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Abstract We determined the role played by the transient receptor potential canonical 6 (TRPC6)
channel in evoking the mechanical component of the exercise pressor reflex in male decerebrated
Sprague–Dawley rats. TRPC6 channels were identified by quadruple-labelled (DiI, TRPC6,
neurofilament-200 and peripherin) immunohistochemistry in dorsal root ganglion (DRG) cells
innervating the triceps surae muscles (n = 12). The exercise pressor reflex was evoked by statically
contracting the triceps surae muscles before and after injection of the TRPC6 antagonist BI-749327
(n = 11; 12 μg kg−1) or SAR7334 (n = 11; 7 μg kg−1) or the TRPC6 positive modulator C20
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(n= 11; 18μg kg−1). Similar experimentswere conductedwhile themuscles were passively stretched
(n = 8–12), a manoeuvre that isolated the mechanical component of the reflex. Blood pressure,
tension, renal sympathetic nerve activity (RSNA) and blood flow were recorded. Of the DRG cells
innervating the triceps surae muscles, 85% stained positive for the TRPC6 antigen, and 45% of
those cells co-expressed neurofilament-200. Both TRPC6 antagonists decreased the reflex pressor
responses to static contraction (−32 to −42%; P < 0.05) and to passive stretch (−35 to −52%; P <

0.05), whereas C20 increased these responses (55–65%; P< 0.05). In addition, BI-749327 decreased
the peak and integrated RSNA responses to both static contraction (−39 to −43%; P < 0.05) and
passive stretch (−56 to −62%; P < 0.05), whereas C20 increased the RSNA to passive stretch only.
The onset latency of the decrease or increase in RSNA occurred within 2 s of the onset of the
manoeuvres (P < 0.05). Collectively, our results show that TRPC6 plays a key role in evoking the
mechanical component of the exercise pressor reflex.

(Received 11 December 2023; accepted after revision 18 January 2024; first published online 8 February 2024)
Corresponding author G. P. Ducrocq: Heart and Vascular Institute, Penn State College of Medicine, 500 University
Drive, Hershey, PA 17033, USA. Email: g.ducrocq@live.fr

Abstract figure legend Themajority of L4–L5 dorsal root ganglion cells innervating the triceps surae muscles of healthy
rats expressed TRPC6 channels. In decerebrated rats, pharmacological inhibition of TRPC6 channels by injection of
antagonists (SAR7334 or BI-749327) into the arterial supply of the triceps surae muscles inhibited the exercise pre-
ssor reflex evoked by static contraction or the muscle mechanoreflex evoked by calcaneal tendon stretch. In contrast,
pharmacological potentiation of TRPC6 channels (C20) enhanced the exercise pressor reflex evoked by static contraction
of the triceps surae muscles or the muscle mechanoreflex evoked by calcaneal tendon stretch. This potentiation was
normalized by antagonism of TRPC6 channels. Pharmacological inhibition of TRPC6 channels did not change the pre-
ssor response to injection of lactic acid or capsaicin solution.

Key points
� The exercise pressor reflex plays a key role in the sympathetic and haemodynamic responses
to exercise. This reflex is composed of two components, namely the mechanoreflex and the
metaboreflex.

� The receptors responsible for evoking the mechanoreflex are poorly documented. A good
candidate for this function is the transient receptor potential canonical 6 (TRPC6) channel, which
is activated by mechanical stimuli and expressed in dorsal root ganglia of rats.

� Using two TRPC6 antagonists and one positive modulator, we investigated the role played by
TRPC6 in evoking the mechanoreflex in decerebrated rats.

� Blocking TRPC6 decreased the renal sympathetic and the pressor responses to both contraction
and stretch, the latter being a manoeuvre that isolates the mechanoreflex. In contrast, the positive
modulator increased the pressor reflex to contraction and stretch, in addition to the sympathetic
response to stretch.

� Our results provide strong support for a role played by the TRPC6 channel in evoking the
mechanoreflex.

0 Guillaume P. Ducrocq is an Associate Professor at the Faculty of Sports Sciences, University of Strasbourg (France). His research
focuses on the role played by group III and IV afferent fibres in regulating the cardiovascular and neuromuscular response to
exercise in health and disease. His experiments are conducted in humans, animals and cells using an integrative approach. From
September 2022 to August 2024, Dr Ducrocq is working temporarily at Penn State University with Professor Marc Kaufman on
the molecular mechanisms that evoke the exercise pressor reflex.
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Introduction

The haemodynamic response to exercise is determined
by coordinated neural mechanisms that aim at improving
and redistributing blood flow towards the exercising
muscles (Fisher et al., 2015). Among these mechanisms,
the exercise pressor reflex is widely recognized as one
of the major contributors. This reflex is evoked by
the contraction-induced stimulation of thinly myelinated
(group III) and unmyelinated (group IV) afferent fibres
(McCloskey & Mitchell, 1972), which are activated by
mechanical distortion of their receptive fields (Kaufman
et al., 1983; Mense & Stahnke, 1983; Paintal, 1960) and/or
increased concentrations of muscle metabolites (Hoheisel
et al., 2004; Kaufman & Rybicki, 1987; Mense & Meyer,
1985; Rotto & Kaufman, 1988). The central endings of
group III and IV afferents synapse onto neurons in lamina
I, II and V of the dorsal horn of the spinal cord (Craig
& Mense, 1983; Mense & Craig, 1988), which project
to the brainstem to evoke sympathetic activation (Victor
et al., 1989) and vagal withdrawal (Al-Ani et al., 1997;
McMahon & McWilliam, 1992). In turn, cardiac rate and
contractility increase, peripheral arteries constrict, and
systemic blood pressure increases (Fisher et al., 2015).

Given that mechanical and metabolic stimuli are
capable of activating group III and IV afferent fibres, the
exercise pressor reflex consists of two components, one
metabolic (i.e. themetaboreflex) and the othermechanical
(i.e. the mechanoreflex). The molecular mechanisms that
evoke the metabolic component of the exercise pressor
reflex are believed to include endoperoxide 4 receptors
(Yamauchi et al., 2013), bradykinin B2 receptors (Butenas,
Rollins et al., 2023; Leal et al., 2013), purinergic 2X
receptors (McCord et al., 2010; Stone et al., 2014) and
acid-sensing ion channels (ASICs) (Ducrocq et al., 2020a;
Hayes et al., 2007; Tsuchimochi et al., 2011). Less attention
has been given to the molecular mechanisms responsible
for evoking the mechanical component of the exercise
pressor reflex, although evidence has been presented
that Piezo-2 and transient receptor potential vanilloid 4
(TRPV4) are involved (Copp et al., 2016; Fukazawa et al.,
2023).

Among the pool of channels that possess mechanical
sensitivity, the transient receptor potential canonical
6 (TRPC6) channel has received little attention.
Experiments using immunohistochemistry showed
that this channel is expressed in the dorsal root ganglion
(DRG) of rats (Elg et al., 2007; Kress et al., 2008), and
in vitro experiments found that TRPC6 channels open
when heterologous cells are mechanically stimulated by
exposure to a hypotonic solution (i.e. stretch of the cell
membrane) or to direct pressure on the cell (Inoue et al.,
2009; Spassova et al., 2006; Welsh et al., 2002; Zhao et al.,
2022). These findings raise the possibility that TRPC6
could play a role in evoking the mechanical component
of the exercise pressor reflex, prompting us, therefore,

to determine the role of TRPC6 channels in evoking
the exercise pressor reflex in decerebrated rats. To this
end, we used two TRPC6 antagonists and one TRPC6
positive modulator to inhibit or potentiate, respectively,
the pressor, sympathetic and blood flow responses to both
static contraction and passive stretch. We hypothesized
that blocking the TRPC6 channel decreases the pressor,
sympathetic and blood flow responses evoked by static
contraction and passive stretch, whereas sensitization of
the channel increases these responses evoked by the same
manoeuvres.

Methods

Ethical approval

The Institutional Care and Use Committee of the
Pennsylvania State University College of Medicine
approved all the procedures (IACUC: PRAM201647038).
The authors understand and conformed to the ethical
ARRIVE guidelines of the Journal for animal use in
research.

Animal characteristics, wellness and sample size

Experiments were conducted at constant room air
temperature (21°C) on male Sprague–Dawley rats
(Charles River laboratory), weighing 300–500 g. Rats
were housed within the central animal facility of the
Pennsylvania State University College of Medicine, with
access to food and water ad libitum, and were exposed
to a 50:50 light–dark cycle. All attempts were made to
minimize animal discomfort and pain. Considering the
recent evidence showing a sex difference between male
and female rats in the pressor response to contraction,
stretch or in the effect of a drug (Butenas, Ishizawa et al.,
2023), we chose to conduct our experiments exclusively
on males.

Experimental protocols for immunostaining of TRPC6
in DRG of neurons innervating the triceps surae
muscles

Tissue preparation. Dorsal root ganglion neurons
were isolated from four rats as described pre-
viously (Farrag et al., 2017). The neurons innervating
the triceps surae muscles were identified using
the retrograde fluorescent neuronal tracer DiI
(1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine
perchlorate; Thermo Fisher Scientific, Waltham, MA,
USA). Three days prior to the dissection, ∼100 μl of DiI
(3% inDMSO)was injected into the triceps suraemuscles.
On the day of the dissection, the rats were anaesthetized
with CO2 and killed by decapitation. The lumbar DRGs
(L4–L5) were dissected and fixed in 4% paraformaldehyde

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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in 0.1 M PBS (pH 7.4) for 30 min at room temperature.
The DRG tissues were then cryoprotected in 30% sucrose
overnight at 4°C. Before cutting the tissue with a cryostat,
the DRGs were washed with 0.1 M PBS and embedded in
Tissue-Tek OCT compound (Sakura Finetek, Torrance,
CA, USA) and rapidly frozen with dry ice. Cryostat
sections of the DRGs were cut at 14 μm, mounted onto
gelatin-coated slides, air dried, and stored at −20°C.

Immunohistochemistry. All tissue was labelled using the
indirect immunofluorescence technique (Stella et al.,
2012). The specimens were pre-incubated in blocking
solution that contained: 0.1 M PBS, 10% normal goat
serum (Thermo Fisher, Waltham, MA, USA), 1% bovine
serum albumin (Santa Cruz Biotechnology, Dallas, TX,
USA) and 250 μg/ml digitonin (Sigma-Aldrich, St Louis,
MO, USA), for 1 h. Digitonin was used as the primary
detergent in these experiments in order to preserve
membrane labelling with DiI. The sections were then
incubated overnight at 4°C in a solution containing
anti-TRPC6 antibody (polyclonal rabbit, 1:200; Alomone
Labs, Jerusalem, Israel), anti-200 kDa neurofilament
antibody (Nf200, polyclonal chicken, 1:25 000; Neuro-
mics, Edina, MN, USA), a marker for myelinated
primary afferents, and anti-peripherin antibody (mono-
clonalmouse, 1:500; ThermoFisher,Waltham,MA,USA),
a marker for unmyelinated primary afferents (Amaya
et al., 2000; Fornaro et al., 2008; Ma, 2002).
All antibodies were diluted in primary diluent that

contained: 0.1 M PBS pH 7.4, 3% normal goat serum,
1% bovine serum albumin, 250 μg/ml digitonin and
and 0.05%NaN3. The primary antibody–antigen complex
was detected using secondary antibodies conjugated to
goat anti-mouse CF 405, goat anti-rabbit CF 488 or
goat anti-chicken CF 647 (Biotium, Fremont, CA, USA)
incubated in secondary diluent containing: 0.1 M PBS pH
7.4, 3%normal goat serum, 1%bovine serum albumin and
250μg/ml digitonin (1 h in the dark at room temperature).
The DRG sections were then washed three times for
10minwith 0.1MPBS to remove any unbound primary or
secondary antibody. All slides were treated with TrueView
(VectorLabs, Newark, CA, USA) to remove background
autofluorescence. Sections were then washed for 5 min in
the dark with 0.1 M PBS and were allowed to air dry in
the dark at room temperature and coverslipped with Aqua
Polymount (Polysciences, Warrington, PA, USA).
To check for specificity of the secondary antibody

and rule out any spurious secondary antibody labelling,
controls were prepared by omitting primary antibodies
for a triple label during the incubation. In this case, only
non-specific background staining was detected.

Confocal microscopy. Fluorescent images of DRG
sections were acquired using a Zeiss LSM 900 with
Airyscan 2 microscope mounted on a Zeiss Examiner

microscope body. To identify fluorescent signals, different
lasers were used for excitation, as follows: for CF405, a
405 nm solid-state laser was used; for CF488, a 488 nm
solid-state laser was used; for DiI, a 561 nm solid-state
laser was used; and for CF647, a 640 nm solid-state laser
was used. Zeiss Zen software (v.3.9; Thornwood, NY,
USA) controlled all settings and parameters for image
acquisition and processing. The Airyscan detector and
Airyscan filtering were utsed for image enhancement,
including filtering, deconvolution and pixel reassignment.
Airyscan filtering was automated after collecting raw
images in the 2Y mode. Scan speed was set to maximum,
and images were not averaged. Photomultiplier detector
gain and laser power were adjusted based on individual
signals for each channel.

Analysis of immunohistochemistry. Co-localization was
analysed qualitatively and scored in a binary manner by
at least two individuals. All measurements were based
on DiI-labelled cell bodies and compared with the three
other channels for co-localization. Manual counts were
performed on three different slides from each of the
four rats. Representative images are shown to illustrate
co-localization of signals in each of the channels, with
a merged image highlighting the labelled DRG cells (see
Fig. 1).

Experimental protocols for reflex experiments

General surgical procedure. Each rat was anaesthetized
initially by inhalation of 4% isoflurane in O2. Once the
corneal reflex was abolished and when pinching the hind
paw did not produce a withdrawal reflex, the trachea was
cannulated, and the lungs were mechanically ventilated
(model 683; Harvard Apparatus, Holliston, MA, USA).
The concentration of isoflurane was reduced to 2% for
the rest of the surgery. The left and right common
carotid arteries and right jugular vein were cannulated
(RPT040; Braintree Scientific, Braintree, MA, USA) to
record arterial blood pressure (P23XL; Gould-Statham
Instruments, LosAngeles, CA,USA), obtain arterial blood
samples and inject drugs into the systemic circulation,
respectively. We cannulated the left superficial epigastric
artery (SUBL-140; Braintree Scientific), which is a side
branch of the femoral artery. A snare (2.0 silk suture) was
placed around the femoral artery and vein ∼0.5–1 cm
upstream from the superficial epigastric artery and vein.
When tightened, the snare partly trapped the solution
in the hindlimb circulation. The popliteal artery was
dissected and exposed to place a flow probe and record
popliteal blood flow during the manoeuvres (0.5PSB and
TS420; Transonic Systems, Ithaca, NY, USA). Vascular
conductance was calculated by the following formula:
conductance (in ml min−1 100 mmHg-1] = 100 × blood

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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flow (in ml min−1)/mean arterial pressure (in mmHg)
(Limberg et al., 2020).

The head of the rat was secured in a Kopf stereotaxic
unit. The hip and the left ankle were secured with metal
clamps to prevent movement during the contraction or
stretch procedures. The calcaneus bone was severed, and

its Achilles tendon was connected to a force transducer
(FT10; Grass Instrument Co., Quincy, MA, USA) and a
rack-and-pinion device. The left tibial nerve was isolated
and hooked with a bipolar stainless-steel electrode. Using
a blunted spatula, we decerebrated the rat by sectioning
the brain ∼1 mm rostral to the superior colliculus
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Figure 1. Co-localization of TRPC6 and Nf200 in L4–L5 dorsal root ganglion cells innervating the triceps
surae muscles
A, representative images of the quadruple-labelled immunohistochemical staining of the dorsal root ganglion cells.
The neurons were stained with the retrolabelled DiI and with TRPC6, Nf200 and peripherin antigens. The merged
image shows that the majority of cells that were positive for TRPC6 were also positive for Nf200. These cells had
a larger diameter compared with the cells that were positive for peripherin. Three representative cells that are
positive for DiI, TRPC6 and Nf200 are indicated by a large white arrowhead. A neuron positive for DiI, TRPC6 and
peripherin is indicated by a small white arrow. A neuron positive for DiI, TRPC6, Nf200 and peripherin is indicated
by a small white arrowhead. B, percentage of DiI-labelled cells that co-localized TRPC6 and percentage of TRPC6-
and DiI-positive cells that co-localized Nf200 and/or peripherin. Data are plotted as the group mean (open bars)
and individual data (open circles). A total of 12 dorsal root ganglia were collected from four animals (three sections
per animal).

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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(Dobson & Harris, 2012; Smith et al., 2001). Isoflurane
was then discontinued, and the lungs were ventilated with
room air. Using a retroperitoneal approach, the left side
of the abdomen was opened to expose the kidney and
the renal artery and vein. A branch of the renal nerve
was dissected and hooked to a bipolar platinum–iridium
electrode (778 000; A-M Systems) and connected to a
high-impedance probe (HIP511; Grass Instrument Co.)
to record renal sympathetic nerve activity (RSNA) (Victor
et al., 1989). The electrode was secured on the nerve with
silicone glue (Kwik-sil; WPI, Sarasota, FL, USA). Blood
arterial PO2 (100−150 mmHg), PCO2 (35–40 mmHg) and
[HCO3

−] (22−26mmol L−1) were kept within the physio-
logical range. Body temperature was maintained around
37°C using a heating lamp. At the end of the experiment,
hexamethonium (0.5 ml; 20 mg ml−1; Sigma-Aldrich)
was injected i.v. to verify that the recorded nerve activity
corresponded to postganglionic sympathetic activity and
to quantify background noise (Smith et al., 2006). The
decerebrated rats were killed by i.v. injection of a super-
saturated KCl solution.

Description of the TRPC6-acting drugs. To determine
the role played by TRPC6 in evoking the exercise pre-
ssor reflex, we injected the TRPC6 antagonists BI-749327
and SAR7334 and the positive modulator C20 into the
hindlimb arterial circulation via the catheter placed in
the superficial epigastric artery. BI-749327 is a potent
(IC50 = 13 nM) and selective inhibitor of TRPC6 (Lin
et al., 2019). At a higher concentration, BI-749327 also
blocks the closely related TRPC3 (IC50 = 1.1 μM) and
TRPC7 (IC50 = 550 nM). BI-749327 selectivity for TRPC6
is >500-fold greater than its selectivity for TRPV1 and
TRPA1. SAR7334 is another potent (IC50 = 7.9 nM) and
selective inhibitor of TRPC6 (Maier et al., 2015). At a
higher concentration, SAR7334 also blocks TRPC3 (282
nM) and TRPC7 (226nM). C20 is a selective enhancer
of the TRPC6 function (EC50 = 2.37 μM) (Häfner et al.,
2019). C20 has no effect on TRPC3, TRPC7 or TRPV4.
The effect of these drugs on Piezo channels is currently
unknown.

Dose–response of the drugs on the pressor response
to passive stretch. The doses of SAR7334, BI-749327
and C20 used in the present experiments were based
on dose–response curves constructed in preliminary
experiments, in which we assessed the effect of 10-fold
increases in the drug concentration on the pressor
responses to passive stretch of the calcaneal tendon (for
details, see the subsection ‘Stretch of the triceps surae
muscles’). The initial, lowest, concentration tested was
chosen assuming that the drug would be diluted in the
leg (20 ml total volume) to reach the IC50 or EC50 of
each drug, which corresponded to 1.6 μM (SAR7334),

2.6 μM (BI-749327) and 50 μM (C20), respectively. The
highest concentration tested was limited below 10 mM.
Beyond that point, the possibility increases for the drug
to have off-target effects and/or it was not possible to
dilute the drug in a low concentration of ethanol. The
choice of the dose of the drug that was used for the sub-
sequent experiments was based on the significance of its
effects on the peak and integrated pressor response to
stretch compared with the control response (i.e. no active
compound injected).

Contraction of the triceps surae muscles. All contra-
ctions in the present experiments were conducted iso-
metrically. Baseline tension of the triceps surae muscles
was set at 60−100 g. The stimulator output (S88; Grass
Instrument Co.) was set at a current intensity that
evoked a twitch tension approximately equal to ∼50% of
the maximum. During contraction, the tibial nerve was
stimulated for 30 s at 40 Hz (0.01 ms pulse duration)
to increase arterial blood pressure reflexively. A second
contraction was evoked after 10 min of recovery to verify
reproducibility.
After 10 min of recovery, the snare around the femoral

artery and vein was tightened, after which BI-749327 (12
μg kg−1), SAR7334 (7 μg kg−1) or C20 (18 μg kg−1) was
injected into the superficial epigastric catheter. The snare
was released 3 min after completing the injection. Ten
minutes after injecting BI-749327 or SAR7334 and 4 min
after injecting C20, the contraction protocol was repeated.
This timing was based on pilot data showing that 10 and
4 min were enough to detect an effect from the drugs,
respectively. Finally, after 10 min of recovery, a second
contraction was performed to determine whether the pre-
paration recovered from the effect of the drug.
Only for the experiments that used C20 and once the

protocol was completed, the snare around the femoral
artery and vein was again tightened and BI-749327 was
injected. Two contractions were evoked with the same
timing and procedures as described above. The goal of
this experiment was to provide an indirect challenge of the
TRPC6 blocker. A direct challenge of the TRPC6 blocker
with an agonist was not possible because injection of the
agonist GSK-1702934A did not induce a reproducible pre-
ssor response.

Stretch of the triceps surae muscles. Using a similar
protocol and timing to those used for the contraction
experiments, we determined the role played by TRPC6
in evoking the pressor response to passive stretch, a
manoeuvre that supposedly mimics the mechanical
component of the exercise pressor reflex (Daniels
et al., 2000; Stebbins et al., 1988). To avoid potential
muscle contractions during the stretch procedure,
rats were paralyzed by i.v. injection of pancuronium

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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bromide (1 mg/ml, 200 μl) (Daniels et al., 2000). The
triceps surae muscles were stretched for 30 s by turning
a rack and pinion attached to the Achilles tendon until a
tension of ∼700 g was reached.

Control for off-target effects of the TRPC6 blockers. To
verify that the effects of the blockers were not attributable
to a decrease of the ability of the afferent fibres to
discharge action potentials, we determined the effect of
BI-749327 and SAR7334 on the pressor response evoked
by capsaicin (0.2 μg/ml; 100 μl). Capsaicin is a TRPV1
agonist that produces a strong pressor response when
injected into the arterial supply of the muscles (Kaufman
et al., 1982). Capsaicin was injected into the superficial
epigastric catheter while the snare around the femoral
artery and vein was tightened. The pressor response to
capsaicin was evoked before and 10min after injecting the
TRPC6 blockers into the superficial epigastric catheter.

To verify that the effects of the blockers were not
attributable to an inhibitory effect on metabolites
produced by the muscles, we determined the effect of
BI-749327 and SAR7334 on the pressor response evoked
by lactic acid (24 mM). Lactic acid is an ASIC agonist; it
is produced by exercising muscles, and evidence shows
that it plays an important role in evoking the metabolic
component of the exercise pressor reflex (Ducrocq
et al., 2020a, 2020b). Lactic acid was injected into the
superficial epigastric catheter while the snare around
the femoral artery and vein was tightened. The pressor
response to lactic acid was evoked before and 10 min
after injecting the TRPC6 blockers into the superficial
epigastric catheter. Renal nerve activity was not recorded
during these experiments.

Control for electrical activation of group III and IV axons.
To show that tibial nerve stimulation did not electrically
activate the axons of the group III and IV afferent fibres,
neuromuscular block was induced by i.v. injection of
pancuronium bromide (1 mg/ml, 200 μl). Then the
tibial nerve was stimulated for 30 s at 40 Hz with the
highest current used to evoke contraction during paralysis
(Daniels et al., 2000). If an increase in blood pressure was
observed, the data were excluded from the data set. No
data were excluded based on these criteria.

Control for systemic or central effects of the TRPC6 drugs.
We determined the effect of injecting each drug into
the right jugular vein on the pressor responses to static
contraction. Despite the small volume injected and the
fact that the snare around the femoral artery and vein was
tightened during the injection of the drugs into the super-
ficial epigastric catheter, a small amount of the drugs could
still recirculate into the systemic circulation and reach
other areas implicated in the regulation of blood pressure

during exercise (e.g. brainstem, baroreceptors). Therefore,
we repeated our contraction and stretch experiments
while the drugs were injected into the systemic circulation
via the right jugular vein catheter. The snare around
the femoral artery and vein was tightened before the
injection to prevent the drug from reaching the triceps
surae muscles circulation.

Control for effects of the vehicle of TRPC6 drugs.
BI-749327 and C20 were dissolved in a mixture of
saline, ethanol and Tween 80, whereas SAR7334 was
dissolved in 0.9% saline (for details, see ‘Drug preparation’
section below). To determine whether the vehicles of
the drugs, by themselves, inhibited or potentiated the
pressor response to contraction or passive stretch, we
replicated our protocol by injecting the vehicles without
the drugs diluted in them. C20 was dissolved in a lower
concentration of ethanol and Tween 80 than that used
to dissolve BI-749327. Consequently, only the highest
concentration of ethanol was tested.

Control that the drug circulated to the triceps surae
muscles. To determine that those injections into the
hindlimb arterial circulation accessed the triceps surae
muscles, we injected 0.2 ml of Evans Blue dye into the
superficial epigastric artery catheter of each rat tested.
We considered that the infusion circulated to the triceps
surae muscles when they turned blue. If the colour of the
muscles did not change, we excluded the data from the
study.

Drug preparation. Lactic acid (24 mM; Sigma–Aldrich)
and SAR7334 hydrochloride (1.6mM;MedChemExpress)
were dissolved in 0.9% saline. Capsaicin, BI-749327 and
C20 were first dissolved in 100% ethanol with the addition
of a drop of Tween 80. The solution was sonicated and
vortexed. Care was taken that no flakes were visible before
adding 0.9% saline to reach the concentration of 6.5 μM,
2.6mMand 5mMfor capsaicin (0.2% ethanol), BI-749327
(37% ethanol) and C20 (25% ethanol), respectively. The
stock solution for SAR7334 corresponded to 1.6 mM.
To reach the different concentrations used during the
dose–response experiments, the stock solutions were
diluted further with saline by taking 100 μl of the stock
solution and mixing it with 900 μl of saline. The exact
amount of drug that was injected was individualized to
the weight of the animals. Consequently, the dose of each
drug is expressed as themass of drug per kilogram of body
weight.

Data analysis

Renal sympathetic nerve activity was amplified (gain:
×10000) and filtered (bandpass 30 Hz to 1 kHz) with

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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a Grass P511 pre-amplifier (Grass Instrument Co.).
Renal sympathetic nerve activity, tension and arterial
blood pressure signals were amplified using Gould
Universal amplifiers (Gould-Statham Instruments).
Except for RSNA, which was recorded at 10 kHz,
all signals were recorded at 1 kHz using an A/D
converter (Micro1401 mkII; Cambridge Electronic
Design, Cambridge, UK) and its associated commercially
available software (Spike2, 7.20, RRID: SCR_000903;
Cambridge Electronic Design). Heart rate was calculated
beat by beat from the arterial pressure pulse signal and
expressed as beats per minute. The RSNA signal was
rectified.
To determine the effects of static contraction or passive

stretch, we calculated the peak increase in blood pressure
and the blood pressure index. The latter was calculated
by integrating the area under the curve during the
30 s contraction or stretch period, then subtracting
from this value the area under the curve measured
during the immediately preceding 30 s baseline period.
The blood pressure index provides a measure of the
entire pressor response, unlike the peak pressor response,
which represents the instantaneous maximal value. Using
a similar method, we calculated the change in peak
tension, peak RSNA, peak blood flow and peak heart
rate produced by the contraction or stretch, in addition
to their integrated responses (i.e. the equivalent of the
blood pressure index). The time course of blood pressure,
tension, RSNA and blood flow to static contraction or
passive stretch was plotted by averaging the mean signal
every 2 s. For RSNA specifically, the first 3 s of the
manoeuvres was plotted every 0.5 s to provide a better
resolution of the changes in nerve activity after the onset
of the manoeuvre.

Statistical analysis

Data are presented as the means ± SD. Using a
Kolmogorov–Smirnoff test, we verified that our samples
followed a normal distribution. The pre- to poststimulus
(i.e. static contraction, passive stretch or chemical
injection) change in peak or integrated responses was
evaluated using Student’s paired t test. The difference
between the pre-TRPC6 blockade or potentiation was
evaluated with a one-way ANOVA test with repeated
measures. Differences in the time course of the different
indices were evaluated using a two-way ANOVA test
with repeated measures (measures × time). The level
of significance was set at P < 0.05. When a statistical
difference was found with the ANOVA tests, post hoc
multiple-comparison analysis was performed using
Tukey’s honestly significant difference test. The effect size
was calculated using Cohen’s d for Student’s paired t test
or partial η2 (pη2) for ANOVAs (Cohen, 1977). A Cohen’s
d index for effect size was considered as small, medium

or large when d was close to 0.2, 0.5 or 0.8, respectively
(Cohen, 1977). A pη

2 for effect size was considered as
small, medium or large when pη

2 was close to 0.02, 0.13
or 0.26, respectively (Cohen, 1977). When individual data
are not presented, effect size was also calculated using 95%
confidence intervals. Confidence intervals are presented
as the lower and upper limit of the interval that should,
if this experiment is repeated, contain 95% of the time
the true value of the treated effect (Curran-Everett, 2009).
Statistical analyses were conducted using Statistica v.8.0
(RRID: SCR_01 4213; StatSoft, Tulsa, OK, USA).

Results

Immunostaining of TRPC6 from DRG cells innervating
the triceps surae muscles

We counted 430 DRG cells positive for the radiolabel
DiI (n = 4 animals). Among these neurons innervating
the triceps surae muscles, 85% were positive for TRPC6
(n = 365; Fig. 1). The largest group of DRG cells that
were positive for DiI and TRPC6 were positive for Nf200
(45%; n = 164). A lower population of TRPC6-positive
neurons were also positive for peripherin (21%; n = 78)
or for Nf200 and peripherin (13%; n = 49). Some of the
TRPC6-positive DRG cells were not positive for Nf200 or
for peripherin (20%; n = 74)

Baseline measurements of in vivo experiments

Except for popliteal blood flow in response to passive
stretch, all manoeuvres significantly increased baseline
blood pressure, heart rate, popliteal blood flow and RSNA
(P < 0.001). The baseline values of these variables did not
differ when the manoeuvres were evoked before or after
the TRPC6 blockers or the modulator was injected into
the superficial epigastric artery (Table 1).

Dose–response of the TRPC6-acting drugs on the
pressor response to passive stretch

The two antagonists, BI-749327 (n = 7; P = 0.0082) and
SAR7334 (n = 9; P = 0.0298), reduced the integrated
pressor response to passive stretch at a dose of ≥1.2 μg
kg−1 and ≥7 μg kg−1, respectively (Fig. 2). In addition,
BI-749327 reduced the peak pressor response to passive
stretch at a dose of≥12μg kg−1 (P= 0.0041). The positive
modulator, C20 (n = 8), potentiated the integrated pre-
ssor response to passive stretch at a dose of ≥18 μg
kg−1 (P = 0.0086). SAR7334 and C20 did not have a
significant effect on the percentage change of peak blood
pressure (P > 0.139). Accordingly, the dose of BI-749327,
SAR7334 and C20 injected in the following experiments
corresponded to 12, 7 and 18 μg kg−1, respectively.

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Table 1. baseline values for blood pressure, tension and blood flow during the contraction or stretch experiments

Contraction Stretch

Drug Index Units n Pre
Post 4 or
10 min

Post 14 or
20 min n Pre

Post 4 or
10 min

Post 14 or
20 min

BI-749327 MAP mmHg 11 87 ± 23 85 ± 21 84 ± 22 8 99 ± 9 96 ± 25 94 ± 22
Tension g 11 87 ± 14 82 ± 18 88 ± 21 8 83 ± 17 81 ± 6 86 ± 17

Blood flow ml min−1 9 0.48 ± 0.31 0.51 ± 0.20 0.52 ± 0.27 8 0.55 ± 0.26 0.44 ± 0.24 0.49 ± 0.23
SAR7334 MAP mmHg 11 91 ± 17 95 ± 15 96 ± 18 11 97 ± 13 103 ± 8 103 ± 8

Tension g 11 87 ± 15 89 ± 12 86 ± 14 11 77 ± 8 84 ± 14 78 ± 9
Blood flow ml min−1 11 0.38 ± 0.09 0.39 ± 0.13 0.36 ± 0.10 7 0.66 ± 0.34 0.51 ± 0.25 0.57 ± 0.21

C20 MAP mmHg 10 97 ± 15 98 ± 12 102 ± 12 11 99 ± 29 98 ± 28 92 ± 23
Tension g 10 80 ± 22 87 ± 7 95 ± 9 11 86 ± 8 92 ± 10 92 ± 11

Blood flow ml min−1 10 0.62 ± 0.30 0.83 ± 0.42 0.60 ± 0.25 9 0.43 ± 0.14 0.62 ± 0.31 0.47 ± 0.17

Data are presented as the mean ± SD. BI-749327 and SAR7334 are TRPC6 blockers, whereas C20 is a TRPC6 positive modulator.
Abbreviation: MAP, mean arterial blood pressure.

The effect of blocking/sensitizing TRPC6 on the
pressor response to static contraction

BI-749327 (Figs 3–5) and SAR7334 (Fig. 6) decreased the
pressor and sympathetic responses to static contraction,
whereas C20 increased these responses (Figs 7 and 8).
Specifically, BI-749327 and SAR7334 reduced the
integrated pressor response evoked by static contraction
by −42 ± 49% (n = 10; P = 0.0154) and −42 ± 20%
(n = 11; P = 0.0027), respectively, whereas C20 increased
the integrated pressor response by 88 ± 90% (n = 10;
P = 0.0402). Both antagonists decreased the peak pressor
response to static contraction, but only BI-749327 reached

staticital significance (−32 ± 25%; P < 0.001). C20
increased the peak pressor response to static contraction
by 55 ± 53% (P = 0.0173). Analysis of the time course
of blood pressure during the manoeuvre revealed that
the three drugs modulated the pressor response 6 s after
the onset of the manoeuvre. In addition, BI-749327
decreased the peak and integrated RSNA responses to
contraction by −39 ± 96% (P = 0.0345) and −43 ± 38%
(n = 10; P = 0.0358; RSNA was not measured during the
SAR7334 experiments). The inhibition reached statistical
significance 1.5 s after the onset of the manoeuvre and
remained significantly different until the eighth second.
BI-749327 decreased the peak (P= 0.0461) and integrated
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Figure 2. Dose–response effect of each drug on the peak and integrated pressor response to passive
stretch
Data are presented as the mean ± SEM for clarity. Passive stretches were evoked before and after (10 min) injecting
the TRPC6 blocker BI-749327 (n = 7) or SAR7334 (n = 9) or after (4 min) injecting the TRPC6 positive modulator
C20 (n = 8). Control experiments (Con) were performed by two passive stretches without injecting the active
compounds. Note that the x-axis follows a logarithmic scale. Abbreviation: BPi, blood pressure index calculated as
the integrated blood pressor response to stretch. ∗P < 0.05, ∗∗P < 0.01 and ∗∗∗P < 0.001 vs. control.
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Contraction
(TRPC6 antagonist BI-749327; n = 11)
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Figure 3. Effect of TRPC6 blockade with BI-749327 (12 µg kg−1) on the pressor, tension, renal
sympathetic, blood flow and vascular conductance responses to static contraction of the triceps surae
muscles
Data are presented as the mean ± SD changes over time in blood pressure, tension, RSNA, blood flow and vascular
conductance induced by static contraction. The averaged time course includes 2 s of baseline, 30 s of contraction
and 2 s after the end of contraction. Contractions were evoked before and 10 and 20 min after the blockade.
Abbreviations: MAP, mean arterial pressure; P10, 10 min post; P20, 20 min post; RSNA, renal sympathetic nerve
activity. †P < 0.05 between pre-blockade and 10 min post-blockade. ‡P < 0.05 between pre-blockade and 20 min
post-blockade.
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(P = 0.0022) blood flow responses to contraction. The
blood flow reduction occurred 8 s after the onset of the
manoeuvre. Likewise, BI-749327 decreased popliteal
vascular conductance (Fig. 3). C20 had no effects on the
peak or integrated RSNA (n = 9) or blood flow (n = 10)
responses after sensitization of TRPC6 (Fig. 8), but C20
decreased popliteal vascular conductance. No difference
in the peak (P > 0.183) or integrated tension (P > 0.210)
or in the cardioaccelerator response to contraction
(P > 0.226) was found between pre- and post-TRPC6
blockade or sensitization. The pressor, sympathetic and
blood flow responses to static contraction did not recover
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Figure 4. Effect of TRPC6 blockade with BI-749327 (12 µg
kg−1) on the peak and integrated pressor and renal
sympathetic nerve activity responses to static contraction of
the triceps surae muscles
Data are presented as individual (open dots) and group means (open
bars) for the peak and integrated changes evoked by static
contraction. Contractions were evoked before and 10 and 20 min
after the blockade. Abbreviations: BPi, blood pressure index
calculated as the integrated blood pressor response to contraction;
MAP, mean arterial pressure; P10, 10 min post; P20, 20 min post;
RSNAi, integrated renal sympathetic nerve activity. ∗P < 0.05 and
∗∗∗P < 0.001 between the corresponding data points.

from the effects of the drugs when a second contraction
was evoked 10 min after the first contraction (i.e. post
20 min).
The potentiating effect of C20 on the pressor response

to contraction was abolished by subsequent injection of
the TRPC6 antagonist BI-749327 (n = 10; Figs 7 and 8).
Although the RSNA response to contraction was not
changed by C20 injection, the blockade of TRPC6 with
BI-749327 reduced the RSNA response from 2 to 4 s
following the onset of the manoeuvres in comparison to
pretreatment and post-C20 injection, respectively (n= 9).

The effect of blocking/sensitizing TRPC6 on the
pressor response to passive stretch

Similar to their effects on the pressor response evoked
by static contraction, BI-749327 (Figs 9 and 10) and
SAR7334 (Fig. 11) decreased the peak and integrated pre-
ssor response to passive stretch, whereas C20 increased
these responses to stretch (Figs 12 and 13). Specfically,
BI-749327 (n = 8) and SAR7334 (n = 11) decreased the
integrated pressor response evoked by passive stretch by
−52 ± 32% (P = 0.0011) and −35 ± 33% (P = 0.0041),
respectively, whereas C20 increased the integrated pre-
ssor response by 65 ± 135% (n = 12; P = 0.0296).
Analysis of the time course of blood pressure during
the manoeuvre revealed that the three drugs inhibited
or increased the pressor response within 6−8 s after the
onset of stretch. In addition, BI-749327 (n = 7) decreased
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Abbreviation: RSNA, renal sympathetic nerve activity.

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.



12 G. P. Ducrocq and others J Physiol 0.0

the peak and integrated RSNA responses to stretch by
−56 ± 25% (P = 0.0047) and −62 ± 22% (P = 0.0081),
whereas C20 increased these responses by 55 ± 53%
(P = 0.0368) and 235 ± 302% (n = 9; P = 0.0246).
The inhbition/increase of sympathetic nerve activity by
BI-749327 and C20 reached statistical significance within
1−2 s after the onset of the manoeuvre. Only BI-749327
decreased the integrated blood flow response to passive
stretch (n = 8). No difference in the peak (P > 0.424) or
integrated tension (P > 0.158) or in the cardioaccelerator
response to passive stretch (P > 0.0843) was found
between pre- and post-TRPC6 blockade/sensitization.
The pressor, sympathetic and blood flow responses to
passive stretch did not recover from the blockade when a
second stretchwas evoked 10min after the first stretch (i.e.

post 20 min). These responses recovered, in part, when
C20 was used.
Following the sensitization of TRPC6 with C20,

injection of the antagonist BI-749327 abolished the
potentiating effect of C20 on the pressor (n = 12) and
sympathetic (n = 9) responses to passive stretch. No
difference remained between the responses evoked after
the blockade compared with before the sensitization.

Vehicle control and I.V. injection of the TRPC6 blockers
and modulator

Injection of the vehicle used to dissolve the drugs
(3.5% ethanol:96.5% saline:Tween 80) into the super-
ficial epigastric catheter had no effect on the pressor
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Figure 6. Effect of TRPC6 blockade with SAR7334 (7 µg kg−1) on the pressor, tension, blood flow and
vascular conductance responses to static contraction of the triceps surae muscles
Data are presented as the mean ± SD changes over time in blood pressure, tension, blood flow and vascular
conductance induced by static contraction (upper panels) or as individual (open dots) and group means (open bars)
for the peak and integrated changes in blood pressure evoked by static contraction (lower panels). The averaged
time courses include 2 s of baseline, 30 s of contraction and 2 s after the end of contraction. Contractions were
evoked before and 10 and 20 min after the blockade. Renal sympathetic nerve activity was not measured during
these experiments. Abbreviations: BPi, blood pressure index calculated as the integrated blood pressor response
to contraction; MAP, mean arterial pressure; P10, 10 min post; P20, 20 min post. ∗∗P < 0.01 and ∗∗∗P < 0.001
between the corresponding data points. †P < 0.05 between pre-blockade and 10 min post-blockade. ‡P < 0.05
between pre-blockade and 20 min post-blockade.
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Figure 7. Effect of TRPC6 sensitization with C20 (18 µg kg−1) and subsequent TRPC6 blockade with
BI-749327 (12 µg kg−1) on the pressor, tension, renal sympathetic, blood flow and vascular conductance
responses to static contraction of the triceps surae muscles
Data are presented as the mean ± SD changes over time in blood pressure, tension, RSNA, blood flow and vascular
conductance induced by static contraction. The averaged time courses include 2 s of baseline, 30 s of contraction
and 2 s after the end of contraction. Contractions were evoked before, 4 min after the sensitization and 10 min
after the blockade. Abbreviations: MAP, mean arterial pressure; P4, 4 min post; P10, 10 min post; RSNA, renal
sympathetic nerve activity. †P < 0.05 between baseline and 4 min post-sensitization. ‡P < 0.05 between 4 min
post-sensitization and 10 min post-blockade. $P < 0.05 between baseline and 10 min post-blockade.
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(P > 0.198), blood flow (P > 0.274), cardioaccelerator
(P> 0.225) or RSNA (P> 0.272) responses to either static
contraction (P > 0.198; BI-749327/C20, n = 5; SAR7334,
n = 6) or passive stretch (P > 0.360; BI-749327/C20,
n = 8; SAR7334, n = 6). Likewise, when injected i.v.,
neither BI-749327 (contraction, n = 6; stretch, n = 8) nor
SAR7334 (contraction, n= 8; stretch, n= 7) had an effect
on these responses (Tables 2 and 3).
Contrary to its effects when C20 was injected into

the arterial supply of the triceps surae muscles, i.v.
injection of C20 (n = 7) reduced the RSNA responses to
static contraction (Fig. 14). Although blood pressure was
already reduced 4min after injection of C20, the reduction
in blood pressure reached statistical significance only
during the second contraction performed after 10 min of
recovery. Injection ofC20 i.v. hadno effect on the different
responses evoked by passive stretch (n = 7).
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Figure 8. Effect of TRPC6 sensitization with C20 (18 µg kg−1)
and subsequent TRPC6 blockade with BI-749327 (12 µg kg−1)
on the peak and integrated pressor and renal sympathetic
nerve activity responses to static contraction of the triceps
surae muscles
Data are presented as individual (open dots) and group means (open
bars) for the peak and integrated changes evoked by static
contraction. Contractions were evoked before, 4 min after the
sensitization and 10 min after the blockade. Abbreviations: BPi,
blood pressure index calculated as the integrated blood pressor
response to contraction; MAP, mean arterial pressure; P4, 4 min
post; P10, 10 min post; integrated RSNAi, renal sympathetic nerve
activity. ∗P < 0.05 between the corresponding data points.

The effect of blocking TRPC6 on the pressor response
evoked by injection of capsaicin or lactic acid

BI-749327 (n= 9; n= 7) or SAR7334 (n= 9) had no effect
on the pressor or cardioaccelerator responses evoked by
capsaicin or lactic acid injection (Fig. 15).

Discussion

We investigated the role played by TRPC6 in evoking
the exercise pressor reflex in decerebrated rats. We found
that 45% of the sensory neurons that innervated the
triceps surae muscles were positively labelled with both
TRPC6 and Nf200, suggesting that TRPC6 is present on
group III afferent fibres. Consistent with our hypothesis,
we found that blocking TRPC6 with two, structurally
different, antagonists injected into the arterial supply of
the triceps surae muscles reduced the pressor and RSNA
responses evoked by static contraction or passive stretch,
the latter being a manoeuvre that is thought to isolate
the mechanical component of the exercise pressor reflex
(Stebbins et al., 1988). In contrast, sensitizing TRPC6 with
C20, a positive TRPC6 modulator, increased the pressor
response to both static contraction and passive stretch.
The RSNA response was also increased by C20, but by
passive stretch only. Importantly, none of these effects
could be explained by the drugs acting on structures
outside of the triceps suraemuscles, because i.v. injections
of the drugs could not replicate these findings. Finally, the
blockers had no effect on the pressor response evoked by
injection of capsaicin or lactic acid, suggesting that the
observed results were not attributable to a reduced afferent
excitability or to an effect on the metabolic component of
the reflex evoked by accumulation of hydrogen ions and
lactate. Collectively, these data provide strong evidence
that TRPC6 channels play a role in evoking themechanical
component of the exercise pressor reflex.

The exercise pressor reflex is inhibited by blockade of
TRPC6 and increased by sensitization of the channel

Our results showing that modulation of TRPC6 channels
with antagonists or a positive modulator altered the
pressor response and the RSNA response to static
contraction with a latency of <1.5 s suggest that the
TRPC6-modulating drugs used in our experiments acted
on the mechanical rather than the metabolic component
of the exercise pressor reflex (Figs 3–8). The first seconds
of the reflex evoked by static contraction are associated
with high tension and low concentration of intramuscular
metabolites. As contraction progresses, tension often
decreases owing to muscle fatigue and group III afferent
firing adapts, which is then compensated by increased
intramuscular metabolite concentrations and firing of

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Figure 9. Effect of TRPC6 blockade with BI-749327 (12 µg kg−1) on the pressor, tension, renal
sympathetic, blood flow and vascular conductance responses to passive stretch of the triceps surae
muscles
Data are presented as the mean ± SD changes over time in blood pressure, tension, RSNA, blood flow and vascular
conductance induced by passive stretch. The averaged time courses include 2 s of baseline, 30 s of stretch and 2 s
after the end of the stretch. Stretches were evoked before and 10 and 20 min after the blockade. Abbreviations:
MAP, mean arterial pressure; P10, 10 min post; P20, 20 min post; RSNA, renal sympathetic nerve activity. †P< 0.05
between pre-blockade and 10 min post-blockade. ‡P < 0.05 between pre-blockade and 20 min post-blockade.
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group IV afferents (Hayward et al., 1991; Kaufman
et al., 1983; Mense & Stahnke, 1983). In addition,
evidence from experiments in cats and rats showed
that renal sympathetic nerves discharged synchronously
with oscillating tension development (Copp et al., 2016;
Victor et al., 1989), a finding consistent with a mechano-
receptor input evoking the reflex. A reduced RSNAwithin
2 s from contraction onset consequently appears to be
strong evidence of inhibition of mechanical sensitivity.
Importantly, both antagonists had no effect on the pressor

100

60

80

40

20

0

1200

800

600

0

200

150

100

50

0

10

8

6

4

2

-2

BP
i (

m
m

H
g.

s)
R

SN
Ai

 (μ
V.

s)

P = 0.0047 ; pη
2 = 0.489

**

P = 0.0003 ; pη
2 = 0.635

P = 0.0022 ; pη
2 = 0.582 P = 0.0087 ; pη

2 = 0.942

400

200

Pre 10
Post (min)

20 Pre 10
Post (min)

20

Pre 10
Post (min)

20 Pre 10
Post (min)

20

*
**
**

*

0

*
*

Stretch
(TRPC6 antagonist BI-749327)

1000

∆ 
pe

ak
 M

AP
 (m

m
H

g)
∆ 

pe
ak

 R
SN

A 
(%

 fr
om

 b
as

el
in

e)

Figure 10. Effect of TRPC6 blockade with BI-749327 (12 µg
kg−1) on the peak and integrated pressor and renal
sympathetic nerve activity responses to passive stretch of the
triceps surae muscles
Data are presented as individual (open dots) and group means (open
bars) for the peak and integrated changes evoked by passive stretch.
Stretches were evoked before and 10 and 20 min after the blockade.
Abbreviations: BPi, blood pressure index calculated as the integrated
blood pressor response to stretch; MAP, mean arterial pressure; P10,
10 min post; P20, 20 min post; RSNAi, integrated renal sympathetic
nerve activity. ∗P < 0.05 and ∗∗P < 0.01 between the corresponding
data points.

response evoked by lactic acid, which is produced by the
exercising muscles and partly determines the metabolic
component of the exercise pressor reflex (Ducrocq et al.,
2020a, 2020b; Fadel et al., 2003; McCord et al., 2009).
Surprisingly, C20 had no effect on renal sympathetic

responses when injected into the arterial supply of
the triceps surae muscles (Fig. 7). It is consequently
unclear how blood pressure was increased after
TRPC6 sensitization with C20. Evidence from human
experiments showed that sympathetic outflow was not
evenly distributed during exercise (Boulton et al., 2018;
Teixeira et al., 2023), raising the possibility that the
sympathetic outflow to other organs was increased,
whereas it was not at the level of the kidney. If RSNA
was maximal or near maximal before the sensitization
by C20, a ceiling effect might have prevented the
renal sympathetic response from increasing after the
sensitization. Alternatively, it is possible that while
potentiating the pressor response to contraction, C20 had
indirect inhibitory effects on RSNA. For example, we
found that i.v. injection of C20 depressed the renal
sympathetic response to static contraction (Fig. 14).
These results could be the consequence of increasing the
function of TRPC6 on baroreceptors, because RSNA is
under strong baroreflex control (Kamiya et al., 2005).
Although the snare around the femoral artery and vein
was tightened during injection, it was still possible that
some of the drug circulated outside of the hindlimb
circulation and acted on baroreceptors.

The mechanoreflex is inhibited by blockade of TRPC6
and increased by sensitization of the channel

Consistent with a role for TRPC6 in mechano-
transduction, TRPC6 antagonism blocked the pre-
ssor and RSNA responses to passive stretch, whereas
TRPC6 sensitization increased these responses
(Figs 9–13). The passive stretch manoeuvre is believed
to mimic the mechanical stimuli of a contracting muscle
and therefore provide a second line of evidence for a role
of TRPC6 in evoking the mechanical component of the
exercise pressor reflex (Daniels et al., 2000; Stebbins et al.,
1988). The effects of the TRPC6 drugs on the responses
to passive stretch were very close, in terms of magnitude
and latency, to the effects of the blockade on the responses
to contraction. The small difference in latency in blood
pressure and RSNA responses (0.5–2 s) between passive
stretch and static contraction could be attributed to the
slower rate of rise in tension during stretch compared
with contraction, as recent evidence showed that the rate
of rise in tension strongly determines the sympathetic
and blood pressure response to stretch in decerebrated
rats (Ishizawa et al., 2023).
In concordance with the contraction data, the positive

modulator C20 increased the pressor response to stretch

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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by∼65% (Figs 12 and 13).No interaction effectwas found,
hence it was not possible to establish the latency with
which C20 potentiated the pressor response. However,
the peak and integrated RSNA was also increased, which
is different from our findings from static contraction.
Notably, the peak increase in RSNA during passive
stretch was about half of the peak increase induced by
static contraction, which is in line with our hypothesis
that RSNA was not increased during static contraction
owing to a ceiling effect. Alternatively, it has been
reported that pancuronium bromide decreases baroreflex
sensitivity (Larijani et al., 1992; Lavery et al., 1986;
Tsuchida et al., 1991; Yoneda et al., 1994). Using this
neuromuscular blocker to prevent muscle contraction
during our stretch procedure might have suppressed the

increase of function of TRPC6 on the baroreceptors
during passive stretch. This is supported by our findings
showing that i.v. injection of C20 did not change the
blood pressure or RSNA responses to passive stretch
(Fig. 14).
Collectively, our protocol provides strong evidence

that TRPC6 plays a key role in evoking the mechanical
component of the exercise pressor reflex during exercise.
The role of TRPC6 in regulating blood pressure during
exercise was previously undocumented. To the best of
our knowledge, only Grotle et al. (2021) attempted to
investigate the role of TRPC6 and TRPC1 receptors on
the exercise pressor reflex evoked by intermittent static
contraction. Using ∼10 μM of SKF96365, a non-selective
blocker of the TRPC familly, Grotle et al. (2021) reported
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Figure 11. Effect of TRPC6 blockade with SAR7334 (7 µg kg−1) on the pressor, tension, blood flow and
vascular conductance responses to passive stretch of the triceps surae muscles
Data are presented as the mean ± SD changes over time in blood pressure, tension, blood flow and vascular
conductance induced by passive stretch (upper panels) or as individual (open dots) and group means (open bars)
for the peak and integrated changes in blood pressure evoked by passive stretch (lower panels). The averaged time
courses include 2 s of baseline, 30 s of stretch and 2 s after the end of stretch. Stretches were evoked before and
10 and 20 min after the blockade. Renal sympathetic nerve activity was not measured during these experiments.
Abbreviations: BPi, blood pressure index calculated as the integrated blood pressor response to contraction; MAP,
mean arterial pressure; P10, 10 min post; P20, 20 min post. ∗P < 0.05 between the corresponding data points.
†P < 0.05 between pre-blockade and 10 min post-blockade. ‡P < 0.05 between pre-blockade and 20 min
post-blockade.
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Figure 12. Effect of TRPC6 sensitization with C20 (18 µg kg−1) and subsequent TRPC6 blockade with
BI-749327 (12 µg kg−1) on the pressor, tension, renal sympathetic, blood flow and vascular conductance
responses to passive stretch of the triceps surae muscles
Data are presented as the mean ± SD changes over time in blood pressure, tension, RSNA, blood flow and vascular
conductance induced by passive stretch. The averaged time courses include 2 s of baseline, 30 s of stretch and
2 s after the end of stretch. Stretches were evoked before, 4 min after the sensitization and 10 min after the
blockade. Abbreviations: MAP, mean arterial pressure; P4, 4 min post; P10, 10 min post; RSNA, renal sympathetic
nerve activity. †P< 0.05 between baseline and 4min post-sensitization. ‡P< 0.05 between 4min post-sensitization
and 10 min post-blockade.
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no effect on the pressor responses to intermittent static
contraction. Several factors could explain the discrepancy
with our results. It is unknown whether the dose used
by Grotle et al. (2021) effectively blocked the targeted
channels, because no agonist was available to challenge
the blockade. In our experiments, the effectiveness of
TRPC6 blockade was indirectly demonstrated by our data
showing that TRPC6 antagonism blunted the potentiating
effect of TRPC6 sensitization with C20. Considering that
the potency of SKF96365 is lower than that of our two
blockers [lowest effective concentration in vitro = 1 μM
(Grotle et al., 2021)] and that the dose of SKF96365 was
>16 times lower than ours, this raises the possibility that
the dose used by Grotle et al. (2021) was not high enough
to block the TRPC6 channel.

Methodological considerations/limitations

Using immunohistochemistry, we found that most of the
DiI/TRPC6-positive DRG cells were co-localized with
Nf200, a marker of myelination (Fig. 1; Amaya et al.,
2000; Fornaro et al., 2008; Ma, 2002). Our findings are
consistent with the hypothesis that TRPC6 is expressed in
group III mechanosensitive afferent fibres. Nevertheless,
one must recognize that the DiI/TRPC6-positive DRG

cells testing positive for Nf200 could also be group I or II
afferent fibres. Group I and II afferent fibres, however, do
not play a role in evoking the exercise pressor reflex and
thus cannot explain our haemodynamic data (Hodgson
& Matthews, 1968; Waldrop et al., 1984). In addition, a
lesser population of DiI/TRPC6-positive DRG cells also
co-localized peripherin, a marker of group IV afferent
fibres. This result might indicate that TRPC6 could also
play a role in evoking the metaboreflex. Consequently,
further data are needed to elucidate the role of TRPC6 in
evoking the metabolic component of the exercise pressor
reflex.
The use of pharmacological drugs to modulate the

function of TRPC6 always raises the possibility that the
drugs acted on other channels/structures. BI-749327 and
SAR7334 hadno effect on the pressor response to injection
of lactic acid or capsaicin in our experiments (Fig. 15).
Consequently, it is unlikely that both drugs acted on
channels involved in sensing changes in muscle pH or
afferent excitability, such as voltage-gated potassium or
sodium channels.
TRPC6 channels are expressed in smooth muscle cells

and appear to play a role in causing vasoconstriction
in peripheral arteries. Consequently, the reduced or
increased pressor response to static contraction might
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have been the result of a greater removal or accumulation
of intramuscular metabolites owing to differences in local
blood flow (Lind & McNicol, 1967). This hypothesis was
not verified during our experiments, because blocking
TRPC6 was not associated with a greater popliteal artery
blood flow, whereas sensitizing the channel was not
associated with a lower popliteal artery blood flow.
Lacking from our data set is evidence of a pressor

response by direct activation from an agonist compound.
GSK-1702934A is one of the only commercially available
extracellular TRPC3 (EC50 = 80 nM) agonists that also
activates TRPC6 (EC50 = 440 nM) (Xu et al., 2013; Yang
et al., 2021). Several attemps have been made to evoke

a pressor response at a dose of ≤34 μg kg−1, but the
results were inconclusive. In two of three rats, a small
pressor response (∼10 mmHg) was produced when the
drug was injected into the superficial epigastric catheter.
However, this result could not be replicated after 10min of
recovery.
Only male rats were used in the present experiments.

Considering that sex hormonesmodulate the exercise pre-
ssor reflex or modulate the effect of a drug on the exercise
pressor reflex (Butenas, Ishizawa et al., 2023; Koba et al.,
2012; Schmitt & Kaufman, 2003; Schmitt et al., 2006),
we restricted our study to one sex. For example, Butenas,
Ishizawa et al.,( 2023) recently showed that capsaicin
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Figure 15. Effect of TRPC6 antagonists or positive modulator
on the pressor response to capsaicin and lactic acid
Data are presented as individual (open dots) and group means (open
bars) for the peak pressor response to capsaicin (upper panels) and
lactic acid (lower panels) before and after injection of the
TRPC6-acting drugs. Capsaicin, lactic acid, the TRPC6 blockers
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pressure is presented below each open bar. Abbreviation: MAP,
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depressed the pressor response to passive stretch in male
but not in female rats.

Perspective

The present findings have important implications for
understanding the autonomic control of circulation in
health and, possibly, in disease. Several pathologies
characterized by an exacerbated pressor response to
exercise (e.g. diabetes, hypertension) (Samora et al., 2023)
are also associated with an upregulation of TRPC6 (Ma
et al., 2021; Zulian et al., 2010). If the role of TRPC6 is
exaggerated in these patient populations, this warrants
further investigation to target this channel to counteract
the symptoms of the disease.

Conclusion

We found that blocking the TRPC6 channel with two
structurally different antagonists inhibited the pressor and
sympathetic responses to static contraction and passive
stretch. In addition, we found that sensitizing TRPC6
with a positive modulator increased the pressor response
to static contraction, in addition to the pressor and
sympathetic responses to passive stretch. Collectively, our
data provide strong support for a role played by TRPC6,
among other mechanosensitive receptors such Piezo
and/or TRPV4, in evoking the mechanical component of
the exercise pressor reflex. Further experiments using a
different exercise modality, animal sex or disease model
are warranted to provide a deeper understanding of this
channel in regulating the blood pressure response to
exercise.
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