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In this paper, using Monte Carlo simulations we show that the Blume-Capel model gives rise to
the social depolarization. This model borrowed from statistical physics uses the continuous Ising
spin varying from -1 to 1 passing by zero to express the political stance of an individual going from
ultra-left (-1) to ultra-right (+1). The particularity of the Blume-Capel model is the existence of
a D-term which favors the state of spin zero which is a neutral stance. We consider the political
system of the USA where voters affiliate with two political groups: Democrats or Republicans, or
are independent. Each group is composed of a large number of interacting members of the same
stance. We represent the general political ambiance (or degree of social turmoil) with a temperature
T similar to thermal agitation in statistical physics. When three groups interact with each other,
their stances can get closer or further from each other, depending on the nature of their inter-group
interactions. We study the dynamics of such variations as functions of the value of the D-term of
each group. We show that the polarization decreases with incresasing D. We outline the important
role of T in these dynamics. These MC results are in excellent agreement with the mean-field
treatment of the same model.

I. INTRODUCTION

Social polarization has been investigated by numerous scholars using many methods [1-6]. In democracies, each
person is free to choose his/her stance with respect to a social issue such as politics, immigration, race, economics,
... according to his/her preferences. People with the similar beliefs regarding specific sets of social issues form groups
that can be very large, such as political parties [2]. Policies proposed by the left are very different of those proposed
by the right. Polarization derives from sharp differences between individuals affiliated with the ”left” orientation
and those with a ”right” orientation [3,4]. Depending on the social context and events, the political polarization at
any moment can be very sharp: people belonging to different political parties may not agree on almost any subject.
The cases of France and of the USA in recent times are striking. For example, since 2022 in France, no political
party holds a majority in the parliament. Therefore, in the absence of compromise between at least two parties, the
majority required to pass a law does not materialize. Instead, most of the time the government uses article 49.3 of
the Constitution to pass laws without a parliament vote [6,7]. In the USA, the political polarization began to rise in
the 70’s [8-13]. We see this in periodic polls [11]. Other european democracies have seen the same tendency of strong
political polarization [16,17].

In general, each party proposed policies to solve societal problems ranging from government aid to the needy, to race,
immigration, national security, and the environment [6]. However, in democracies, protracted conflict over solutions
to societal problems leads to more problems: political polarization has serious deleterious societal [1,16,17,18] and
economic [3] consequences. One of these is that people gradually lose the ability to work together, to compromise,
make, and implement deals. In time, this can lead to societal breakdown [17,19].

One notable problem caused by polarization is that individuals increasingly tend to believe in information which
agrees with, or justifies their political perspective [17,20,21]. In time, the information sets from which they draw
support diverge to the point where polarized groups hold entirely contradictory images of the shared reality. Therefore,
strong polarization prevents constructive debates. This may lead to political instability [17]–the governing party
changes often, leading to collective and individual uncertainty. Changing the governing party at each round of elections
prevents implementation of long-term programs which are necessary in realms such as economics and education. Since
polities are complex systems [22] within which interactions change with time, according to [23] and [24] empirical
studies do not suffice to help us understand political polarization dynamics. We also need theoretical modeling to
help explore the conditions under which specific events can happen. Agent-based modeling has great potential in this
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regard ([25,26]). Modeling can help prepare information that might be useful in reducing the impacts of polarization
[27,28].

Together with the recognition of increasing polarization, there has been a rise in the number of investigations of
its causes and dynamics. Sociophysics–namely applying physics tools to the study of social phenomena–has been a
very effective approach in this respect. It can handle complexity in various domains, including politics, and provide
insights complementing those gleaned from other disciplines [28-33]. Sociophysics has already been used in studies
of polarization (e.g., [10,20,34-37]). Network models can be used to explore polarization trends and to find avenues
for intervention, generating qualitative anticipatory scenarios which can be queried (e.g., [38-43]). For instance, using
network models we have anticipated election outcomes in the US and in Bosnia-Hercegovina [28,42]; and we have
examined various outcomes of labor-management contract negotiations in France [43]. As Ref. [44] has argued,
anticipatory scenarios are useful in supporting the development of robust strategies of action in the face of the high
levels of uncertainty characterizing complex systems.

Within Western democracies political polarization is on the rise, undermining collective decision making abiity (e.g.,
[17,45,46]). We have examined polarization dynamics in the USA between Democratic- and Republican-affiliated
individuals, using an agent-based model borrowed from statistical physics using mean-field theory and Monte Carlo
(MC) simulations [47,48].

We note that very recently Galam [49] has studied the political polarization using his model of opiniion dynamics
which consists in supposing there are several categories of indiividuals in a communinity, each with a probability: the
contrarians, the floaters and the stubborn agents. He found several scenarii of polarization depending on the case and
the probability: from the unanimity to the rigidity passing by the coexistence. His method is probabilistic while ours
uses the spin model with microscopic interaction between individuals of the same group at time t and interactiion of
individuals with the average stance of the other groups at the earlier time t−1. We believe however that qualitatively
we should find the same kinds of polarization if we modify our model to match with his assumptions.

We note also that there exist several other physical models that can be mapped into the social language to describe
social phenomena. Let us mention that the polarization between charged particles [50] can be seen as a social
polarization, or the mean-field approach treating the separation of ionic liquids described via the Cahn-Hilliard term
in a regular solution can be also seen as a collective polarization [51].

Once strong polarizaton is present, we need to search for ways to reduce it, namely to depolarize the society.
We have used the Blume-Capel model from statistical physics [52,53] to study depolarization using the mean-field
approximation [54]. As descibed below, this model has a term (called D-term) which favors the neutral position in
each individual, which may collectively reduce polarization.

In [54], agents’ interactions had an infinite range (mean-field), meaning that each individual interacting with each
of the others in a political system with three groups. As in [48], here we extend our work by assuming, instead, that
individuals interact only with their “neighbors”. We explore the insights to be gained with the short-range interactions
assuming a Bravais lattice, which may be more realistic in terms of how individuals communicate and try to persuade
others to their political stance. Moreover, this kind of short-range interaction matches a “massively parallel” approach
proposed by [55] as a practical means of reducing polarization. Our model may help assess the extent to which the
massively parallel approach can be effective in reducing polarization. Note that agent-based modeling has been used
to study attitude change in societies [56].

In section II we describe the initial Blume-Capel model [54] and its counterpart short-range model we use for Monte
Carlo simulations in this paper. In section III we present the simulation results and discuss their meaning in terms
of scenarios of depolarization trends. We conclude in section IV with a summary.

II. MODEL AND METHOD

A. Model

Let us briefly explain the origin of depolarization in our recent paper ([54]), where we have used agent-based
modeling to extend a sociophysics 2-group network model of conflict dynamics [38] to three political groups in the
US: Democrats (group 1), Republicans (group 2), and Independents (group 3).

To describe the political stance of an individual in a society, we use a spin S model, where the attitude S ranges
between -1 (extreme left) and 1 (extreme right). An individual’s stance can take any value on the continuum within
this range. Such a model is called a ”continuous Ising model” ([57], [58]), as opposed to the discrete Ising model, where
S could only take two values, -1 and 1. We use this continuous S model here in the Blume-Capel model described
below. To compare with the mean-field approximation [54], we use in this paper MC simulations with short-range
interactions between individuals, with real-time fluctuations.
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Each individual in group i (i = 1, 2, 3) has a stance compatible with the group’s attitude Si regarding a specific issue
under debate– economics, social issues, defense, etc.—or (here) a package of such issues (in the [1] and [6] sense). The
individual stances have values between -1 and +1, where -1 corresponds to the democrats/progressive/left position
(i = 1), while +1 corresponds to the republicans/conservative/right position (i = 2). Individuals thus align with the
group whose average stance is compatible and closest to their own [1].

Inside groups 1 and 2, individuals are homophilic [5]: they tend to prefer to communicate with each other, rather
than with individuals from a different group. We denote Ji the link between members of group i. It quantifies the
cohesiveness of group i. Through Ji, members inside each group attempt to persuade each other to their own stance,
effectively diminishing intra-group differences and causing stances to converge.

Individuals in each group also keep an eye on the other groups’ average attitudes, which in turn influence their own,
either nudging the group average to a more extreme value or to a more moderate one. These inter-group interactions
are described by parameters Kij . For group 1, the inter-group interaction terms, -K12S1 < S2 > and -K13S1 < S3 >,
represent the influence of the mean stances of groups 2 and 3, < S2 > and < S3 > respectively, on an individual in
group 1. The inter-group interactions K12 and K21 are not necessarily equal. At times, members of one group may
feel cooperative toward the other, who might not reciprocate. Therefore, in general, Kij ̸= Kji because of human
agency. While physics phenomena obey Newton’s third law, the magnitudes of human action and reaction do not
have to be equal. Rather, the effect of group i on group j can be different in magnitude and sign from the effect group
j has on group i. Hence our model is not described by a single Hamiltonian and its dynamics is not the Glauber
dynamics (our spin is not Ising +/-1 but is continuous). A temperature T , reflecting contextual factors, acts on each
individual indepently, the way the thermodynamic temperature acts on particles.

The intra-group cohesion parameters J and the inter-group influence parameters K affect the average group atti-
tudes in time. For instance, according to the recent Gallup polls [45], in early 2023 40% of adults declared themselves
independent—with zero internal cohesion J3, since they are not organized or formally linked, like Democrats or
Republicans, but rather a bin for the non-affiliated. However, in February 2023 all but 7% of them leaned either
Democrats or Republicans, at least partly in response to persuasion efforts by the other two groups.

We also use a magnetic field hi to represents the effect of group i’s leadership on group’s members. When hi > 0,
group i’s mean stance is nudged toward positive values; when hi < 0 the mean stance is nudged to negative values.
The model’s Hamiltonian of group i is inspired from the time-independent Blume-Capel model. It is given by:

Hi(t) = −Ji
∑
m,n

Si(m, t) · Si(n, t) +Di

∑
i

S2
i (m, t)− hi

∑
m

Si(m, t) (1)

where i indexes group i, and Si(m, t) is the stance of an individual m in group i at time t. The sum is performed
over the nearest neighbors (NN) m and n belonging to group i. Note that for group 3 (Independents), the first sum
is zero because J3 = 0. Also, a group at t interacts with the average stances of the other groups at t− 1.

Note the that the positive sign of the D term favors the small value of Si(m, t) when Di is positive. Smaller Si

causes smaller polarization. In orther words, positive D is at the origin of the depolarization, as will be shown below.
When the three groups interact, the Hamiltonians of each group is as follows:

H1(t) = H1(t)−K12

∑
m

S1(m, t) < S2(t− 1) >

−K13

∑
m

S1(m, t) < S3(t− 1) > (2)

H2(t) = H2(t)−K21

∑
m

S2(m, t) < S1(t− 1) >

−K23

∑
m

S2(m, t) < S3(t− 1) > (3)

H3(t) = H3(t)−K31

∑
m

S3(m, t) < S1(t− 1) >

−K32

∑
m

S3(m, t) < S2(t− 1) > (4)

The model has the following parameters: three Ji, three Di for the three groups’ respective internal cohesiveness
and ”anisotropy”, three Kij and three Kji describing the inter-group interactions (note that Kij and Kji are not
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necessarily symmetric), and three hi to describe leadership effects, if any. The J and K parameters can be selected
qualitatively, as we have done below, using publicly available poll data (see also [6]; [39]; [33]).

We have solved this model using the mean-field approximation [54]. We define a polarization measure P as the
distance between the mean stances of groups 1 and 2 at a given time t:

P = (< S2 > − < S1 >)/2 (5)

such that −1 ≤ P ≤ 1. < Si > is the average individual stance of group i calculated at a time t. When P = 0,
there is no polarization. It occurs when groups 1 and 2 have equal average stances < S1 >=< S2 >. When P = 1,
polarization is extreme (also called hyperpolarization (e.g., Burgess et al [17]). This can occur when Democrats’
stance < S1 >= −1 (most progressive/left) and Republicans’ stance < S2 >= 1 (most conservative/right).P can be
negative if < S1 > and < S2 > change their signs (it can be in politics).
Here, we use a similar model, but with short-range intra-group interactions and perform MC simulations.
Before proceeding to the simulation method, let us discuss the role of the “political” temperature T introduced

below, and borrowed from statistical physics. The temperature in statistical physics represents thermal agitations of
the particles (spins, for example). Thus T acts as a disordering factor: at low T , particles stay in the lowest energy
state (or very close to it), while at high T , they vigorously change their state in an independent manner, causing
disorder in the system in spite of the inter-particle interaction which favors order. The well-known example is the
ferromagnets: spins in ferromagnets are parallel at low T but become disordered at high T . In the context of political
groups considered here, T represents the political ambiance of the society. When an election is not imminent, or
the society is calm, T is low. Each group is relatively stable, with no significant effect of inter-party interaction.
Close to an election or during politically fraught times with important issues at stake such as strained economies or
international tensions, intra-party cohesiveness may wane, due to the fluctuation of individual stances of its members,
equivalent to high “political” temperature T . Then each group might attempt to take advantage of the weakened
cohesiveness of the other groups to enhance its influence in the competition. As we shall see below, T plays an
important role in outcomes of politic contests.

B. Simulation Method

We take the case of the US political system: there are three groups: Group 1 (Democrats), Group 2 (Republicans)
and Group 3 (Independents). We assume Group 1 to have a stronger cohesiveness (largest J), and to be governing.
Group 2 has weaker cohesiveness and is in opposition. Group 3 is composed of individuals having no unified political
framework, and no formal intra-group communication links (J3 = 0). The Independents are often attracted to the
stance of the opposition party, they play a contrarian role (see [59-61] for other examples of contrarian used in a
model).

FIG. 1: Interaction parameters. Note that J3, intra-group interaction among the Independents, is zero. See text for comments.

For the MC simulations, we represent each of the three groups with a triangular lattice of size N ×N , where each
site is occupied by a member. Each member interacts with its six nearest neighbors (NN) at time t, and considers
the average stances of the other groups calculated at t – 1 (a realistic lag). The choice of this lattice allows for a
maximum number of NN in 2D. Of course, we can use a 3D lattice to have more NN such as a FCC or a HCP with
12 NN. However we believe it will not give new phenomena. For each group, we use the periodic boundary conditions
to reduce the size effects. In general, we take the size of 100 × 100 lattice sites for each group. See Figure 1 for
the interaction parameters described in the previous subsection. Note that the notion of NN interactions in politics
does not necessarily mean that people are geometrically close to each other. Rather, it refers to the number of people
generally in contact with an individual.
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To simulate the three groups’ interactions at a given T , we carry out the simulation as follows: for a group we
generate initial individual stances -1 (Democrats) for group 1, 1 for group 2 (Replublicans), and 0 (Independents) for
group 3. We can also use the initial stances all equal to zero for three groups. We use next the Metropolis algorithm
to find the collective state of each group at the time t, taking into account the average stances of the other groups at
t− 1, as described in Eqs. (2)-(4). We follow the evolution of each group with time t (MC time).

The Metropolis algorithm used for updating the individual stance of a member is as follows: at a time t, we calculate
the interaction energy Eold of a member with its NN and with an effective field resulting from the two other groups
at time t–1. We make a trial change of its state by choosing a random stance between -1 and 1. We calculate the
member’s trial new energy Enew. If Enew < Eold, the trial state is accepted. If Enew > Eold, it is accepted with
the probability exp[−(Enew − Eold)/(kBT )]. We repeat this updating procedure for all individuals in each of the
three groups. Note that the Metropolis algorithm obeys the detailed balance only when the system is at equilibrium,
namely when there is a probability conservation: state A to state B has the same probability with that from B to A.
Our purpose is to study the time dependence of the polarization, so there is no such probability conservation. Note
that there are several popular dynamics such as Glauber dynamics and Kawasaki dynamics, but to our knowledge
all of them have been devised for discrete spins, not for continuous spins used in this paper. The advantage of the
Metropolis algorithm is that it does not depend on the nature of spin, it can be used for any kind of spin such as
continuous spins used here, XY spins or Heisenberg spins.

III. RESULTS AND DISCUSSION

As seen, our model has 9 principal interaction parameters Ji(i = 1, 2, 3) and Kij(i ̸= j, i = 1, 2, 3, j = 1, 2, 3 in
addition to Di(i = 1, 2, 3) and hi(i = 1, 2, 3). However, in applications the choice of the parameters is limited. As
discussed in [47,48,54], this choice is guided by polls [45,46] and by political common attitudes of the people: to
produce anticipatory scenarios of polarization, we made the following assumptions:
-The Democrats (group 1) are more cohesive than Republicans (group 2), i.e., J1 > J2;
-Independents (group 3) have no cohesion (J3 = 0) because they have no structure or means of identifying with each
other, do not communicate, and do not recruit; therefore, they exert no influence on the other two groups and, as
such,K13 = K23 = 0;
-Independents tend to be contrarian to the party in power (here, group 1), thus K31 < 0, and are not influenced by
the opposition party, thus K32 = 0.
With respect to parameter value selection, guided by media and professional, frequent polling reports, we assigned

parameter values such that they qualitatively mimic general polls results [45,46]. To enable a comparison of MC
results with those obtained with the MFT model [54], we selected the same values for parameters J and K, as follows:

- Intra-group interactions: J1 = 5, J2 = 3,

J3 = 0 (6)

- Inter-group interactions: K12 = −4,K21 = −5,

K13 = 0,K31 = −3, K23 = 0,K32 = 0. (7)

- Depolarization parameters Di: we will choose several cases presented below.

Note that a negative Kij indicates hostility (or resistance) of group i toward group j, while a positive sign indicates
attraction or potential agreement between two groups. A variation of the above values keeping their signs will not
alter qualitatively the results shown in the following.

Each group is thermalized at temperature T in interaction with the other groups. We have calculated the following
quantities:

- Cohesive energy per individual Ei(T ) =< Hi(T ) > /N2 where < Hi(T ) > is the thermal average at T given by

< Hi(T ) >=

t2∑
t=t1

Hi(t)/(t2− t1) (8)

where t1 is the starting averaging time and t2 the averaging end time. The total cohesive energy E(T )
∑

i Ei(T ) is
also calculated.



6

- Stance of each group (sublattice magnetization) as a function of T :

Mi(T ) =< Si(T ) >=

t2∑
t=t1

∑
n

Si(n, t)/(t2− t1)/N2 (9)

where n belongs to group i. Within the assumption of the parameters given above one has M1 < 0, M2 > 0. In the
absence of D, M3 > 0. We define the strength of group i by Qi(T ) = | < Si > |,

- Susceptibility or fluctuations of the stance of group i at T :

χ(T ) = [< Mi(T )
2 > − < Mi(T ) >

2]/(kBT ) (10)

1. The case D1 = D2 = 0 and D3 = 5

With K31 = −3 (Group 3 is contrarian to Group 1), if D3 = 0 the stance of Group 3 should be positive, though
small but visible as seen in Fig. 2a. But when D3 = 5 as considered here, the stance of Group 3 is neutralized by D3.
It is zero as shown in Fig. 2b.

FIG. 2: Stances of the three groups with D1 = D2 = 0 and (a) D3 = 0; (b) D3 = 5 as function with MC time. Other interaction
parameters are given in Eqs. (6)-(7). Curves 1, 2 and 3 correspond respectively to < S1 >, < S2 > and < S3 >. Note that J3,
intra-group interaction among the Independents, is zero. See text for comments.

2. The case D1 = D2 = 3 and D3 = 5

FIG. 3: (a) Internal energy of three groups, curves 1, 2 and 3 correspond respectively to Group 1, Group 2 and Group 3;
(b) Total energy per individual ; (c) Total specific heat per individual, as functions of political temperature T . See text for
comments.

The equilibrium cohesive energy of each group is shown in Figure 3a, the total cohesive energy of three groups is
displayed in Figure 3b as a function of temperature T . Since the three groups interact with each orther, there is only
a transition temperature TC ≃ 6.93 where all of them become disordered (the energy changes its curvature at this
point). The specific heat per individual is shown in Figure 3c where the peak temperature corresponds to TC . In
terms of sociophysics, above TC there is no cohesiveness between individuals. The society is in a turmoil state. Note
that the energy of Group 3 is due to its interaction with group 1. This is confirmed in Figure 4, showing the absolute
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values of stances Q1 = | < S1 > |, Q2 = | < S2 > | and Q3 = | < S3 > |: we see that Q is higher for larger J , and all
drop to zero (i.e., no cohesiveness) at TC . In statistical physics, TC is called transition temperatures [58] above which
the systems become disordered. At and close to TC , the stances of the groups strongly fluctuate as shown in Fig. 5.
These fluctuations of the order parameter in statistical physics correspond to the so-called susceptibilities which are
the fluctuations of Mi, namely (< M2

i > − < Mi >
2)/(kBT ).

FIG. 4: Strengths Q of three groups as functions of political temperature T . Curves 1, 2 and 3 correspond respectively to
Group 1, Group 2 and Group 3.

FIG. 5: Fluctuations of the three groups’ stances as functions of political temperature T . Curves 1, 2 and 3 correspond
respectively to Group 1, Group 2 and Group 3.

Let us show now the polarization with evolving time t. Starting from the highest state of polarization P = 1,
namely < S1 >= −1, < S2 >= +1, we see that P diminishes to 0.89 (see Fig. 6a) calculated at a low temperature
T = 2.254, and to 0.58 at T = 5.762. These values are much lower than the case where there is no depolarization D
(see [48]). The role of T is very important since P strongly depends on T .

FIG. 6: Political polarization as a function of time t at (a) T = 2.254 ≃ TC/3; (b) T = 5.762 close to TC . See text for comments.

3. The case of higher D1, D2 and D3

Let us take the cases of stronger depolarization D1 = D2 = D3 = 5 (TC = 5.84) and D1 = D2 = D3 = 10
(TC = 3.29) . We show in Fig. 7 the polarization versus time t .

If we go close to TC in all cases, we have a strong damping of the group stances and of the polarization versus t.
We show in Fig. 8 one example in the case D1 = D2 = D3 = 5 at T = 6 slightly above TC .
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FIG. 7: Political polarization as a function of time t at (a) D1 = D2 = D3 = 5 at T = 1.90 << TC ; (b) for D1 = D2 = D3 = 10
at T = 3.2 slightly above TC . See text for comments.

FIG. 8: The case D1 = D2 = D3 = 5: (a) Stances of three groups versus t at a political temperature T higher than TC , curves
1, 2 and 3 correspond respectively to < S1 >, < S2 > and < S3 >. (b) Polarization.

.

4. Strong oscillation of the polarization

One of the interesting cases is when the interactions between Group 1 and Group 2 have the opposite signs. Let
us take the case D1 = D2 = 3 and D3 = 5 and K21 = 6 and K12 = −5. We show in Fig. 9 the oscillating stances of
the three groups and the oscillation of the polarization. This phenomenon occurs in a large temperature region below
TC . The amplitude of the oscillation depends on the values of K21 and K12.

FIG. 9: (a) Political stances as a function of time t, curves 1, 2 and 3 correspond respectively to < S1 >, < S2 > and < S3 >;
(b) Polarization versus t. The parameters are D1 = D2 = 3, D3 = 5 with K21 = 6 and K12 = −5. See text for comments.

The attraction of the Republicans to the Democrats (positive K21) is the origin of the oscillation of P in time. We
recall that P measures the distance between the political stances.
At this stage, it is worth to emphasize that oscillation phenomena are found in several systems due to the tendency

of the matter to self-organize: the phenomenon was first discovered by Boris Belousov in 1951, while he was trying to
find the non-organic analog to the Krebs cycle. When mixing potassium bromate, cerium(IV) sulfate, malonic acid,
and citric acid in dilute sulfuric acid, he observed that the ratio of concentration of the cerium(IV) and cerium(III)
ions oscillated, causing the colour of the solution to oscillate between a yellow solution and a colorless solution. This is
due to the change of cerium(IV) ions by malonic acid into cerium(III) ions, which are then oxidized back to cerium(IV)
ions by bromate(V) ions. The reader is referred to Ref. [62] for a review. In our model, the oscillation occurs when
a party is attracted so far from its equilibrium by the other party, its intra-cohesive energy gets it back. It is some
kind of a restoring force analog to the oscillatory motion of a pendulum.

To conclude this section, we have performed MC simulations on the same statistical physics model as the one where
we used the mean-field approximation (see [54]). Despite the fact that the mean-field model neglects fluctuations
while MC simulations take into account space and time fluctuations, the two methods yield qualitatively the same
patterns of political polarization.
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IV. CONCLUSION

We have proposed the Blume-Capel model to explore, using MC simulations, whether depolarization is possible
between Democrats and Republicans in the USA as a function of time. The same model has been studied by mean-
field theory by our group [54]. We have considered three groups with initial different political stances: Democrats,
Republicans, and Independents. An individual within any of these groups interacts with a limited number of people
sharing the same political viewpoint. At any time, individuals also consider the average stance of other groups in the
previous time period, causing them to either become firmer or soften their stance. Although the model represents the
political structure in the USA, it can be adapted to other three-group dynamics.

We find that MC results for short-range intra-group interactions agree well with those obtained by the mean-field
which assumed long-range interactions. The Blume-Capel model assumes that each individual is represented by a
continuous Ising spin taking its values from -1 (left, liberal orientation) to +1 (right, conservative orientation). What
is important in our model is the fact that there is the D term in the Hamiltonian, which can soften the opposite
stances, which we called depolarization.The model shows that the depolarization stems from the effect of the D term
on individual orientations. It may be more efficient/durable than collective measures taken by party leaders.

The MC simulation results show that polarization depends on D and on the nature of the inter-group interactions.
It may advantage the party in opposition and help it win an election. It may also give rise to an oscillation of the
polarization (whose sign changes in time). Therefore, the outcome of an election depends on the moment in time
when it occurs. It is interesting to note that the MC and mean-field models yield qualitatively very similar results
with the same depolarization dynamics. Both approaches can be used to generate scenarios that include various
interventions to reduce polarization. The MC near-neighbor approach lends itself to generating scenarios for another
kind of intervention proposed by [55] and [17], who have called it “massively parallel.” It consists of independent
individuals and groups operating locally to reach out and initiate dialogues with people holding opposite stances,
thereby reducing the current acute homophily. Such initiatives are already taking place around the USA (see [55]).

The two versions of the Blume-Capel models–mean-field, with infinite-range interactions and Monte Carlo method,
with near-neighbor interactions, show ways to depolarize society and find practical actions which might correspond
to various D values. Some on-going empirical studies and opinion polls will provide data which we plan to include
qualitatively in our models to refine the scenarios we can generate, and make them relevant to spceific contexts such
as the United States and France.

In conclusion, we have illustrated how agent-based models from statistical physics which contain sufficient ingredi-
ents can concisely describe complex situations in social sciences which may appear intractable (for example, in terms
of number of variables and data) when studied with traditional, non-dynamic methods.
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