomial.

We now prove that there is a valid assignment of every item to a bin if and only if there is a temporally
disjoint path cover of T of size b(bB − n) + n.

(⇒) Suppose that f : {1, . . . , n} → {1, . . . , b} is a valid assignment (so
∑

i∈f−1(j) xi = B for every j). In

every layer i, we take xi (r, u)-paths (
−−−−−→
rjf(i)sf(i), 2(f(i)− 1)xi + 2a), (−−−→sf(i)c,

2(f(i)−1)xi+2a+1), (
−−−→
ctf(i), 2(f(i)−1)xi+2a+2), (

−−−−−−→
tf(i)u

k
f(i), 2(f(i)−1)xi+2a+3) using uncovered rjf(i)’s

and uk
f(i)’s and for a ∈ {1, . . . , xi}; as well as all the paths from vji to wk

i such that the arc
−→
vji c is used with a

bin-k-label for k ̸= f(i). The first paths will always be possible, and will cover every rji and uj
i once all the

layers are done, since we will use exactly B paths for every i. The other paths can also clearly be constructed,
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c

s1 s2 s3

t1 t2 t3

2, 4, 6

8, 10, 12

14, 16, 18

3, 5
, 7

9,
11
, 1
3

15
, 1
7,
19

rj1’s

uj
1’s

rj2’s

uj
2’s

rj3’s

uj
3’s

1,3,5

4,6,8

7,9,11

10,12,14

13,15,17

16,18,20

3,5,9,11,15,17

4,6,10,12,16,18

vk1 ’s

wk
1 ’s

. . .

. . .

vkn’s

wk
n’s

Figure 5: Layer 1 of the reduction of the proof of Theorem 4, with x1 = 3, b = 3, B = 4. The only vkj ’s and
wk

j ’s linked with c in this layer are those with j = 1.

since whenever k ̸= f(i) the bin-k-labels are not used by the first paths, and so we will cover all the vji ’s and
wj

i ’s. Hence, we obtain a temporally disjoint path cover of T (c and the si’s and ti’s are clearly covered) of
size

∑n
i=1(xi + (xi − 1)(b− 1)) = b(bB − n) + n.

(⇐) Suppose that there is a temporal path cover of T of size b(bB − n) + n. The cover is of size twice
the number of leaves, so each path in the cover will contain two leaves. Since every path between two leaves
has to go through c and the paths are temporally disjoint, there can be at most bxi paths in layer i, with
equality if and only if all in-arcs with successive labels from 2 to 2bxi are used.

The vertices vji ’s are linked with c only in layer i, so they are covered in layer i by an arc
−→
vji c at time d

(note that d is odd); sort them in a sequence S ordered by the d’s. We call a subsequence of S 2-successive
if the d’s are 2-successive.

Claim 1. Each 2-successive subsequence of length k prevents k + 1 (r, u)-paths from going through c.

Proof. Each 2-successive subsequence S′ = (d, d+2, . . . , d+2k− 2) (recall that d is odd) induces paths that
occupy c at all times between d and d+2k− 1 (since the last path needs to leave c in order to allow another

path to occupy c in turn); but due to the difference of parity between the time labels of the arcs
−→
uj
i c and −→skc,

S′ will prevent at least |S′|+ 1 = k + 1 (r, u)-paths from going through c, since no such path will be able to
go through c in the interval between d− 1 and d+ 2k − 1.

Note that having a path start in one layer and end in another layer will lower the maximum number of
paths restricted to their layers by 1 for each of both, while gaining at most one path with arcs in two different
layers. Furthermore, while the theoretical maximum number of paths in layer i is bxi, the vji ’s are covered in
layer i, and thus by Claim 1 there can be at most bxi − (b− 1) paths in layer i. Since the number of paths
in the cover is b(bB − n) + n =

∑n
i=1(bxi − (b − 1)), there is no path having arcs in two different layers.

Similarly, the only paths in the cover are (r, u)-paths and (v, w)-paths (since, otherwise, there would be even
fewer paths in the layer).

Claim 2. There are exactly xi (r, u)-paths in layer i.
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Proof. Due to the definition of λi, there are at least b− 1 2-successive subsequences, each of length at most
xi − 1. By Claim 1, they prevent at least (b− 1)(xi − 1)+ (b− 1) = (b− 1)xi (r, u)-paths from going through
c in layer i (since the number of (v, w)-paths is fixed, increasing the number of 2-successive subsequences
will decrease their sizes, but will end up increasing the number of time labels during which c is occupied).
Since there are at most bxi paths per layer, there are at most xi (r, u)-paths in layer i, with equality if and
only if there are exactly b − 1 2-successive subsequences. As this holds for every layer, the path cover is of
size b(bB − n) + n, and (b − 1)(bB − n) paths are necessary to cover the vkj ’s and wk

j ’s, there has to be bB
(r, u)-paths in all the layers; thus there are exactly xi such paths in layer i.

Claim 3. All the (r, u)-paths of a layer i have to all go through the same sj.

Proof. Assume by contradiction that there are (r, u)-paths in the same layer using sj and sk for j ̸= k. Then,
in order to cover the vi’s and wi’s, we need to have at least b 2-successive subsequences (at least 1 for each
of j and k, and at least b − 2 for the other bins). By Claim 1 and as in the proof of Claim 2, this implies
that there will be less than xi (r, u)-paths in the layer, which contradicts Claim 2, so all the (r, u)-paths go
through the same sj .

The same argument can be applied to show that all (r, u)-paths go through the same tj′ , and that
j = j′.

Hence, we can construct the item assignment function f as follows: for every item i, let j be the integer
such that there are xi (r, u)-paths in layer i going through sj and tj ; we define f(i) = j. Claim 3 implies that
f will assign each item to exactly one bin. Moreover, by our construction, there are exactly B (r, u)-paths
going through each sj , xi of which at layer i for i ∈ f−1(j) by Claim 2, and thus it is a correct assignment:∑

i∈f−1(j) xi = B for each bin j.

We also show the following.

Proposition 20. There are temporal oriented trees (whose underlying digraph is a star) that do not satisfy
the TD-Dilworth property.

Proof. Consider the temporal oriented tree Sk = (Sk, λ), with V (Sk) = {s1, . . . , sk} ∪ {t1, . . . , tk} ∪ {c},
A(Sk) =

⋃k
i=1{

−→siu,
−→
uti}, and λ(−→siu) = 1 and λ(

−→
cti) = 2 for i ∈ {1, . . . , k}. Now, as depicted on Figure 6,

the si’s (or the ti’s) form a (maximum-size) temporal antichain of size k. Since c is a cut-vertex with all its
in-arcs having the same time label, there can only be one path using c to cover both an si and a ti, and
thus every other vertex has to be covered individually. Hence, we need at least 2k− 1 temporal paths in any
temporal path cover of Sk (and it is easy to construct such a cover).

. . .

. . .

1
1 1

2
2 2

s1 s2 sk

t1 t2 tk

c

Figure 6: Sk, a temporal oriented tree with a maximum-size temporal antichain of size k and a minimum-size
TD-PC of size 2k − 1.
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6 Subclasses of temporal oriented trees
Theorem 5. Temporal Path Cover and Temporally Disjoint Path Cover can be solved in time:
(a) O(ℓn) on temporal oriented lines;
(b) O(ℓn2) on temporal rooted directed trees;

where ℓ is the maximum number of labels per arc and n is the number of vertices. Furthermore, both classes
satisfy the TD-Dilworth property.

Proof. (a) Let P = (P, λ) be a temporal oriented line, and let v be a leaf of P . We construct C as follows.
Assume that v is incident with an in-arc −→uv. We construct a maximum-length temporal path that covers v. Set
(b, c) = (u, v), ℓ = maxλ(−→uv), and apply the following routine: while b is incident with an in-arc

−→
ab, if there is

a time label smaller than ℓ in λ(
−→
ab), add

−→
ab to the path, update (b, c) = (a, b) and ℓ = max{k ∈ λ(

−→
ab) | k < ℓ}.

When the routine stops, add the path to C, remove its vertices from P , and start again on a new leaf (or
return C if P is empty). If v was incident with an out-arc, we would do the same but with out-arcs, start
with the smallest possible time label, and update ℓ = min{k ∈ λ(

−→
ab) | k > ℓ}.

This algorithm computes its output in time O(ℓn): every arc is visited at most once, but we need to
parse the time labels in order to see whether we can keep on extending the path or not.Furthermore, the set
of leaves v where we start the routine are a temporal antichain: assume on the contrary that v1 and v2 are
such vertices that are temporally connected, and assume without loss of generality that there is a path from
v1 to v2 in the underlying oriented path; in this case, our algorithm would have added v1 to the path that
started being computed at v2, a contradiction. Hence, C is a temporally disjoint path cover with the same
size as a temporal antichain, proving that it is minimum-size and that temporal oriented lines satisfy the
TD-Dilworth property.

(b) We give an algorithm that solves Temporal Path Cover on a temporal rooted directed tree T =
(T, λ). First, we sort the vertices of T with respect to their topological distance from the root in T (with the
highest distances first). Then, we construct a maximum-length temporal path covering the first uncovered
vertex (which will be a sink of that path), until T is fully covered.

Note that this algorithm outputs C which is clearly is a temporal path cover: every vertex is covered by
some path of C. Furthermore, it is an adaptation of the algorithm for temporal oriented lines: instead of
successive leaves, we construct the paths from successive leaves with highest topological distance from the
root. We will show that C is minimum-size, and later we will explain how to modify the algorithm in order
to obtain a minimum-size TD-PC.

Let S be the set of sinks of paths of C. First, let vi and vj be two vertices of S (without loss of generality,
assume that vi was covered by the algorithm after vj). They cannot be temporally connected, since otherwise,
the graph being a temporal rooted directed tree, one of them is necessarily the predecessor of the other in a
path from the root, and thus the maximum-length temporal path ending in vj would necessarily contain vi,
since there is a temporal path from vi to vj , and thus vi would have been covered at this step and cannot be
in S. Hence, S is a temporal antichain.

We now prove that S is maximum-size. Assume by contradiction that there is a temporal antichain S′

with |S′| > |S|. However, by definition, no two vertices in S′ can be covered by the same temporal path of
C, and thus |S′| = |C|. But |C| = |S|, a contradiction. Thus, S is a maximum-size temporal antichain of the
temporal rooted directed tree. Since the temporal antichain number is a lower bound for the temporal path
cover number, this implies that the temporal path cover C that the algorithm constructed is minimum-size,
and thus that temporal rooted directed trees satisfy the Dilworth property.

We now modify the algorithm to obtain a minimum-size temporally disjoint path cover. Indeed, we can see
that the maximum-length temporal path construction, which is executed for every vertex of S, can re-cover
some vertices that had already been covered at a previous step. Let vi and vj be two vertices of S such that
their maximum-length temporal paths constructed by the algorithm Pi and Pj intersect. Since the graph is
a temporal rooted directed tree, we can divide Pi and Pj into the following parts, without loss of generality:
Pi = P top

i ∪(Pi ∩ Pj)∪P bot
i and Pj = (Pi ∩ Pj)∪P bot

j , where P top
i ∩Pj = P bot

i ∩Pj = P bot
j ∩Pi = ∅ (note that

we can have P top
i = ∅). Hence, we can modify the algorithm by adding a loop that, for each such pair (Pi, Pj),

defines those subpaths and then removes Pi ∩ Pj from Pj . Now, C will still be a temporal path cover, but
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the paths will be vertex-disjoint and thus temporally disjoint, and its size will not change. This implies that
temporal rooted directed trees satisfy the TD-Dilworth property (contrasting the general temporal oriented
trees), and thus the modified algorithm outputs the optimal solution for those two problems. The result of
the algorithm and its modification is depicted in Figure 7.

Finally, one can check that the algorithm and its modification compute C in time O(ℓn2). For each vertex
in the antichain S, we have to construct the maximum-length temporal path. This can be done in time O(ℓn)
by taking at every arc the largest label that allows to extend the path, thus we have to parse all the labels
of every arc along the path, which can be of linear-size in the worst case. Since we can have a linear number
of antichain vertices, we have a complexity of O(ℓn2) to get the temporal path cover. The modification to
make it temporally disjoint can be done in O(n2) time afterwards.

2

3 1

2 2

2

3 1

2 2

1

1,2

2

1

3

1

1,2

2 1
3

Figure 7: Minimum-size temporal path covers and temporally disjoint path covers of the same temporal
rooted directed tree (on the left, with one label per arc; on the right, with any labels per arc), as computed
by our algorithm and its modification in the proof of Theorem 5.

7 Algorithms for temporal digraphs of bounded treewidth
Recall that an algorithm is FPT with respect to some parameter k of the input, if it runs in time f(k)nO(1)

for inputs of size n, where f is any computable function; the algorithm is XP for this parameter if the running
time is in nf(k) [11]. We prove the following theorem.

Theorem 6. There is an algorithm for Temporally Disjoint Path Cover on general temporal digraphs
that is FPT with respect to the treewidth of the underlying undirected graph and the maximum number of
labels per arc. For Temporal Path Cover on general temporal digraphs, there is an XP algorithm for the
same parameter.

To prove the theorem, we use the well-known concept of nice tree decompositions [27], which gives a very
structured decomposition of a graph.

Definition 21. A nice tree decomposition of an undirected graph G = (V,E) is a rooted tree T where each
node v is associated to a subset Xv of V called bag, and each internal node has one or two children, with the
following properties.

1. The set of nodes of T containing a given vertex of G forms a nonempty connected subtree of T.

2. Any two adjacent vertices of G appear in a common node of T.

3. Each node of T belongs to one of the following types: introduce, forget, join or leaf.

4. A join node v has two children v1 and v2 such that Xv = Xv1 = Xv2 .

5. An introduce node v has one child v1 such that Xv \ {x} = Xv1 , where x ∈ Xv.

6. A forget node v has one son v1 such that Xv = Xv1 \ {x}, where x ∈ Xv1 .
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7. A leaf node v is a leaf of T with Xv = ∅.

8. The tree T is rooted at a leaf node r with Xr = ∅.

It is known that for any undirected graph of treewidth tw with n vertices, a tree-decomposition of width
at most 2 tw can be computed in time 2O(tw)n [28], and the obtained tree decomposition can be transformed
into a nice tree-decomposition of the same width with O(tw n) bags in time O(tw2 n) [27].

For the remainder of this section, we shall work with a temporal digraph D = (V,A1, . . . , Atmax), and a
nice tree decomposition T of the underlying undirected graph of D. For a node v of T, let Tv denote the
subtree of T rooted at v, and let Dv denote the temporal digraph induced by the union of the bags of nodes
of Tv.

The main idea behind the algorithm is to perform a bottom-up dynamic programming algorithm over T.
We can bound the number of partial solutions that can intersect a given bag, partly because of the following.

Observation 22. Let C be a temporally disjoint path cover of D. Then any arc of D appears in at most tmax

many paths of C.

Consider an arbitrary temporally disjoint path cover C of Dv. Observation 22 implies that the number of
temporally disjoint paths of C that contain at least one arc from the digraph induced by Xv is at most the
number of arcs in this digraph, times the number of time-steps at which each of the arcs is active in D. This
is at most p =

(
tw
2

)
· tmax.

Based on these, we create the following temporal multi-digraph. Let D′ be a copy of D. Now; for each
arc a with time labels λ(a) = L ⊆ [tmax], introduce |L| many new arcs a1, . . . , a|L|, each with a distinct time
label of L. Note that any temporally disjoint path cover of D can be transformed into a temporally disjoint
path cover of D′ whose temporal paths are pairwise edge-disjoint. Therefore, from now on, we will consider
D′ instead of D.

We now describe the states of our dynamic programming algorithm. To do so, for a temporally disjoint
path cover C of D, its type τ with respect to a node v of T is determined by the following elements:

• a partition Q = Q0, Q1, . . . , Qt of the arcs of D′ inside Xv, where each part Qi corresponds to a temporal
path P (Qi) of C (note that this path may form a set of disconnected sub-paths inside Xv), and where
the part Q0 is reserved for those arcs that do not belong to any path of C;

• for each part Qi of Q, the subset Vi of vertices of Xv that belong to P (Qi) (those are the endpoints of
arcs in Qi, together with those vertices of P (Qi) that are not incident with any arc in Qi);

• for each part Qi of Q, the order of the vertices of Vi inside P (Qi), where P (Qi) is ordered from lowest
to largest time label;

• for each part Qi of Q, the set of vertices x in Vi with one or two arcs in P (Qi) from x to a vertex y not
in Xv, together with the time labels of these arcs in P (Qi), and whether the arc connects x to a vertex
in Dv or in D \ Dv.

The total number of different types of solutions with respect to any node v is at most pp × 2tw+1 ×
(tw+1)!× 2tw+2 × t2max which is 2O(p log p). For a type τ with respect to node v, its size is the bit-length of
its encoding. A type τ with respect to v is said to be consistent if for each part Qi of Q, there is a subset
of vertices of Vi whose ordering together with the arcs of Qi, form a valid temporal path (in particular, all
labels of Qi must be distinct). Moreover, the labels of required arcs from a vertex x of Xv to a vertex y
outside of Xv, must correspond to an actual arc label for some arc in D connecting x to some vertex outside
of Xv. Moreover, every vertex of Xv must belong to some set Vi. Whether a type τ with respect to v is
consistent can be checked in time proportional to p and the size of τ . For a node v of T and a solution type
τ with respect to v, let opt(v, τ) denote the minimum size of a solution for Dv that is of type τ with respect
to v. The dynamic programming algorithm computes opt(v, τ) by traversing the nice tree-decomposition T

bottom-up and computes, for each node v, all the values for opt(v, τ). The computation depends on whether
the current node of T is a leaf, forget, introduce or join node.
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Leaf node: There is nothing to do since for a leaf node v, Xv = ∅, so there is no partial solution with respect
to v.

Forget node: Let v be a forget node that has a child node v′ such that Xv = Xv′ \ {x}. For each possible
consistent solution type τ with respect to v, we check which (consistent) solution types τ ′ with respect to v′

are compatible with τ . Whether τ and τ ′ are compatible (meaning that, roughly speaking, τ corresponds to
τ ′ by removing x) can be computed in time proportional to p, the size of τ and that of τ ′. Among those, we
discard those where x is required to have an arc to a vertex of D \Dv in its solution path (since x will never
appear again in the tree-decomposition). We let opt(v, τ) be the minimum value among all values opt(v′, τ ′)
with τ ′ one of the non-discarded types compatible with τ .

Introduce node: Let v be an introduce node that has a child node v′ such that Xv = Xv′ ∪ {x}. For each
possible consistent solution type τ with respect to v, we check which solution types with respect to v′ are
compatible with it. Here, this means that τ can be obtained from τ ′ either as a new solution path with a
single vertex, or by adding x to one of the solution paths described by τ ′ (through an arc of the correct label
as described in τ ′). If x forms a single path in τ , we let opt(v, τ) be the minimum over opt(v′, τ ′) + 1, where
τ ′ is compatible with τ ; otherwise, we take the minimum over all opt(v′, τ ′) for compatible τ ′.

Join node: Let v be a join node with children v1 and v2 and Xv = Xv1 = Xv2 . For any three possible solution
types τ , τ1, τ2 that are consistent with respect to v, v1 and v2, respectively, we check if they are compatible.
For this, the partitions of the arcs of Xv have to agree, as well as the order of vertices inside each solution
path. The other elements should also be compatible. For example, if in τ1 there is a vertex x ∈ Xv that is
required to have a single neighbour in Dv1 \Xv in its solution path, and the same holds for τ2 and Dv2

\Xv,
then the types are not compatible, since combining them would give two such neighbours to x in Dv \Xv.
Similarly, if in τ1, x is required to have a neighbour in Dv1 \Xv in its solution path and another neighbour in
D \Dv1 , τ1 is compatible with τ and τ2 if in τ2, x is required to have a neighbour in Dv2 \Xv in its solution
path and another neighbour in D \ Dv2 , but in τ , x is required to have two neighbours in Dv \ Xv in its
solution path. Other similar cases arise as well. For three compatible types τ , τ1, τ2, opt(v, τ) is obtained
from opt(v1, τ1) + opt(v2, τ2) by subtracting the number of solution paths that intersect the bag (and that
would otherwise be counted twice).

This dynamic programming algorithm for Temporally Disjoint Path Cover takes 2O(p log p)n time,
which is an FPT running time of 2O(tw2 tmax log(tw tmax))n.

For Temporal Path Cover, the algorithm is similar, however, as the paths are not necessarily disjoint,
the type of a solution with respect to v must also contain the information of how many times a given part
of Q, representing a solution path with a certain intersection with the subgraph induced by Xv, appears in
the solution C. Thus, the number of possible solution types becomes kO(p log p), where k is the solution size.
We obtain a running time of kO(p log p), which is an XP running time of nO(tw2 tmax log(tw tmax)) since we can
assume k ≤ n.

8 Conclusion
We have initiated the study of two natural path covering problems in temporal DAGs, which, in the static
case, are related to Dilworth’s theorem and are polynomial-time solvable. Both problems become NP-hard
for temporal DAGs, even in a very restricted setting. Interestingly, and somewhat unexpectedly, they behave
differently on temporal oriented trees: we showed that Temporal Path Cover is polynomial-time solv-
able on temporal oriented trees (and a temporal version of Dilworth’s theorem holds in this setting), while
Temporally Disjoint Path Cover remains NP-hard for this class.

To prove our polynomial-time algorithm for Temporal Path Cover on temporal oriented trees, we have
reduced the problem to Clique Cover in a static undirected graph, which turns out to be weakly chordal.
This is a powerful technique, and the correspondence between the two problems is quite enlightening for the
structure of temporal paths in an oriented tree. Nevertheless, it seems unlikely that this particular technique
can be used on temporal digraph classes that are far from trees, as it was essential for the proof that any two
vertices are joined by only one path in the underlying tree. However, this general technique could likely be
applied in other temporal settings.
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We do not know if our algorithm for treewidth and number of time-steps is optimal. In particular, can
we obtain an FPT algorithm for Temporal Path Cover for this parameter? One could also explore other
(structural) parameterizations of the problems.

We note that many of our results for Temporally Disjoint Path Cover also hold for its stricter vertex-
disjoint version (note that a vertex-disjoint version of Temporally Disjoint Paths is studied in [24]), in
particular, the NP-hardness result for restricted DAGs and the polynomial-time algorithms for rooted directed
trees and oriented lines.
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