Glass-like phonon dynamics and thermal transport in a GeTe nanocomposite at low temperature - Archive ouverte HAL
Journal Articles Small Year : 2024

Glass-like phonon dynamics and thermal transport in a GeTe nanocomposite at low temperature

P. Marcello
  • Function : Author
  • PersonId : 1360636
R. Debord
D. Le Qui
  • Function : Author
J.‐y. Raty
  • Function : Author
  • PersonId : 1111793

Abstract

In this work we report the experimental evidence of glass-like phonon dynamics and thermal conductivity in a nanocomposite made of GeTe and amorphous carbon, of interest for microelectronics, and specifically phase change memories. We show that, the total thermal conductivity is reduced by a factor of 3 at room temperature with respect to pure GeTe, due to the reduction of both electronic and phononic contributions. This latter, similarly to glasses, is small and weakly increasing with temperature between 100 K and 300 K, indicating a mostly diffusive thermal transport and reaching a value of 0.86(7) Wm−1K−1 at room temperature. A thorough investigation of the nanocomposite’s phonon dynamics reveals the appearance of an excess intensity in the low energy vibrational density of states, reminiscent of the Boson peak in glasses. These features can be understood in terms of an enhanced phonon scattering at the interfaces, due to the presence of elastic heterogeneities, at wavelengths in the 2-20 nm range. Our findings confirm recent simulation results on crystalline/amorphous nanocomposites and open new perspectives in phonon and thermal engineering through the direct manipulation of elastic heterogeneities.
Fichier principal
Vignette du fichier
GTC_submission.pdf (2.83 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04492940 , version 1 (12-04-2024)

Identifiers

Cite

R. Cravero, A. Tlili, J. Paterson, M. Tomelleri, P. Marcello, et al.. Glass-like phonon dynamics and thermal transport in a GeTe nanocomposite at low temperature. Small, 2024, 20 (26), pp.2310209. ⟨10.1002/smll.202310209⟩. ⟨hal-04492940⟩
170 View
44 Download

Altmetric

Share

More